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FINITE COMMUTATIVE RINGS WHOSE UNITARY
CAYLEY GRAPHS HAVE POSITIVE GENUS

HUADONG SU AND YIQIANG ZHOU

ABSTRACT. The unitary Cayley graph of a ring R is
the simple graph whose vertices are the elements of R, and
where two distinct vertices x and y are linked by an edge if
and only if x− y is a unit in R. The genus of a simple graph
G is the smallest nonnegative integer g such that G can be
embedded into an orientable surface Sg . It is proven that, for
a given positive integer g, there are at most finitely many
finite commutative rings whose unitary Cayley graphs have
genus g. We determine all finite commutative rings whose
unitary Cayley graphs have genus 1, 2 and 3, respectively.

1. Introduction and preliminaries. This paper concerns the uni-
tary Cayley graphs of finite commutative rings, focusing on the genera
of unitary Cayley graphs. Let R be a ring with nonzero identity. We
use U(R) and J(R) to denote the group of units of R and the Jacobson
radical of R, respectively. The unitary Cayley graph of R, denoted
by Γ(R), is the simple graph whose vertices are the elements of R,
and where two distinct vertices x and y are adjacent if and only if
x− y ∈ U(R).

The unitary Cayley graph of a ring was initially investigated for Zn

by Dejter and Giudici [10] and has been the topic of many publications
(see, for example, [2, 3, 5, 6, 10, 11, 13]–[19]).
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We recall some necessary notation in graph theory. Let G = (V,E)
be a simple graph. For v ∈ V , the degree of v, denoted by deg(v), is
the number of edges of G incident with v. For an integer k > 0, the
graph G is called k-regular if the degree of each vertex of G is equal
to k. We use Km,n and Kn to denote the complete bipartite graph
with partitions of size m and n, and the complete graph of n vertices,
respectively. An orientable surface Sg is said to be of genus g if it is
topologically homeomorphic to a sphere with g handles. A graph G
that can be drawn without crossing on a compact surface of genus g,
but not on one of genus g − 1, is called a graph of genus g. A planar
graph is a graph with genus zero, and a toroidal graph is a graph with
genus one. We write γ(G) for the genus of the graph G. Clearly, if H
is a subgraph of a graph G, then γ(H) ≤ γ(G). Determining the genus
of a graph is one of the fundamental problems in topological graph
theory. In [23], Thomassen proved that the graph genus problem is
indeed NP-complete.

The genera of graphs associated with rings is an active research
subject. For instance, the planarity of zero divisor graphs was studied
in [1, 4, 21]. The rings with toroidal zero divisor graphs were classified
in Wang [24] and Wickham [26, 27]. Genus two zero divisor graphs of
local rings were investigated by Bloomfield and Wickham [7]. Recently,
Maimani et al. [20] determined all isomorphism classes of finite rings
whose total graphs have genus at most one, and Tamizh Chelvam and
Asir [22] characterized all isomorphism classes of finite rings whose
total graphs have genus two. In [2, Theorem 8.2], all finite commutative
rings having planar unitary Cayley graphs are completely classified.
The goal of this paper is to classify all finite commutative rings whose
unitary Cayley graphs have genus 1, 2 and 3, respectively. It is
also proven that, for a given positive integer g, there are at most
finitely many finite commutative rings whose unitary Cayley graphs
have genus g.

As is standard, Zn and Fq will denote the ring of integers mod n
and the field with q elements, respectively. The cardinal of a set A is
denoted |A|. Throughout, graphs are finite simple graphs.

2. Unitary Cayley graphs with genus g. In this section, we
prove that, for any integer g > 0, there are only finitely many finite
commutative rings R with γ(Γ(R)) = g. Some lemmas are required.
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Lemma 2.1 ([25, Theorems 6.37, 6.38]). Let m ≥ 2, n ≥ 3 and p ≥ 2
be integers. Then,

γ(Kn) =

⌈
1

12
(n− 3)(n− 4)

⌉
,

γ(Km,p) =

⌈
1

4
(m− 2)(p− 2)

⌉
,

where ⌈x⌉ is the least integer that is greater than or equal to x.

Lemma 2.2 ([25, Corollary 6.19]). The genus of a graph is the sum
of the genera of its components.

Lemma 2.3 ([27, Proposition 2.1]). Let G be a graph with n (≥ 3)
vertices. Let δ(G) be the minimal degree of G. Then

δ(G) ≤ 6 +
12(γ(G)− 1)

n
.

Lemma 2.4 ([2, Proposition 2.2]). Let R be a ring with |U(R)| = k <
∞. Then, Γ(R) is k-regular.

Lemma 2.5. Let R be a finite commutative ring with γ(Γ(R)) = g > 0.
Then, either |R| ≤ 12(g − 1) or |U(R)| ≤ 6.

Proof. We can assume |U(R)| > 6. From Lemma 2.3,

δ(Γ(R)) ≤ 6 +
12(g − 1)

|R|
.

By Lemma 2.4, δ(Γ(R)) = |U(R)| > 6. Thus,

12(g − 1)

|R|
=

(
6 +

12(g − 1)

|R|

)
− 6 ≥ δ(Γ(R))− 6 ≥ 1,

giving 12(g − 1) ≥ |R|. �

If R is a finite commutative ring containing n zero divisors with
n > 1, then |R| ≤ n2 (see [12, Theorem 1]). For a finite local ring R
with maximal ideal m, there exists a prime p such that |R/m| = pt for
some integers t ≥ 1, and hence, |R| = pn for some integers n ≥ t.
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Lemma 2.6 ([8, page 687]). Let R be a commutative local ring. Then:

(i) |R| = 4 if and only if R ∈ {F4,Z4,Z2[x]/(x
2)}.

(ii) |R| = 8 if and only if R ∈ {F8,Z8,Z2[x]/(x
3), Z2[x, y]/(x, y)

2,
Z4[x]/(2x, x

2), Z4[x]/(2x, x
2 − 2)}.

(iii) |R| = 9 if and only if R ∈ {F9,Z9,Z3[x]/(x
2)}.

Lemma 2.7 ([9, Proposition 3.4]). Let R be a finite commutative local
ring. Then:

(i) |U(R)| ̸= 5.
(ii) |U(R)| = 2 if and only if R ∈ {Z3,Z4,Z2[x]/(x

2)}.
(iii) |U(R)| = 3 if and only if R = F4.
(iv) |U(R)| = 4 if and only if R∈{Z5,Z8,Z2[x]/(x

3), Z4[x]/(2x, x
2− 2),

Z2[x, y]/(x, y)
2, Z4[x]/(2x, x

2)}.
(v) |U(R)| = 6 if and only if R ∈ {Z7,Z9,Z3[x]/(x

2)}.

Let R be an Artinian ring. If R/J(R) has no summands isomorphic
to Z2, then Γ(R) is connected by [18, Lemma 4.1]. If R/J(R)
has s (≥ 1) summands isomorphic to Z2, then Γ(R) contains 2s−1

connected components (see [18, Theorem 1.2]). Note that, for a finite
commutative ring R, Γ(Z2×Z2×R) is two copies of Γ(Z2×R). Indeed,
suppose that a − b is an edge in Γ(Z2 × R). Then, (0, a) − (1, b) and
(1, a)− (0, b) are two disjoint edges in Γ(Z2 × Z2 ×R). This, together
with Lemma 2.2, gives

Lemma 2.8. Let R be a finite commutative ring and s a positive
integer. Then, we have γ(Γ((Z2)

s ×R)) = 2s−1γ(Γ(Z2 ×R)).

Lemma 2.9. Let R be a finite (commutative) ring. If |U(R)| ≤ 3, then
Γ(R) is planar.

Proof. If |U(R)| ≤ 2, then the maximal degree of Γ(R) is at most
two; thus, Γ(R) must be planar.

Suppose that |U(R)| = 3. Then, 2 = 0 in R, and Γ(R) is 3-regular
by Lemma 2.4. Write U(R) = {u1, u2, u3}. For a given r ∈ R, r is
adjacent to ui + r (i = 1, 2, 3). Two situations now arise.

Case 1. u1 + r is adjacent to u2 + r. Then, (u1 + r)− (u2 + r) = u3.
Thus, u1 + r is adjacent to u3 + r. In fact, u1 + r is adjacent to
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u2 + r ⇔ u1 + r is adjacent to u3 + r ⇔ u2 + r is adjacent to u3 + r.
Hence, in this case, r, u1 + r, u2 + r, u3 + r form a complete graph
K4, which is 3-regular.

Case 2. ui + r is not adjacent to uj + r whenever i ̸= j. Let the
neighbors of u1 + r be r, a, b. We may assume u1 + r − a = u2

and u1 + r − b = u3. Then, u2 + r − a = u1 and u3 + r − b = u1.
This means that a is adjacent to u2 + r and b is adjacent to u3 + r.
Let c be the third neighbor of u2 + r. It can easily be verified that
c /∈ {u1 + r, u2 + r, u3 + r, a, b, r}. Moreover, it must be that
u2 + r − c = u3; thus, u3 + r − c = u2. This means that c is
also a neighbor of u3 + r. Now, consider the vertex a. Let x be
the third neighbor of a. Then, it must be that x − a = u3. Since
x−b = u3+a−b = u1+r−b+a−b = u1+r−a = u2, x is adjacent to
b. Since x− c = (u3+a)− (u3+r−u2) = u2+r−a = u1, x is adjacent
to c. It can also be verified that x /∈ {a, b, u1+r, u2+r, u3+r, r, c}.
Thus, the vertices r, u1 − r, u2 − r, u3 − r, a, b, c and x form a cube
(see Figure 1), which is 3-regular.

· ·

· ·

· ·

· ·

�
�

�
�@

@

@
@

r u2 + r

u1 + r

u3 + r

a

b x

c

FIGURE 1.

Note that Γ(R) cannot contain both K4 and a cube as subgraphs.
In fact, if r, u1 + r, u2 + r, u3 + r, a, b, c, x form a cube (as
shown in Figure 1), then u1 − u2 = (u1 + r) − (u2 + r) is not a unit;
however, if s, u1 + s, u2 + s, u3 + s form a complete graph K4, then
u1−u2 = (u1+s)−(u2+s) = u3 is a unit. Hence, as Γ(R) is 3-regular,
either Γ(R) is a disjoint union of copies of a cube, or Γ(R) is a disjoint
union of copies of K4. Since a cube and K4 are planar graphs, Γ(R) is
planar. �

We are ready to prove our first result.
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Theorem 2.10. For a given positive integer g, there are at most fi-
nitely many finite commutative rings whose unitary Cayley graphs have
genus g.

Proof. Let R be a finite commutative ring with γ(Γ(R)) = g. It
suffices to show that |R| is bounded above by a constant depending
only upon g.

If R is a field, then Γ(R) is a complete graph K|R|. Thus,

g = γ(Γ(R)) = γ(K|R|) =

⌈
(|R| − 3)(|R| − 4)

12

⌉
by Lemma 2.1. This yields (|R| − 3)(|R| − 4) ≤ 12g, or |R| ≤
(7 +

√
49 + 48(g − 1))/2, as desired.

If R is a local ring which is not a field, then m = Z(R) is the maximal
ideal of R, and |R| ≤ |Z(R)|2 by [12, Theorem 1]. Note that every
element in m is adjacent to each element in 1 + m := {1 + a|a ∈ m}.
Hence, K|m|,|m| is a subgraph of Γ(R). Thus, we have

g = γ(Γ(R)) ≥ γ(K|m|,|m|) =

⌈
(|m| − 2)2

4

⌉
by Lemma 2.1. This implies that (|m| − 2)2 ≤ 4g or |m| ≤ 2

√
g + 2.

Therefore, |R| ≤ (2
√
g + 2)2, as desired.

Now, suppose that R is not a local ring. We may assume that
R = (Z2)

s × R1 × · · · × Rt, where s ≥ 0 and each Ri is a local ring
with at least three elements. Since g > 0, we have s ≤ 1 + log2g by
Lemma 2.8. If |R| ≤ 12(g−1), we are done. Otherwise, by Lemmas 2.5
and 2.9, we have 4 ≤ |U(R)| ≤ 6. As |U(R)| = |U(R1)| × · · · × |U(Rt)|,
there are the following possibilities:

Case 1. |U(R)| = 4. Then, either t = 1 and |U(R1)| = 4, or
t = 2 and |U(R1)| = |U(R2)| = 2. From Lemma 2.7, the former gives
R ∼= (Z2)

s ×R1, where s ≥ 1 and

R1 ∈
{
Z5, Z8,

Z2[x]

(x3)
,
Z2[x, y]

(x, y)2
,

Z4[x]

(2x, x2)
,

Z4[x]

(2x, x2 − 2)

}
,

and the latter shows R ∼= (Z2)
s × R1 × R2 where s ≥ 0 and R1, R2 ∈

{Z3, Z4, Z2[x]/(x
2)}.
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Case 2. |U(R)| = 5. Thus, t = 1 and |U(R1)| = 5. However, this is
impossible by Lemma 2.7.

Case 3. |U(R)| = 6. Then, either t = 1 and |U(R1)| = 6, or t = 2,
|U(R1)| = 2 and |U(R2)| = 3. By Lemma 2.7, the former shows R ∼=
(Z2)

s×R1, where s ≥ 1 and R1 ∈ {Z7, Z9, Z3[x]/(x
2)}, and the latter

yields R ∼= (Z2)
s×R1×F4, where s ≥ 0 and R1 ∈ {Z3, Z4, Z2[x]/(x

2)}.
In conclusion, in each case, we always have |R1 × · · · ×Rt| ≤ 16. It

then follows that |R| ≤ 2s · 16 ≤ 2(1+log2g) · 16 = 32g, as desired. �

3. The unitary Cayley graphs of genus at most three. In
this section, we determine the finite commutative rings whose unitary
Cayley graphs have genus at most three. This is a preparation for
the classification of the finite commutative rings whose unitary Cayley
graphs have genus 1, 2 or 3, respectively.

Lemma 3.1 ([25, Corollaries 6.14, 6.15]). Suppose a simple graph G is
connected with p ≥ 3 vertices and q edges. Then, γ(G) ≥ q/6−p/2+1.
Furthermore, if G has no triangles, then γ(G) ≥ q/4− p/2 + 1.

Lemma 3.2. Let R be a finite ring. If γ(Γ(R)) ≤ 3, then |U(R)| ≤ 8.

Proof. Let |R| = n and |U(R)| = k. Then, Γ(R) is k-regular
with n vertices. Thus, Γ(R) has (kn)/2 edges. From Lemma 3.1,
γ(Γ(R)) ≥ kn/12−n/2+1. If k ≥ 9, then γ(Γ(R)) ≥ 4, a contradiction.
Thus, k ≤ 8. �

Lemma 3.3. Let R be a finite commutative local ring. If γ(Γ(R)) ≤ 3,
then |R| ≤ 13.

Proof. Let m be the unique maximal ideal of R. Since every element
in m is adjacent to each element in 1 + m = {1 + a | a ∈ m},
Γ(R) contains a subgraph K|m|,|m|. If |m| ≥ 6, then γ(Γ(R)) ≥ 4
by Lemma 2.1, a contradiction. Therefore, |m| ≤ 5. Thus, |R| =
|U(R)|+ |m| ≤ 8 + 5 = 13 by Lemma 3.2. �

Lemma 3.4. Let S and T be finite commutative local rings that are
not fields.
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(i) If R = Z2 × S with |S| = 8, then γ(Γ(R)) = 2.
(ii) If R = Z3 × S with |S| = 4, then γ(Γ(R)) = 1.
(iii) If R = S × T with |S| = |T | = 4, then γ(Γ(R)) = 2.

Proof.

(i) It is clear that |U(S)| = |J(S)| = 4. Thus, |U(R)| = |J(R)| = 4,
and hence, Γ(R) is 4-regular. Since each element in J(R) is adjacent
to every element in U(R), we deduce that Γ(R) comprises two copies
of K4,4. Hence, γ(Γ(R)) = 2 by Lemmas 2.1 and 2.2.

(ii) We have S ∈ {Z4, Z2[x]/(x
2)}. Note that Γ(Z3 × Z4) and

Γ(Z3 × Z2[x]/(x
2)) have the same graph structure. Clearly, Γ(R) is

4-regular and contains no triangles. Thus, γ(Γ(R)) ≥ 1 by Lemma 3.1.
On the other hand, we can embed Γ(R) into S1, as shown in Figure 2.
Hence, γ(Γ(R)) = 1.

FIGURE 2. Γ(Z3 × Z4).

(iii) It is clear that |U(S)| = |U(T )| = 2 and |J(S)| = |J(T )| = 2.
Thus, |U(R)| = |J(R)| = 4, and hence, Γ(R) is 4-regular. Since each
element in J(R) is adjacent to every element in U(R), we deduce that
Γ(R) comprises two copies of K4,4. Therefore, γ(Γ(R)) = 2 by Lemmas
2.1 and 2.2. �
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Lemma 3.5. Let S be a finite commutative local ring that is not a
field.

(i) If R = Z2 × Z7, then γ(Γ(R)) ≥ 5.
(ii) If R = Z2 × S with |S| = 9, then γ(Γ(R)) ≥ 6.
(iii) If R = Z2 × Z3 × F4, then γ(Γ(R)) ≥ 7.
(iv) If R = F4 × S with |S| = 4, then γ(Γ(R)) ≥ 5.

Proof.

(i) Since |U(R)| = 6, Γ(R) is 6-regular. Note that Γ(R) is a bipartite
graph; thus, it contains no triangles. As Γ(R) contains 14 vertices and
42 edges, γ(Γ(R)) ≥ 5, by Lemma 3.1.

(ii) It is clear that |U(R)| = |U(S)| = 6; thus, Γ(R) is 6-regular.
Since Γ(R) has 54 edges and 18 vertices and contains no triangles,
γ(Γ(R)) ≥ 6, by Lemma 3.1.

(iii) Since |U(R)| = 6, Γ(R) is 6-regular. As Γ(R) has 72 edges and
24 vertices and contains no triangles, γ(Γ(R)) ≥ 7, by Lemma 3.1.

(iv) We have |U(S)| = 2; thus, |U(R)| = 6, and hence, Γ(R) is 6-
regular. Note that Γ(R) contains no triangles. Indeed, if (a1, b1) −
(a2, b2) − (a3, b3) − (a1, b1) is a triangle in Γ(R), then b1 − b2, b2 − b3
and b3 − b1 comprise three units in Z4 or Z2[x]/(x

2). Thus, 0 =
(b1 − b2) + (b2 − b3) + (b3 − b1) is a sum of three units in Z4 or
Z2[x]/(x

2). This is impossible. Since Γ(R) has 48 edges and 16 vertices,
γ(Γ(R)) ≥ 5, by Lemma 3.1. �

Proposition 3.6. Let R be a finite commutative ring. If 1 ≤
γ(Γ(R)) ≤ 3, then R is isomorphic to one of the following rings:

(i) Z5, Z7, F8, F9;
(ii) Z8, Z2[x]/(x

3), Z2[x, y]/(x, y)
2, Z4[x]/(2x, x

2), Z4[x]/(2x, x
2 − 2),

Z9, Z3[x]/(x
2);

(iii) Z3×Z3, Z3×Z4, Z3×Z2[x]/(x
2), Z3×F4, Z4×Z4, Z4×Z2[x]/(x

2),
Z2[x]/(x

2)× Z2[x]/(x
2);

(iv) Z2×Z5, Z2×Z2×Z5, Z2×Z8, Z2×Z2[x]/(x
3), Z2×Z4[x]/(2x, x

2 − 2),
Z2×Z2[x, y]/(x, y)

2, Z2×Z4[x]/(2x, x
2), Z2×Z3×Z3, Z2×Z2×

Z3 × Z3, Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]/(x
2).

Proof. Suppose that R is a field. In view of the proof of Theo-
rem 2.10, the assumption that γ(Γ(R)) ≤ 3 implies |R| ≤ 9. Moreover,
R /∈ {Z2,Z3,F4} by Lemma 2.9; thus, R ∈ {Z5,Z7,F8,F9}.
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Suppose that R is a local ring that is not a field. The assumption
that γ(Γ(R)) ≤ 3 implies |R| ≤ 13 by Lemma 3.3. Note that, in
this case, |R| = pn for some prime p and some n > 1. We deduce
|R| ∈ {4, 8, 9}. However, |R| ̸= 4 by Lemma 2.9; thus, |R| ∈ {8, 9}.
Hence, by Lemma 2.6,

R ∈
{
Z8,

Z2[x]

(x3)
,
Z2[x, y]

(x, y)2
,

Z4[x]

(2x, x2)
,

Z4[x]

(2x, x2 − 2)
, Z9,

Z3[x]

(x2)

}
.

Suppose that R is not a local ring. Since γ(Γ(R)) ≤ 3, in view
of the proof of Theorem 2.10, we either have |R| ≤ 24, or R ∼=
(Z2)

s × R1 × · · · × Rt with 0 ≤ s ≤ 2 and |U(R1 × · · · × Rt)| = 4
or 6.

Case 1. |R| ≤ 24. We write R = (Z2)
s ×R1 × · · · ×Rt, where each

Ri is a local ring with at least three elements. If s = 0, then t = 2. It
follows that R is one of the following rings:

Z3 × Z3, Z3 × Z4, Z3 ×
Z2[x]

(x2)
,

Z3 × F4, Z3 × Z5, Z3 × Z7, Z4 × Z4, Z4 × F4,

Z4 ×
Z2[x]

(x2)
,
Z2[x]

(x2)
× Z2[x]

(x2)
,
Z2[x]

(x2)
× F4,

F4 × F4, Z4 × Z5.

Since |U(R)| ≤ 8 by Lemma 3.2, we have R ̸= Z3 × Z7 and
R ̸= F4 × F4. If R = Z3 × Z5, then Γ(R) is a graph with 15 vertices
and 60 edges; thus, γ(Γ(R)) ≥ 4, by Lemma 3.1. If R = Z4 × Z5, then
Γ(R) is a graph with 20 vertices and 80 edges; thus, γ(Γ(R)) ≥ 5, by
Lemma 3.1. If R = Z4 × F4 or R = Z2[x]/(x

2)× F4, then γ(Γ(R)) ≥ 5
by Lemma 3.5 (iv). Hence, we obtain

R ∈
{
Z3 × Z3, Z3 × Z4, Z3 ×

Z2[x]

(x2)
,

Z3 × F4, Z4 × Z4, Z4 ×
Z2[x]

(x2)
,
Z2[x]

(x2)
× Z2[x]

(x2)

}
.

If s = 1, then t = 1 or 2. It follows that R is one of the following rings:

(i) Z2 × Z11;
(ii) Z2 × F9, Z2 × Z9, Z2 × Z3[x]/(x

2);
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(iii) Z2×Z8, Z2×Z2[x]/(x
3), Z2×Z4[x]/(2x, x

2−2), Z2×Z2[x, y]/(x, y)
2,

Z2 × Z4[x]/(2x, x
2);

(iv) Z2 × Z7;
(v) Z2 × Z5;
(vi) Z2 × F4, Z2 × Z4, Z2 × Z2[x]/(x

2), Z2 × Z3;
(vii) Z2 × Z3 × Z3;
(viii) Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]/(x

2), Z2 × Z3 × F4.

From Lemma 3.2, the ring Z2 × Z11 should be ruled out. By
Lemma 3.5, the rings Z2×Z9, Z2×Z3[x]/(x

2), Z2×Z7 and Z2×Z3×F4

should be ruled out. Note that Γ(Z2×F9) is an 8-regular graph. Thus,
γ(Γ(Z2 × F9)) ≥ 4, by Lemma 3.1.

If s = 2, then t = 1. Hence, |R1| ≤ 6. It follows that R is one of the
following rings:

Z2 × Z2 × Z5, Z2 × Z2 × F4,

Z2 × Z2 × Z4, Z2 × Z2 ×
Z2[x]

(x2)
.

Applying Lemma 2.9, we have R = Z2 × Z2 × Z5 in this case.

If s = 3, then t = 1. Thus, |R1| ≤ 3. It follows that R ∼=
Z2×Z2×Z2×Z3. However, in this case, Γ(R) is planar by Lemma 2.9.

Case 2. R ∼= (Z2)
s × R1 × · · · × Rt with 0 ≤ s ≤ 2 and

|U(R1 × · · · × Rt)| = 4 or 6. If s = 0, then t = 2. Thus, |U(R1)| =
|U(R2)| = 2 or |U(R1)| = 2 and |U(R2)| = 3. From Lemma 2.7, R is
one of the following rings:

Z3 × Z3, Z3 × Z4, Z3 ×
Z2[x]

(x2)
,

Z4 × Z4, Z4 ×
Z2[x]

(x2)
,
Z2[x]

(x2)
× Z2[x]

(x2)
,

Z3 × F4, Z4 × F4,
Z2[x]

(x2)
× F4.

As shown in Case 1, the rings Z4 × F4 and Z2[x]/(x
2) × F4 should

be ruled out. If s = 1 or 2, then R is one of the following rings:

(a) Z2 × Z5, Z2 × Z2 × Z5;
(b) Z2×Z8, Z2×Z2[x]/(x

3), Z2×Z4[x]/(2x, x
2 − 2), Z2×Z2[x, y]/(x, y)

2,
Z2 × Z4[x]/(2x, x

2);
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(c) Z2 × Z2 × Z8, Z2 × Z2 × Z2[x]/(x
3), Z2 × Z2 × Z4[x]/(2x, x

2 − 2),
Z2 × Z2 × Z2[x, y]/(x, y)

2, Z2 × Z2 × Z4[x]/(2x, x
2);

(d) Z2 × Z3 × Z3, Z2 × Z2 × Z3 × Z3;
(e) Z2 × Z3 × Z4, Z2 × Z3 × Z2[x]/(x

2);
(f) Z2 × Z2 × Z3 × Z4, Z2 × Z2 × Z3 × Z2[x]/(x

2);
(g) Z2 × Z4 × Z4, Z2 × Z2 × Z4 × Z4;
(h) Z2 × Z4 × Z2[x]/(x

2), Z2 × Z2 × Z4 × Z2[x]/(x
2);

(i) Z2 × Z2[x]/(x
2)× Z2[x]/(x

2), Z2 × Z2 × Z2[x]/(x
2)× Z2[x]/(x

2);
(j) Z2 × Z7, Z2 × Z2 × Z7;
(k) Z2 × Z9, Z2 × Z2 × Z9,
(l) Z2 × Z3[x]/(x

2), Z2 × Z2 × Z3[x]/(x
2);

(m) Z2 × Z3 × F4, Z2 × Z2 × Z3 × F4;
(n) Z2 × Z4 × F4, Z2 × Z2 × Z4 × F4;
(o) Z2 × Z2[x]/(x

2)× F4, Z2 × Z2 × Z2[x]/(x
2)× F4.

From Lemmas 2.8 and 3.4 (i), (ii), the rings appearing in (c) and (f)
should be ruled out. By Lemmas 2.8 and 3.4 (iii), the rings appearing
in (g)–(i) should be ruled out. From Lemma 3.5, the rings appearing in
(j)–(o) should be ruled out. Therefore, R is one of the rings appearing
in (a), (b), (d) or (e). This completes the proof. �

4. The classification. Akhtar, et al. [2] gave a list of finite commu-
tative rings whose unitary Cayley graphs are planar (see [2, Theorem
8.2]). In view of their proof, the list should include the rings Z2[x]/(x

2)
and Z2[x]/(x

2) × B, where B is a finite Boolean ring. We restate the
result as follows.

Theorem 4.1 ([2]). Let R be a finite commutative ring. Then, Γ(R)
is planar if and only if R is isomorphic to one of the following rings:

Z3, F4, B, Z3 ×B, F4 ×B, Z4,
Z2[x]

(x2)
, Z4 ×B,

Z2[x]

(x2)
×B,

where B is a finite Boolean ring.

The goal is to classify the finite commutative rings whose unitary
Cayley graphs have genus 1, 2, 3, respectively. In order to do so, we
merely need to determine the genera of the unitary Cayley graphs of
the rings appearing in Proposition 3.6.
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Lemma 4.2. The following statements hold :

(i) γ(Γ(Z5)) = γ(Γ(Z7)) = 1.
(ii) γ(Γ(F8)) = 2.
(iii) γ(Γ(F9)) = 3.

Proof. Note that the unitary Cayley graph of a field is a complete
graph. The claims follow by Lemma 2.1. �

A graph G is said to be complete 3-partite if the set of vertices of G
can be partitioned into three disjoint sets V1, V2 and V3 such that no
two vertices within any Vi are adjacent, but, for i ̸= j, every a ∈ Vi is
adjacent to every b ∈ Vj . The complete 3-partite complete graph with
partitions |Vi| = ki, i = 1, 2, 3, is denoted by Kk1,k2,k3 .

Lemma 4.3 ([25, Theorem 6.39]). γ(Kmn,n,n) = [(mn− 2)(n− 1)]/2.
In particular, γ(K3,3,3) = 1.

Lemma 4.4. Let R be a finite commutative local ring that is not a
field. If |R| = 8 or 9, then γ(Γ(R)) = 1.

Proof. If |R| = 8, then |U(R)| = |J(R)| = 4. Thus, Γ(R) is the
complete bipartite graph K4,4. Hence, γ(Γ(R)) = 1, by Lemma 2.1.
If |R| = 9, then Γ(R) is a complete 3-partite graph K3,3,3. Hence,
γ(Γ(R)) = 1, by Lemma 4.3. �

Lemma 4.5. The following statements hold :

(i) γ(Γ(Z3 × Z3)) = 1.
(ii) γ(Γ(Z2 × Z5)) = 1.
(iii) γ(Γ(Z3 × F4)) = 1.

Proof.

(i) From Theorem 4.1, Γ(Z3 × Z3) is not planar. Thus, γ(Γ(Z3 ×
Z3)) ≥ 1. Figure 3 shows that Γ(Z3 × Z3) can be embedded into S1.
Hence, γ(Γ(Z3 × Z3)) = 1.

(ii) By Theorem 4.1, Γ(Z2 × Z5) is not planar. However, we can
embed Γ(Z2 ×Z5) into S1 as shown in Figure 4. Hence, γ(Γ(Z2 ×Z5))
= 1.
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FIGURE 3. Γ(Z3 × Z3).

FIGURE 4. Γ(Z2 × Z5).
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(iii) By Theorem 4.1, Γ(Z3×F4) is not planar. Write F4 = {0, 1, a, b}.
Then, we can embed Γ(Z3×F4) into S1 as shown in Figure 5. Therefore,
γ(Γ(Z3 × F4)) = 1. �

FIGURE 5. Γ(Z3 × F4).

We now prove the main result of this paper.

Theorem 4.6. Let R be a finite commutative ring. Then:

(i) γ(Γ(R)) = 1 if and only if R is isomorphic to one of the following
rings:

Z5, Z7, Z8,
Z2[x]

(x3)
,
Z2[x, y]

(x, y)2
,

Z4[x]

(2x, x2)
,

Z4[x]

(2x, x2 − 2)
,

Z9,
Z3[x]

(x2)
, Z3 × Z3, Z3 × Z4, Z3 ×

Z2[x]

(x2)
, Z3 × F4,

Z2 × Z5, Z2 × Z3 × Z3.

(ii) γ(Γ(R)) = 2 if and only if R is isomorphic to one of the following
rings:



290 HUADONG SU AND YIQIANG ZHOU

F8, Z4 × Z4, Z4 ×
Z2[x]

(x2)
,
Z2[x]

(x2)
× Z2[x]

(x2)
,

Z2 × Z2 × Z5, Z2 × Z8, Z2 ×
Z2[x]

(x3)
, Z2 ×

Z4[x]

(2x, x2 − 2)
,

Z2 ×
Z2[x, y]

(x, y)2
, Z2 ×

Z4[x]

(2x, x2)
,

Z2 × Z2 × Z3 × Z3, Z2 × Z3 × Z4, Z2 × Z3 ×
Z2[x]

(x2)
.

(iii) γ(Γ(R)) = 3 if and only if R ∼= F9.

Proof. It suffices to classify the rings appearing in Proposition 3.6.

From Lemmas 3.4, 4.2, 4.4 and 4.5, the classification is settled as
claimed, except for the rings

Z2 × Z2 × Z5, Z2 × Z3 × Z4,

Z2 × Z3 ×
Z2[x]

(x2)
, Z2 × Z3 × Z3

and

Z2 × Z2 × Z3 × Z3.

However, γ(Γ(Z2 ×Z2 ×Z5)) = 2γ(Γ(Z2 ×Z5)) = 2 by Lemma 4.5 (ii)
and Lemma 2.8. Note that Γ(Z2 × Z3 × Z4) comprises two copies of
Γ(Z3×Z4). Thus, γ(Γ(Z2×Z3×Z4)) = 2, by Lemma 3.4 (ii). Similarly,
γ(Γ(Z2 × Z3 × Z2[x]/(x

2))) = 2.

Since Γ(Z2 × Z3 × Z3) has 36 edges, 18 vertices and no triangles,
γ(Γ(Z2 × Z3 × Z3)) ≥ 1, by Lemma 3.1. However, we have Γ(Z2 ×
Z3 × Z3) ∼= Γ(Z3 × Z6), which can be embedded into S1, as shown in
Figure 6. Therefore, γ(Γ(Z2 × Z3 × Z3)) = 1.

Thus, by Lemma 2.8, we have γ(Γ(Z2×Z2×Z3×Z3)) = 2γ(Γ(Z2×
Z3 × Z3)) = 2. This completes the proof. �
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FIGURE 6. Γ(Z3 × Z6).

We conclude this paper with a remark. The unitary Cayley graph
of a ring R was generalized in [14], as follows: let S be a non-empty
subset of U(R) such that s−1 ∈ S for all s ∈ S. The graph Γ(R,S)
is a simple graph with vertex set R and where two distinct vertices x
and y are adjacent if x+ sy ∈ U(R) for some s ∈ S. When S = {−1},
Γ(R,S) = Γ(R) is the unitary Cayley graph.

Remark 4.7. When finalizing the paper, we noticed the online paper
[3], where the authors characterized the commutative Artinian rings R
with Γ(R,S) toroidal, i.e., having genus one (see [3, Theorem 4.2]). As
its application, they presented a complete list of commutative Artinian
rings whose unitary Cayley graphs are toroidal ([3, Corollary 4.5]).
However, the proof of [3, Theorem 4.2] contains several incorrect
arguments, and it turns out that their list in [3, Corollary 4.5] is
incorrect. To be precise, the proof of [3, Theorem 4.2] contains the
following wrong arguments:

(1) Case 3.1 for R ∼= Z2 × F4. The claim that “Γ(R) is a subgraph of
K4,4 and so g(Γ(R)) = 1” is wrong. Indeed, it can easily be verified
that Γ(R,S) is a cube; thus, Γ(R,S) is planar.

(2) Case 3.2 for R ∼= Z2 ×Z3 ×Z3 and S = {(1, 1, 1)}. The contracted
technique is used to obtain a minor subgraph whose genus is greater
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than one (see [3, Figure 5]), and this was accomplished by merging
the three vertices 002, 121 and 001. However, this is wrong since
002 is not adjacent to either of 121 or 001.

(3) Case 3.2 for R ∼= Z3 × F4. A similar argument was used to claim
that the graph as shown in [3, Figure 7] has genus at least 2.
However, this claim is wrong since Γ(Z3 × F4) can be embedded
into S1 as shown in Figure 5 (so Γ(Z3 × F4) has genus 1).

As a matter of fact, we can also embed the graph Γ(Z3 × Z6) (∼=
Γ(Z2×Z3×Z3)) into S1, as shown in Figure 6. Therefore, the complete
list in [3, Corollary 4.5] should include the two rings: Z2×Z3×Z3 and
Z3 × F4, and exclude the ring Z2 × F4.
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