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TENSOR PRODUCT OF
DUALIZING COMPLEXES OVER A FIELD

LIRAN SHAUL

ABSTRACT. Let k be a field, and let X and Y be two
locally noetherian k-schemes (respectively, k-formal schemes)
with dualizing complexes RX and RY , respectively. We show
that RX �k RY (respectively, its derived completion) is a
dualizing complex over X ×k Y if and only if X ×k Y is
locally noetherian of finite Krull dimension.

Introduction. Throughout this note, rings are assumed to be com-
mutative and unital. Given a ring A, we denote by D(ModA) the
derived category of A-modules, and by Db(ModA) and Db

f (ModA)
its triangulated subcategories made of bounded complexes, as well as
bounded complexes with coherent cohomology, respectively. We will
also use commutative DG-algebras. Given such a DG-algebra A, we
will denote the category of differential graded A-modules by DGModA,
and its derived category by D(DGModA).

Dualizing complexes, first introduced [7] half a century ago, are
now a ubiquitous tool in commutative algebra and algebraic geometry.
In this note, we are concerned with dualizing complexes over a fibre
product of schemes or formal schemes over a field.

In the first section, we work with ordinary schemes. Our main result
in Section 1 shows that, if two locally noetherian schemes X and Y ,
over a field k, have dualizing complexes RX and RY , then the only
obstruction for X ×k Y to possess a dualizing complex is the trivial
one, namely, X ×k Y must be locally noetherian and of finite Krull
dimension. In that case, we show that the box tensor product RX�kRY

is a dualizing complex over X ×k Y . This is proven in Corollary 1.7
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below. If the schemes involved are of finite type over k, then this is
not new, and could easily be deduced from the results of [7]. In fact,
in that case, k can even be replaced by a Gorenstein ring; assume one
of X,Y is flat over it, and replace the tensor product with the derived
tensor product. However, we make no finiteness assumption on either
of the maps X → k, Y → k.

One interesting consequence of this result in the affine case, given
in Corollary 1.8 below, is the fact that, for such noetherian rings, the
tensor product functor

−⊗k − : Db
f (ModA)×Db

f (ModB) −→ Db
f (ModA⊗k B)

preserves finite injective dimension.

In Section 2, we switch to the more difficult case of formal schemes.
We are able to reproduce the above result in the formal case and prove
that, if X and Y are two locally noetherian formal schemes over a field
k, with dualizing complexes RX and RY, respectively, and, if X ×k Y
is locally noetherian and of finite Krull dimension, then the derived
completion and derived torsion of RX �k RY are c-dualizing and t-
dualizing complexes (notions that are recalled in Section 2) over X×kY.
This is given in Theorem 2.9 below.

In order to understand why the formal case is much more involved,
consider the simplest corresponding affine situation, where k is a field,
and A and B are two noetherian Gorenstein k-algebras of finite Krull
dimension, which are adically complete with respect to some ideals
a ⊆ A and b ⊆ B. The Gorenstein hypothesis implies that A and B
are dualizing complexes over themselves; thus, we need to prove that, in
this situation, the completed tensor product A⊗̂kB is also a Gorenstein
ring whenever it is noetherian of finite Krull dimension. However, the
ring A ⊗k B is usually non-noetherian; hence, we do not know if the
completion map A⊗kB → A⊗̂kB is flat, and thus, we do not know if, in
general, the maps A→ A⊗̂kB and B → A⊗̂kB are flat. This rules out
attempts to prove such a result using the methods in the corresponding
discrete case (i.e., when a = 0 and b = 0, so that A⊗kB is noetherian)
given in [14] and other similar papers. As a replacement for flatness,
we heavily rely on the theory of weakly proregular ideals of [4, 10, 12].
Using it as well as other homological and homotopical tools, we are able
to prove the above-mentioned result concerning dualizing complexes
over the fiber product of formal schemes.
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1. Tensor product of dualizing complexes over ordinary
schemes. We shall need the following result, contained in the proof of
[8, Corollary 1.4].

Proposition 1.1. Let A be a commutative noetherian ring. Assume
that A has a dualizing complex. Then, there is a finite type A-algebra
A′ which is Gorenstein of finite Krull dimension, and such that there
is a surjection A′�A.

Proof. From [8, Corollary 1.4], there is a Gorenstein ring A′ of
finite Krull dimension and a surjection A′�A; thus, it is sufficient
to verify that this ring is a finitely generated A-algebra. The first
step in the proof of [8, Corollary 1.4] reduces to the case where the
codimension function of A is constant on its associated primes. One
way to do this is using [8, Lemma 5.5], which says that, if a ring A is
noetherian, universally catenary, and has a codimension function (all
these properties are satisfied by a ring possessing a dualizing complex),
then there exist a finite type A-algebra B whose codimension function
is constant on its associated primes, and such that there is a surjection
B�A. Hence, we may assume without loss of generality that the
codimension function of A is constant on its associated primes. Next,
for such an A, it is shown in [8] that there is some ideal I ⊆ A of
positive height such that the Rees algebra

A(I) =
⊕
n≥0

(Ix)n ⊆ A[x]

is Cohen-Macaulay. Note that, if I = (f1, . . . , fm), then the map

A[x1, . . . , xm] −→ A(I)

given by xi 7→ fi · x is surjective so that A(I) is of finite type over
A. Since A is a quotient of A(I), we reduce to the case where A is
Cohen-Macaulay. Then, in the final step of [8, Corollary 1.4], it is
observed that, by [13, Theorem 4.3], there is some finitely generated
A-module M such that the trivial extension ring A′ := A×M (in the
sense of [9, page 191, Chapter 25]) is a finite-dimensional Gorenstein
ring. Since there is a surjection A′ → A, and since A′ is clearly a finite
type A-algebra, we are done. �
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Lemma 1.2. Let k be a field, and let A and B be two noetherian k-
algebras with dualizing complexes RA and RB, respectively, such that
A⊗k B is a noetherian ring. Then, the canonical map

A⊗k B −→ RHomA⊗kB(RA ⊗k RB, RA ⊗k RB)

is an isomorphism in D(ModA⊗k B).

Proof. Since RA and RB are dualizing complexes, they have finitely
generated bounded cohomologies, and, in particular, we may assume
that they are bounded. Hence, by [17, Lemma 8.4], there is an
isomorphism

RHomA(RA,RA)⊗kRHomB(RB ,RB)∼=RHomA⊗kB(RA⊗kRB, RA⊗kRB)

in D(ModA ⊗k B). Again, the fact that RA and RB are dualizing
complexes implies that

RHomA(RA, RA)⊗k RHomB(RB , RB) ∼= A⊗k B.

Composing these two isomorphisms, we deduce that there is some
isomorphism

RHomA⊗kB(RA ⊗k RB , RA ⊗k RB) ∼= A⊗k B

in D(ModA⊗k B). Hence, by an unpublished result of Foxby, given in
[3, Proposition 2.3], the canonical map

A⊗k B −→ RHomA⊗kB(RA ⊗k RB, RA ⊗k RB)

is also an isomorphism. �

The next lemma is probably well known. We reproduce its easy
proof for the convenience of the reader:

Lemma 1.3. Let A be a noetherian ring, and let R be a dualizing
complex over A. A complex M ∈ Db

f (ModA) has finite injective
dimension over A if and only if the complex RHomA(M,R) is perfect.

Proof. Since RHomA(M,R) has finitely generated cohomologies,
by [2, Corollary 2.10.F], it is perfect if and only if it has finite flat
dimension, and, by [7, Proposition V.2.6], this occurs if and only if

RHomA(RHomA(M,R), R) ∼= M

has finite injective dimension over A. �
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Lemma 1.4. Let k be a field, and let A and B be two noetherian k-
algebras such that A ⊗k B is also noetherian. Assume that there are
dualizing complexes RA over A and RB over B such that RA ⊗k RB is
a dualizing complex over A⊗k B. Then, for any dualizing complex SA

over A, and any dualizing complex SB over B, the complex SA ⊗k SB

is a dualizing complex over A⊗k B.

Proof. By Lemma 1.2, the canonical map

A⊗k B −→ RHomA⊗kB(SA ⊗k SB, SA ⊗k SB)

is an isomorphism; thus, it is enough to show that SA ⊗k SB has finite
injective dimension over A ⊗k B. Since, by assumption, RA ⊗k RB is
a dualizing complex, from Lemma 1.3, it is sufficient to show that the
complex

RHomA⊗kB(SA,⊗kSB , RA ⊗k RB)

is perfect. However, this is clear since, by [17, Lemma 8.4], it is
isomorphic to

RHomA(SA, RA)⊗k RHomB(SB , RB),

and since the (box) tensor product of two finitely generated projectives
is a finitely generated projective. �

In the next lemma, we must use differential graded algebras as well
as dualizing DG-modules over them. We refer the reader to [16] for
the terminology regarding DG-algebras used in this lemma. The lemma
essentially states that, if, for a pair of k-algebras A′ and B′, our main
theorem regarding tensor product of dualizing complexes holds, then it
also holds for any pair of quotients A′�A, B′�B.

Lemma 1.5. Let k be a field, and let A′ and B′ be two noetherian
k-algebras with dualizing complexes RA and RB, respectively. Assume
that RA⊗kRB is a dualizing complex over the noetherian ring A′⊗kB

′.
Let A be an A′-algebra, and let B be a B′-algebra such that the structure
maps A′ → A and B′ → B are surjective. Then:

RHomA′(A,RA)⊗k RHomB′(B,RB)

is a dualizing complex over A⊗k B.
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Proof. Since the map A′ ⊗k B
′ → A ⊗k B is finite, it follows from

[7, Proposition V.2.4] that

RHomA′⊗kB′(A⊗k B,RA ⊗k RB)

is a dualizing complex over A ⊗k B. From [17, Lemma 8.4], there is
an isomorphism

RHomA′(A,RA)⊗kRHomB′(B,RB) ∼= RHomA′⊗kB′(A⊗kB,RA⊗kRB)

obtained by replacing A and B by projective resolutions over A′ and B′,
respectively. However, this isomorphism is only A′ ⊗k B

′-linear, and it
is not currently known how to show that there is such an A⊗kB-linear

isomorphism. Instead, using [1, Proposition 2.2.8], let A′ → Ã ∼= A

and B′ → B̃ ∼= B be DG-algebra resolutions of A′ → A and B′ → B,

respectively, such that Ã0 = A′ and B̃0 = B′. For each i < 0, Ãi

is a finitely generated projective Ã0-module, B̃i is a finitely generated

projective B̃0-module, and, for each i > 0, Ãi = B̃i = 0. Then, as
shown in the proof of [17, Lemma 8.4], the natural map

HomA′(Ã, RA)⊗k HomB′(B̃, RB) −→ HomA′⊗kB′(Ã⊗k B̃, RA ⊗k RB),

which is clearly Ã ⊗k B̃-linear, is an isomorphism. Since Ã is K-

projective over A′, B̃ is K-projective over B′, and Ã⊗kB̃ is K-projective
over A′ ⊗k B

′, we deduce that there is an isomorphism

RHomA′(Ã, RA)⊗kRHomB′(B̃, RB) ∼= RHomA′⊗kB′(Ã⊗k B̃, RA⊗kRB)

in D(DGMod Ã ⊗k B̃). From [16, Proposition 7.5(1)], the right hand

side is a dualizing DG-module over Ã ⊗k B̃ so that the left hand side
is also a dualizing DG-module. As there are isomorphisms

RHomA′(Ã, RA) ∼= RHomA′(A,RA)

and
RHomB′(B̃, RB) ∼= RHomB′(B,RB)

over Ã and B̃, respectively, it follows that the DG-module

RHomA′(A,RA)⊗k RHomB′(B,RB)
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is a dualizing DG-module over Ã ⊗k B̃. Set R = RHomA′(A,RA) ⊗k
RHomB′(B,RB) ∈ D(ModA⊗k B). Since

Ã⊗k B̃ −→ A⊗k B

is a quasi-isomorphism, the fact that the image of R in the derived

category over Ã ⊗k B̃ has a finite injective dimension implies that
R has finite injective dimension over A ⊗k B. From Lemma 1.2, the
canonical map A⊗kB → RHomA⊗kB(R,R) is an isomorphism. Hence,
R = RHomA′(A,RA)⊗k RHomB′(B,RB) is a dualizing complex over
A⊗k B. �

We now give the main result of this section.

Theorem 1.6. Let k be a field, and let A,B be commutative noetherian
k-algebras. Assume that A and B have dualizing complexes. Then, the
ring A⊗kB has a dualizing complex if and only if A⊗kB is noetherian
of finite Krull dimension. In that case, for every dualizing complex RA

over A and RB over B, the complex RA ⊗k RB is a dualizing complex
over A⊗k B.

Proof. The only if part is well known. Assume that A ⊗k B is
noetherian of finite Krull dimension. Let A′�A and B′�B be the
Gorenstein rings guaranteed to exist from Proposition 1.1. Since A⊗kB
is noetherian of finite Krull dimension, and since A′ (respectively B′) is
a finite type A (respectively, B)-algebra, it follows that A′⊗kB

′ is also
noetherian of finite Krull dimension. Hence, by [14, Theorem 6(a)],
the ring A′⊗kB

′ is also Gorenstein. Let R := RHomA′(A,A′), and let
S := RHomB′(B,B′). As A′ is Gorenstein of finite Krull dimension, A′

is a dualizing complex over A′ so that, by [7, Proposition V.2.4], R is
a dualizing complex over A, and, in the same manner, S is a dualizing
complex over B. Similarly, since A′ ⊗k B

′ is Gorenstein of finite Krull
dimension, A′ ⊗k B

′ is a dualizing complex over A′ ⊗k B
′. Thus, the

conditions of Lemma 1.5 are satisfied for A′ → A and B′ → B so that

RHomA′(A,A′)⊗k RHomB′(B,B′) = R⊗k S

is a dualizing complex over A⊗k B. Hence, by Lemma 1.4, the same is
true for the complex RA ⊗k RB . �

Since the property of being a dualizing complex on an affine open
cover can easily be verified (due to [7, Lemma II.7.16]), we obtain:
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Corollary 1.7. Let k be a field, and let X and Y be two locally noe-
therian k-schemes with dualizing complexes RX and RY , respectively.
If X×kY is locally noetherian of finite Krull dimension, then RX�kRY

is a dualizing complex over X ×k Y .

Corollary 1.8. Let k be a field, and let A and B be two k-algebras.
Assume that A and B have dualizing complexes RA and RB, respec-
tively, and that A⊗k B is noetherian of finite Krull dimension. Given
a complex M ∈ Db

f (ModA) and a complex N ∈ Db
f (ModB), if M has

finite injective dimension over A, and N has finite injective dimension
over B, then M ⊗k N has finite injective dimension over A⊗k B.

Proof. From Lemma 1.3, the complexes

RHomA(M,RA) and RHomB(N,RB)

are perfect over A and B, respectively. Hence, the complex

RHomA(M,RA)⊗k RHomB(N,RB)

is perfect over A⊗k B. By [17, Lemma 8.4], there is an isomorphism

RHomA(M,RA)⊗kRHomB(N,RB) ∼= RHomA⊗kB(M⊗kN,RA⊗kRB),

and since, by Theorem 1.6, RA ⊗k RB is a dualizing complex over
A⊗k B, we have that

M ⊗k N ∼= RHomA⊗kB(RHomA⊗kB(M ⊗k N,RA ⊗k RB), RA ⊗k RB);

thus, the result follows from again applying Lemma 1.3. �

Remark 1.9. The fact that Corollary 1.8 follows from the theorem re-
garding the tensor product of dualizing complexes was already observed
in [17, Corollary 8.6], in a noncommutative situation. The result given
there, in the commutative setting, makes the assumption that both A
and B are finitely generated k-algebras.

2. Tensor product of dualizing complexes for formal schemes.
We now turn to generalize Theorem 1.6 to formal schemes. In order
to do so, we first recall some adic homological algebra. The reader is
referred to [4, 5, 10, 11, 12] for a detailed treatment of the material
below. By a preadic ring (A, a), we shall mean a commutative ring
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A equipped with an adic topology generated by some finitely gener-
ated ideal a ⊆ A. (It is important to note that we do not assume
that A is noetherian.) Given a preadic ring (A, a), there are functors
Γa(−) := lim−→HomA(A/a

n,−) and Λa(−) := lim←−A/an ⊗A −, called the
a-torsion and a-completion functors. These are both additive functors

ModA −→ ModA.

The A-module Â := Λa(A) has a structure of a commutative ring, and

there is a natural map A → Â. If this map is bijective, then we will
call (A, a) an adic ring and say that A is a-adically complete. For any

M ∈ ModA, the A-modules Γa(M) and Λa(M) naturally carry a Â-

module structure so that we obtain functors Γ̂a, Λ̂a : ModA→ Mod Â,
defined by exactly the same formulae as Γa and Λa. The derived
functors

RΓa,LΛa : D(ModA) −→ D(ModA)

and
RΓ̂a,LΛ̂a : D(ModA) −→ D(Mod Â)

exist. RΓa and RΓ̂a are calculated using K-injective resolutions, while

LΛa and LΛ̂a are calculated using K-flat resolutions. See [4, Section
1] for a proof.

For any M ∈ D(ModA), there are canonical morphisms RΓa(M)→
M and M → LΛa(M) in D(ModA). If these maps are isomorphisms,
we say that M is cohomologically a-torsion and cohomologically a-
adically complete, respectively. The collections of all cohomologically
a-torsion and cohomologically a-adically complete complexes form two
full triangulated subcategories of D(ModA). These are denoted by
D(ModA)a -tor and D(ModA)a -com, respectively.

Given a ring A and a finite sequence of elements a, there is a bounded
complex of free A-modules Tel(A;a), called the telescope complex
associated to a. See [10, Section 5] for its definition. If A → B is
a ring homomorphism, and if b is the image of a under this map, then
there is an isomorphism of complexes Tel(A;a) ⊗A B → Tel(B;b).
Given an ideal a ⊆ A, and a finite sequence of elements a ⊆ A that
generates a, there is a morphism of functors

RΓa(−) −→ Tel(A;a)⊗A −.
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If this morphism is a quasi-isomorphism, then a and a are said to
be weakly proregular. See [12, Section 2], and, in particular, [12,
Definition 2.3]. In a noetherian ring, every ideal and every finite
sequence are weakly proregular. If the ideal a is weakly proregular,
then the functors

RΓa : D(ModA)a -com −→ D(ModA)a -tor,

LΛa : D(ModA)a -tor −→ D(ModA)a -com

are quasi-inverse to each other and induce an equivalence between
these two triangulated categories, called the Matlis-Greenlees-May
equivalence. If A is noetherian and a-adically complete, then

Db
f (ModA) ⊆ D(ModA)a -com.

In that case, the essential image of Db
f (ModA) under the functor

RΓa is denoted by Db(ModA)a−cof . This is a triangulated category,
called the category of cohomologically a-adically cofinite complexes and
is equivalent to the category Db

f (ModA). See [11] for a study of this
category.

The following proposition, whose proof is immediate from the defi-
nitions, will be useful in the sequel.

Proposition 2.1. Let A be a commutative ring, let a ⊆ A be an ideal,

and let Â := Λa(A). Let Q : D(Mod Â) → D(ModA) be the forgetful
functor. Then, there are isomorphisms

Q ◦ LΛ̂a(−) ∼= LΛa(−)

and

Q ◦ RΓ̂a(−) ∼= RΓa(−)

of functors D(ModA)→ D(ModA).

2.1. A reduction lemma. The aim of this subsection is to prove

Lemma 2.5, which allows us to reduce certain questions over Â to
questions over A.

The next lemma was inspired by a result of Yekutieli (private
communication).
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Lemma 2.2. Let A → B be a quasi-isomorphism of commutative
DG-algebras. Let C be a B-algebra, and let Q : D(DGModB) →
D(DGModA) be the forgetful functor. Then, there is an isomorphism

RHomB(C,−) ∼= RHomA(C,Q(−))

of functors D(DGModB)→ D(ModC).

Proof. Let M ∈ D(DGModB). Let M → IB be a K-injective
resolution of M over B, and let Q(M)→ IA be a K-injective resolution
of M over A. The functor Q induces an isomorphism IB ∼= IA in
D(DGModA). Since IA is K-injective, there is some A-linear quasi-
isomorphism α : IB → IA. Composition with α induces a map
α′ : HomB(C, IB)→ HomA(C, IA), and this map is clearly C-linear. It
is sufficient to show that α′ is a quasi-isomorphism. In order to see this,
consider the map ϕ : IB → HomA(B, IA), given by ϕ(x)(b) = α(b · x)
for b ∈ B and x ∈ IB . This map fits into a commutative diagram

IB
ϕ //

α

��

HomA(B, IA)

��
IA // HomA(A, IA).

Since A → B is a quasi-isomorphism, and IA is K-injective, the
right vertical map is a quasi-isomorphism. Hence, ϕ is also a quasi-
isomorphism between two K-injective DG B-modules; thus, it is a
homotopy equivalence. Hence, in the commutative diagram

HomB(C, IB)
α′

//

HomB(1C ,ϕ)

��

HomA(C, IA)

��
HomB(C,HomA(B, IA)) // HomA(C ⊗B B, IA),

the left vertical arrow induced by this homotopy equivalence is a quasi-
isomorphism, while the right vertical arrow and the bottom horizontal
arrow are obviously isomorphisms. Hence, α′ is a quasi-isomorphism,
as claimed. �

Lemma 2.3. Let A be a commutative ring, let a ⊆ A be a finitely

generated weakly proregular ideal, and set Â := Λa(A). Let J ⊆ A be an
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ideal, and assume that there are integers m,n, such that am ⊆ J ⊆ an.
Then, for all i ̸= 0, we have that

TorAi (A/J, Â) = 0.

Proof. Let B = A/J . Let a be a finite sequence of elements that
generates a, and let b be its image in B. Note that, by assumption,
each element of b is nilpotent. Hence, by [10, Lemma 7.4], there is
a B-linear homotopy equivalence Tel(B;b) → B. By the base change
property of the telescope complex, we deduce that there is an A-linear
homotopy equivalence Tel(A;a)⊗A B → B.

Since a is weakly proregular, by the Greenlees-May duality (specifi-
cally, by [4, Corollary (iv) following Theorem (0.3)*], or by [10, Lemma

7.6]), there is an isomorphism Â⊗ATel(A;a) ∼= Tel(A;a) in D(ModA).

Combining these two isomorphisms, and the fact that Tel(A;a) is a
K-flat complex, we obtain the following sequence of isomorphisms in
D(ModA):

B ∼= Tel(A;a)⊗L
A B ∼= (Â⊗L

A Tel(A;a))⊗L
A B ∼= Â⊗L

A (Tel(A;a)⊗L
A B)

∼= Â⊗L
A B.

As B is a complex concentrated in degree 0, the result follows. �

Lemma 2.4. Let A be a commutative ring, let a ⊆ A be a finitely

generated weakly proregular ideal, and set Â := Λa(A). Let J ⊆ A be an
ideal, and assume that there are integers m,n, such that am ⊆ J ⊆ an.

Set B = A/J , and let QA : D(Mod Â) → D(ModA) be the forgetful
functor. Then, there is an isomorphism

RHomÂ(B,−) ∼= RHomA(B,QA(−))

of functors D(Mod Â)→ D(ModB).

Proof. Let A → Ã ∼= Â be a commutative semi-free DG-algebra

resolution of A → Â, and let QÃ : D(Mod Â) → D(DGMod Ã) be the

corresponding forgetful functor. Given M ∈ D(Mod Â), according to
Lemma 2.2, there is an isomorphism of functors

RHomÂ(B,M) ∼= RHomÃ(B,QÃ(M)).
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Let QÃ(M) → I be a K-injective resolution of QÃ(M) over Ã. Then,
there is an obvious B-linear isomorphism

RHomÃ(B,QÃ(M)) ∼= HomÃ(B, I).

According to Lemma 2.3, we have that TorAi (B, Â) = 0 for all i ̸= 0.

Hence, the map B ⊗A Ã → B ⊗A Â induced by the map Ã → Â is a
quasi-isomorphism.

Since am ⊆ J , we have that B ⊗A A/am ∼= B. On the other

hand, since a is finitely generated, we have that A/am ⊗A Â ∼= A/am.

Combining these two facts, we deduce that B ⊗A Â ∼= B. It follows

that there is a quasi-isomorphism B ⊗A Ã → B, which is B-linear on

the left, and Ã-linear on the right.1

This, in turn, induces a quasi-isomorphism

HomÃ(B, I)→ HomÃ(B ⊗A Ã, I),

which, by the hom-tensor adjunction is naturally isomorphic to

HomA(B, I).

Since A → Ã is flat, we deduce that I is K-injective over A so that
HomA(B, I) ∼= RHomA(B,QA(M)), which proves the claim. �

Lemma 2.5. Let A be a commutative ring, let a ⊆ A be a finitely

generated weakly proregular ideal, and set Â := Λa(A). Let J ⊆ A be an
ideal, and assume that there are integers m,n, such that am ⊆ J ⊆ an.
Set B = A/J . Then, there are isomorphisms

RHomÂ(B,RΓ̂a(−)) ∼= RHomÂ(B,LΛ̂a(−)) ∼= RHomA(B,−)

of functors D(ModA)→ D(Mod(B).

Proof. Let Q : D(Mod Â) → D(ModA) be the forgetful functor.
According to Lemma 2.4, there are B-linear isomorphisms of functors

RHomÂ(B,RΓ̂a(−)) ∼= RHomA(B,Q(RΓ̂a(−)))

and

RHomÂ(B,LΛ̂a(−)) ∼= RHomA(B,Q(LΛ̂a(−)))
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By Proposition 2.1, these are isomorphic in D(ModB) to

RHomA(B,RΓa(−))

and

RHomA(B,LΛa(−)),

respectively. In the proof of Lemma 2.3, we have seen that B ∼=
Tel(A;a) ⊗A B, which implies that B is cohomologically a-torsion.
Hence, by the Greenlees-May duality ([4, Theorem 0.3], [10, Theorem
7.12]), there are natural isomorphisms

RHomA(B,RΓa(−)) ∼= RHomA(B,−) ∼= RHomA(B,LΛa(−)).

The isomorphisms constructed in [4, 10] are A-linear, but it is easy to
verify that, in our situation, they actually are B-linear. This proves
the claim. �

2.2. The box tensor products over affine formal schemes.
Next, we obtain some general finiteness results concerning the adic
box tensor products. For a moment, we drop the assumption that k is
a field as it does not produce additional difficulties, and it seems that
this result might be of independent interest in this greater generality.

Proposition 2.6. Let k be a commutative ring, and let (A, a) and
(B, b) be two noetherian adic rings which are flat k-algebras. Let
I = a ⊗k B + A ⊗k b be the ideal of definition of the adic topology on

A⊗kB, let Î be the ideal generated by its image in Â⊗k B, and assume
that I is weakly proregular (if k is a field this always holds), and that

Â⊗k B is noetherian. Given M ∈ Db
f (ModA) and N ∈ Db

f (ModB)
with M having finite flat dimension over k, we have that

LΛ̂I(M ⊗L
k N) ∈ Db

f (Mod Â⊗k B),

and

RΓ̂I(M ⊗L
k N) ∈ Db(Mod Â⊗k B)Î -cof .

Proof. We first show that both of these complexes have bounded

cohomology. Let Q : D(Mod Â⊗k B)→ D(ModA⊗kB) be the fogetful
functor. Clearly, a complex X has bounded cohomology if and only if
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the complexQ(X) has bounded cohomology. In view of Proposition 2.1,
it is enough to show that the complexes

LΛI(M ⊗L
k N)

and

RΓI(M ⊗L
k N)

have bounded cohomology; however, this immediately follows from the
flat dimension assumption onM , combined with the fact that, when I is
weakly proregular, the functors LΛI and RΓI have finite cohomological
dimension (for example, by [10, Corollary 4.28, Corollary 5.27]).

Next, we show the claims regarding finiteness of the cohomologies.
Let P →M and Q→ N be bounded above resolutions made of finitely
generated free modules. Since A is flat over k, P is also flat over k so
that M⊗L

k N
∼= P ⊗kQ, and the latter is also a bounded above complex

made of finitely generated free modules; therefore,

LΛ̂I(M ⊗L
k N) ∼= ΛI(P ⊗k Q).

Since the completion functor commutes with finite direct sums, it
follows that ΛI(P ⊗k Q) is also a bounded above complex made of
finitely generated free modules, which shows that the cohomologies of

this complex are finitely generated over Â⊗k B.

It remains to show that

RΓ̂I(M ⊗L
k N) ∈ Db(Mod Â⊗k B)Î -cof .

As we already established that this complex is bounded, and as it is

clearly cohomologically Î-torsion, by [11, Theorem 3.10], it is sufficient
to show that the complex

RHom
Â⊗kB

(Â⊗k B/Î,RΓ̂I(M ⊗L
k N))

has finitely generated cohomologies. By Lemma 2.5, there is an iso-
morphism

RHom
Â⊗kB

(Â⊗k B/Î,RΓ̂I(M ⊗L
k N))

∼= RHom
Â⊗kB

(Â⊗k B/Î,LΛ̂I(M ⊗L
k N));

thus, the result follows from the first claim in this proposition. �
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Remark 2.7. It may be wondered why, in the above proof, we had
to invoke the rather difficult theorem of [11], instead of deducing
the finiteness condition in the torsion case directly from the identity

RΓ̂I(−) ∼= RΓÎ ◦ LΛ̂I(−). The reason for doing so is that we do not

know if this identity holds when A⊗k B → Â⊗k B is not flat.

2.3. Tensor product of dualizing complexes for formal schemes.
In this subsection, we will prove Theorem 2.9, the main result of this
section. First, we recall the definitions of dualizing complexes over
affine formal schemes. See [5, Section 2.5], [15, Section 5] for details
(keeping in mind [11, Theorem 3.10]). Let (A, a) be an adic noetherian
ring. A complex R ∈ D(ModA), which has finite injective dimension
over A, and such that the canonical map A → RHomA(R,R) is an
isomorphism is called a c-dualizing complex if R ∈ Db

f (ModA) and is
called a t-dualizing complex if R ∈ Db(ModA)a -cof .

The next lemma allows us to reduce the problem of determining
whether a complex over the completed tensor product is dualizing to a
problem over discrete rings. We will then use Theorem 1.6 to obtain
the required result.

Lemma 2.8. Let k be a field, and let (A, a) and (B, b) be two noe-
therian adic rings which are k-algebras, such that the completed ten-

sor product Â⊗k B is noetherian of finite Krull dimension. Let I

be the ideal of definition of the adic topology on Â⊗k B, and let

M ∈ Db
f (Mod Â⊗k B) (respectively, M ∈ D(Mod Â⊗k B)I-cof). Then,

M is a c-dualizing (respectively, t-dualizing) complex over Â⊗k B if
and only if, for each n > 0, the complex

RHom
Â⊗kB

(A/an ⊗k B/bn,M) ∈ D(ModA/an ⊗k B/bn)

is a dualizing complex over A/an ⊗k B/bn.

Proof. Consider the sequence of ideals Jn = ker(Â⊗k B → A/an⊗k
B/bn). For every n ∈ N, there is some m ∈ N, such that Jn ⊆ Im, and
likewise; for every n ∈ N, there is some m ∈ N, such that In ⊆ Jm.
Hence,

lim←−(Â⊗k B/Jn) ∼= Â⊗k B,
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and moreover, the two functors ΓI(−) and lim−→Hom
Â⊗kB

(Â⊗k B/Jn,−)
are canonically isomorphic. With these observations, the result now
follows from the proof of [5, Lemma 2.5.10] (see also [6, Satz 2]). �

We now arrive at the main result of this section, an adic generaliza-
tion of Theorem 1.6.

Theorem 2.9. Let k be a field, and let (A, a) and (B, b) be two
noetherian adic rings which are k-algebras. Let I be the ideal of
definition of the adic topology on A ⊗k B. Let RA be a c-dualizing
complex over (A, a), and let RB be a c-dualizing complex over (B, b).

Then, the ring Â⊗k B has dualizing complexes if and only if it is

noetherian of finite Krull dimension. In that case, LΛ̂I(RA⊗kRB) is a

c-dualizing complex over Â⊗k B, and RΓ̂I(RA ⊗k RB) is a t-dualizing

complex over Â⊗k B.

Proof. Let Î be the ideal generated by the image of I in Â⊗k B.
According to [10, Example 4.35], the ideal I is weakly proregular.
Hence, by Proposition 2.6, we have that

LΛ̂I(RA ⊗k RB) ∈ Db
f (Mod Â⊗k B),

and

RΓ̂I(RA ⊗k RB) ∈ Db(Mod Â⊗k B)Î-cof .

By Lemma 2.8, it is sufficient to show that, for all n, the complexes

RHom
Â⊗kB

(A/an ⊗k B/bn,LΛ̂I(RA ⊗k RB))

and

RHom
Â⊗kB

(A/an ⊗k B/bn,RΓ̂I(RA ⊗k RB))

are dualizing complexes over A/an⊗kB/bn. From Lemma 2.5, both of
these complexes are isomorphic as objects in D(ModA/an ⊗k B/bn),
and moreover, both of them are isomorphic to the complex

RHomA⊗kB(A/an ⊗k B/bn, RA ⊗k RB).
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Note that, as the maps A → A/an and B → B/bn are finite, the
complexes

RHomA(A/a
n, RA)

and

RHomB(B/bn, RB)

are dualizing complexes over A/an and B/bn, respectively. Since the
ring A/an ⊗k B/bn is noetherian of finite Krull dimension (being a

quotient of the noetherian ring of finite Krull dimension Â⊗k B), it
follows from Theorem 1.6 that

RHomA(A/an, RA)⊗k RHomB(B/bn, RB)

is a dualizing complex over A/an ⊗k B/bn. We now use the same

trick as in the proof of Lemma 1.5. Thus, let A → Ã ∼= A/an and

B → B̃ ∼= B/bn be DG-algebra resolutions of A → A/an and B →
B/bn, respectively, as in Lemma 1.5. Then, there is a Ã ⊗k B̃-linear
isomorphism

RHomA⊗kB(A/an ⊗k B/bn, RA ⊗k RB)

∼= RHomA(A/a
n, RA)⊗k RHomB(B/bn, RB).

The right hand side is a dualizing complex over A/an ⊗k B/bn, and

hence, also a dualizing DG-module over Ã ⊗k B̃. Thus, the left hand
side, which is a priori a complex over A/an⊗kB/bn, is also a dualizing

DG-module over Ã⊗k B̃. Hence, by the argument used in the proof of
Lemma 1.5, we deduce that

RHomA⊗kB(A/an ⊗k B/bn, RA ⊗k RB)

is a dualizing complex over A/an ⊗k B/bn, which establishes the
theorem. �

Again, as in Corollary 1.7, this immediately generalizes to formal
schemes. As an immediate corollary, we obtain an adic generalization
of [14, Theorem 6(a)].

Corollary 2.10. Let k be a field, and let (A, a) and (B, b) be two adic
noetherian Gorenstein k-algebras of finite Krull dimension such that



DUALIZING COMPLEXES OVER A FIELD 261

Â⊗k B is also noetherian of finite Krull dimension. Then, Â⊗k B is
also a Gorenstein ring.

Remark 2.11. As far as is known, all similar results in the literature
concerning the conservation of homological properties of commutative
noetherian rings under the tensor product operation involve a flatness
assumption. In that sense, Corollary 2.10 is different since, to our
knowledge, it is not known whether, in the above situation, the maps

A → Â⊗k B and B → Â⊗k B are flat (since it is not known whether

the completion map A ⊗k B → Â⊗k B is flat when A ⊗k B is non-
noetherian), although, flatness is known to hold if A/a is essentially of
finite type over k (see [5, Proposition 7.1(b)]). We thus view this result
as another example of the fact that weak proregularity of the ideal of
the definition of adic topology can serve as a replacement for flatness
of the completion map in many interesting situations.

The Cohen structure theorem may be stated as follows: given a
noetherian local ring (A,m), its completion Λm(A) is a quotient of a
regular local ring. Our final corollary is a weak variation of this for the
tensor product of local rings. It states that the completion of a tensor
product of local rings is a quotient of a Gorenstein ring.

Corollary 2.12. Let k be a field, and let (A,m) and (B, n) be two
noetherian local k-algebras. Let I = m⊗k B+A⊗k n, and assume that

Â⊗k B := ΛI(A⊗k B)

is noetherian of finite Krull dimension. Then, Â⊗k B has dualizing
complexes, so it is a quotient of a Gorenstein ring of finite Krull
dimension.

Proof. From the Cohen structure theorem, the rings Â and B̂ have

dualizing complexes. Since there are isomorphisms A/mn ∼= Â/(m · Â)n
and B/nn ∼= B̂/(n · B̂)n, we see, as in the proof of Lemma 2.8, that

Â⊗kB ∼= lim←−(A/m
n⊗kB/nn)∼= lim←−(Â/(m ·Â)n⊗k B̂/(n ·B̂)n)∼= ̂̂

A⊗kB̂,

where

̂̂A⊗k B̂ := ΛJ(Â⊗k B̂), J := (m · Â)⊗k B̂ + Â⊗k (n · B̂).
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From Theorem 2.9, the ring ̂̂A⊗k B̂ has dualizing complexes; thus,

the isomorphic ring Â⊗k B also has dualizing complexes. Hence, by
Kawasaki’s theorem, it is a quotient of a Gorenstein ring of finite Krull
dimension. �

Acknowledgments. The author acknowledges the support of the
European Union. The author would like to thank Amnon Yekutieli for
some useful suggestions.

ENDNOTES

1. The main reason we need to take the DG-algebra resolution

A→ Ã ∼= Â is in order to obtain these linearity conditions on this quasi-
isomorphism. These allow us now to use the hom-tensor adjunction.
The fact that there is such an A-linear isomorphism is already proven
in Lemma 2.3, but this fact is not enough to use adjunction in the next
step of the proof.
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