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A MINIMAL FREE COMPLEX ASSOCIATED
TO THE MINORS OF A MATRIX

PAUL C. ROBERTS

ABSTRACT. This paper describes a construction of a
minimal free resolution of a generic ideal defined by deter-
minants in characteristic zero. It produces not only the free
modules in the resolution, but it also defines the maps be-
tween them explicitly and in detail in terms of idempotents
in the group algebra of the symmetric group.

This paper was originally written in 1976 and was an attempt to
construct a generic minimal free resolution of an ideal defined by the
determinants of a matrix. The complex was constructed in detail, and
some evidence was given that it was indeed a resolution in the generic
case. However, it was not proven that it was exact in the generic case.
Meanwhile, a paper of Lascoux [6] did construct a generic resolution;
as a result, the present paper was withdrawn. However, Lascoux omit-
ted many details, whereas the complex presented here is constructed
explicitly. Furthermore, the complex constructed by Lascoux is es-
sentially the same as this one, and a later paper by Roberts [10] did
provide a direct combinatorial proof that the complex constructed here
is generically exact. The reason for reworking this paper now is that
these results were used in a recent paper of Efremenko, et al. [4] so
that it appears that the results contained here are still of interest.

We remark that, in the period shortly after this paper was written,
several papers appeared giving various versions of the resolution; the
one mentioned by Lascoux, another due to Nielsen [7] and a general
construction of Akin, Buchsbaum and Weyman [1]. These papers used
Schur functors in various ways, whereas here we use the closely related
theory of idempotents in the group algebra of the symmetric group. All
of these were defined for rings containing the field of rational numbers;
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there were also attempts to define such a complex over the ring of
integers, but Hashimoto [5] showed that a generic minimal resolution
over the integers could not exist since the Betti numbers depend on the
characteristic.

The present version of the paper is actually not the same as that in
the original paper of 1976. The original construction used a map f from
one free module F to another free module G, and the boundary maps
of the complex went from submodules of a tensor product of copies of
F and G to another such submodule of a tensor product where certain
of the factors F were replaced by G and the map was induced by f .
The referee recommended replacing this by a complex defined by a
map from F to the dual G∗ with the boundary map now defined by
contracting factors of the form F ⊗G∗ using the given map from F to
G∗. This is basically the form of the complex given by Lascoux, and
using this form makes a number of properties simpler. However, the
computations with symmetric groups used in the original construction
are essentially the same in the new version. It is the new version using
a map from F to G∗ that is presented here.

The earlier paper also contained a proof that it agreed with a
construction of Poon [9] in the cases he proved, and it predicted
the correct criteria for a determinantal ideal to be Gorenstein given
by Svanes [11]. These were included to give evidence that it was a
resolution; they are not so relevant at present; thus, we do not include
them here.

1. Introduction. We assume throughout that R is a commutative
ring that contains the field of rational numbers. Let (rij) be a matrix
with entries in R, and let t ≥ 1 be an integer. Suppose (rij) is an
(n + t − 1) × (m + t − 1) matrix, where m ≥ n ≥ 1. Then, if F is a
free module of rank m+ t− 1 and G is one of rank n+ t− 1 with given
bases, (rij) defines a map ϕ from F to the dual G∗ = Hom(G,R) of G.
We will define a complex C•(ϕ, t) such that:

(1) Ck(ϕ, t) is free for all k.

(2) If R is local and rij is in the maximal ideal m of R for all i and
j, then the maps from Ck(ϕ, t) to Ck−1(ϕ, t) are defined by matrices
with coefficients in m.
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(3) C0(ϕ, t) ∼= R, and the image of C1(ϕ, t) in C0(ϕ, t) is the ideal
generated by the t× t minors of (rij).

Let I be the ideal generated by the t× t minors of (rij). If C•(ϕ, t) is
exact, it follows from (1), (2) and (3) that it is a minimal free resolution
of R/I. In fact, it was shown by Roberts [10] that, if the rij are
indeterminates over a subring of R, then C•(ϕ, t) is exact.

The complex C•(ϕ, t) will be made up of pieces that are constructed
roughly as follows. If F and G are free modules as above, so that ϕ
maps F to G∗, then the symmetric group Sk acts on F⊗k and G⊗k;
thus, the group algebra Q[Sk] acts on F⊗k and G⊗k, for each k. The
pieces which make up C•(ϕ, t) are of the type (e ⊗ e′)(F⊗k ⊗ G⊗k),
where e and e′ are idempotent elements of Q[Sk]. The boundary maps
are essentially those maps induced by the map ψ defined from ϕ from
F ⊗G to R, that is, the map defined by ψ(f ⊗ g) = ϕ(f)(g).

Since the construction involves idempotents of Q[Sk], we begin
by presenting the necessary facts about representations of symmetric
groups. These may all be found in Boerner [2], to which we will refer for
proofs when appropriate. In Section 2, we define C•(ϕ, t) and prove its
most elementary properties. Much of the rest of the paper is comprised
of proving two formulas involving idempotent elements of the group
algebra which imply that C•(ϕ, t) is a complex.

2. Young tableaux. Let Sn be the symmetric group on n elements,
usually taken to be the numbers 1, 2, . . . , n. Let λ be a partition
of n so that λ can be written as a decreasing sequence of positive
integers λ1 ≥ λ2 ≥ · · · ≥ λr with

∑
λi = n. Associated to each

such partition we have a Young diagram, also denoted λ, obtained
by arranging n squares in r rows of lengths λ1, λ2, . . . , λr, as in the
following example, which is the Young diagram corresponding to the
partition 4 ≥ 2 ≥ 2 ≥ 1 of 9.

A Young tableau is obtained by arranging the n elements on which
Sn acts in the squares of a Young diagram in one of the n! possible
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ways. Corresponding to the above Young diagram, two of the possible
Young tableaux are:

3 6 4 5
7 1
2 8

9

and

1 2 3 4
5 6
7 8

9

When we are considering only one tableau we will often denote it
also by λ; when we are considering different tableaux with the same
diagram we will distinguish them by subscripts λα, λβ , and so on.

Each Young tableau λ defines two subgroups Pλ and Qλ of Sn. Pλ

is the set of permutations that map each element to an element in the
same row in λ, and Qλ consists of permutations that map each element
to one in the same column. Let

P =
∑
σ∈Pλ

σ

and

Q =
∑
σ∈Qλ

(−1)sign(σ)σ;

P and Q are elements of the group algebra Q[Sn]. Let Eλ = PQ.
Then, [2, Theorem IV 3.1] Eλ is essentially idempotent, that is, there
is a nonzero rational number κλ such that E2

λ = κλEλ. Let e(λ) be the
idempotent element (1/κλ)Eλ. Thus, to each tableau λ, we associate
an idempotent e(λ) in Q[Sn].

Now, let F be an R-module. Sn acts on the n-fold tensor product
F⊗n by permuting factors. More precisely, if σ ∈ Sn, we define

σ(f1 ⊗ · · · ⊗ fn) = fσ−1(1) ⊗ · · · ⊗ fσ−1(n),

it may be verified that, under this definition, we have

(στ)(f1 ⊗ · · · ⊗ fn) = σ(τ(f1 ⊗ · · · ⊗ fn)).

Thus, since R was assumed to contain Q, the group algebra Q[Sn]
acts on F⊗n, and each element of Q[Sn] acts as an R-module homo-
morphism. Hence, for each tableau λ, e(λ)(F⊗n) is an R-submodule
of F⊗n. We also note that, if F is free, then F ∼= V ⊗Q R for some
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Q-module V , and there is an isomorphism of F⊗n with V ⊗n⊗QR that
preserves the action of Q[Sn]. Hence, since R is necessarily flat over Q,
e(λ)(F⊗n) = e(λ)(V ⊗n)⊗QR; thus, e(λ)(F

⊗n) is also a free R-module.

We will use the abbreviated notation e(λ)F to denote e(λ)(F⊗n).

3. Construction of C•(ϕ, t). Fix integers t ≥ 1 and m ≥ n ≥ 1. F
will denote a free module of rank (m+ t− 1), and G will denote a free
module of rank n+ t− 1. We denote by ϕ a map from F to G∗ defined
by a matrix (rij) with respect to a given basis of F and the dual basis
of a given basis of G.

Let λ(m,n) be a Young tableau consisting of a rectangle of m rows
of n squares each. In our initial examples, we will take the tableau in
which the ith row contains the numbers (i−1)n+1, (i−1)n+2, . . . , in in
increasing order; however, in later computations we will use different
notation. Let k be an integer such that 0 ≤ k ≤ mn. Let λ be a
partition of k into at most m parts, each of which is at most n, that
is, we have λ1 ≥ λ2 ≥ · · · ≥ λm where

∑
λi = k and λi ≤ n for each i

(here some λi’s could be zero). For each such partition λ we will define
tableaux λF (t) and λG(t) for each integer t ≥ 1.

We begin by assuming t = 1. Then, λF = λF (1) is simply the
subtableau of λ(m,n) corresponding to the partition λ. We let λG
be the transpose of λF , that is, the tableau obtained from λF by
interchanging the rows and columns.

Example 3.1. Let m = 4 and n = 3, so mn = 12. Let k = 5, and let
λ be the partition 2 ≥ 2 ≥ 1 ≥ 0. Then:

λ(m,n) =

1 2 3

4 5 6
7 8 9
10 11 12

, λF =
1 2
4 5

7

, λG = 1 4 7

2 5
.

Next, let t be arbitrary. Define λ(m + t − 1, n) to be a tableau with
m+ t− 1 rows of n squares; for example, we enter the numbers from 1
to (m+ t− 1)n in the order described above for λ(m,n). Let k be an
integer with 0 ≤ k ≤ mn and λ a partition λ1 ≥ λ2 ≥ · · · ≥ λm of k
with λi ≤ n for each i.
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Now, associate to each square of λ(m,n) either a square or a set of
t squares of λ(m + t − 1, n). To the square in the (i, j) position, we
associate:

(1) The square in the (i, j) position of λ(m+ t− 1, n) if j > i.
(2) The string of t squares from the (i, j) position to the (i+t−1, j)

position if j = i.
(3) The square in the (i+ t− 1, j) position if j < i.

Let λ be a partition as above so that λF is defined. We let λF (t) be
the tableau obtained by replacing each square of λF by the associated
square or string of squares of λ(m+ t− 1, n), and we let λG(t) be the
tableau obtained from λG in the same way.

Example 3.2. We show what happens in Example 3.1 when t = 3.
We have:

λ(m,n) =

1 2 3
4 5 6

7 8 9
10 11 12

and λ(m+ t− 1, n) =

1 2 3
4 5 6

7 8 9
10 11 12
13 14 15

16 17 18

where the squares of λ(m,n) containing 1, 5 and 9 correspond to the 3
by 1 vertical rectangles of λ(m + t − 1, n) containing [1 4 7], [5 8 11],
and [9 12 15], respectively. The set of squares in λ(m,n) with i = j is
referred to as the diagonal.

Recall that we have:

λF =

1 2

4 5
7

λG =
1 4 7
2 5

.

The squares 1, 4, 7, 2, 5 of λ(m,n) correspond in λ(m+ t− 1, n) to

1
4

7
10 13 2

5
8

11
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respectively; thus,

λF (t) =

1 2
4 5
7 8

10 11
13

and λG(t) =

1 10 13

4 5
7 8
2 11

.

We note that the entries of λF (t) are the same as those of λG(t),
although if t > 1, λG(t) is not the transpose of λF (t). In the
construction of the complex, however, we will use tensor products with
factors indexed by distinct sets of entries of λF (t), and λG(t) which
will be in one-to-one correspondence. For an entry a in λF (t), we will
denote the corresponding entry in λG(t) by ã. For example, we can
write the λG of Example 3.1 as

λG = 1̃ 4̃ 7̃
2̃ 5̃

In addition, a permutation σ of the entries of λF (t) defines a corre-
sponding permutation of the entries of λG(t), which we will denote σ̃;

if σ(a) = b, then σ̃(ã) = b̃.

We can now define Ck(ϕ, t) for k = 0, 1, . . . ,mn. In the following
definition, we let the notation |λ| = k mean that λ is a partition of k.
As above, we only allow partitions λ1 ≥ · · · ≥ λm where 0 ≤ λi ≤ n for
each i. Tensor products will be over R.

Definition 3.3. Ck(ϕ, t) =
⊕

|λ|=k e(λF (t))F ⊗ e(λG(t))G.

We now set about defining the boundary map dk from Ck(ϕ, t) to
Ck−1(ϕ, t). The boundary maps are defined using the map ϕ from F to
G∗. As previously mentioned, the map ϕ defines a map from F ⊗G to
R, which takes f ⊗ g to ϕ(f)(g). This can be extended to a map from
(F⊗n) ⊗ (G⊗n) to R, and hence, if tensor powers F⊗n and G⊗n are
indexed by sets in one-to-one correspondence, for any corresponding
subsets of these sets with k elements, we have an associated map from
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(F⊗n) ⊗ (G⊗n) to (F⊗n−k) ⊗ (G⊗n−k). These are the maps used in
the definition of dk.

Denote the summand e(λF (t))F ⊗ e(λG(t))G of Ck(ϕ, t) by Cλ(t);
it is a submodule of a tensor product F⊗r ⊗G⊗r, where the factors of
F⊗r and G⊗r are indexed by the entries in the tableau λF (t) and the
corresponding entries of λG(t). We will first define maps dµλ(t) from
Cλ(t) to Cµ(t) where |λ| = k and |µ| = k − 1; dk will be defined by
combining the maps dµλ(t) with appropriate signs.

With λ and µ as above, λF consists of k squares and µF of k − 1
squares. If there is an entry in µF that is not in λF , let dµλ(t) = 0. If
this is not true, µF can be obtained from λF by removing one square,
say the square with entry a. We then denote µ by λ− a. Let Cλ(t) be
a submodule of F⊗r ⊗G⊗r defined by an idempotent as above. Then,
Cµ(t) is submodule of F⊗r′ ⊗G⊗r′ , where F⊗r′ and G⊗r′ are indexed
over the same sets as F⊗r and G⊗r except that the entries or columns
of t entries in λ(m+ t− 1, n) corresponding to the entries a and ã are
deleted. The entry a must be on a corner of λF to be removed, and ã
will also be on a corner of λG so that λG(t)− ã is also defined (we call
a square of λF on the bottom of a column and the right end of a row
a corner of λF ). Whenever we have this situation, we will denote by

ϕ∗ the map from F⊗r ⊗G⊗r to F⊗r′ ⊗G⊗r′ defined by the map ϕ as
described above.

We will use a fact about ϕ∗ to reduce questions about the boundary
maps to questions about elements of the group algebra of the symmetric
group. We consider the involution on Q[Sn] induced by the map that
sends a permutation σ to σ−1, and we denote the image of an element
r under this map by r∗.

Proposition 3.4. Let ϕ∗ be defined on a tensor product F⊗r ⊗ G⊗r,
where the two factors are indexed by sets in one-one correspondence as
above. Let x and y be elements of F⊗r and G⊗r respectively, and let s
and t be elements of Q[Sr]. Then:

ϕ∗((sx)⊗ (t̃y)) = ϕ∗((t
∗s)x⊗ y).

Proof. By linearity, it suffices to prove that, if σ and τ are elements
of Sr, then

ϕ∗((σx)⊗ (τ̃ y)) = ϕ∗((τ
−1σ)x⊗ y).
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We have

ϕ∗((σx)⊗ (τ̃ y)) =
∏
i

ϕ((σx)i)((τ̃ y)̃i)

=
∏

ϕ(xσ−1(i))(yτ̃−1 (̃i)).

We now wish to write this product in terms of the original element y,
that is, to index the second factor over its original index set. The factor
yj̃ will appear for j̃ = τ̃−1(̃i), or ĩ = τ̃(j̃), which means that i = τ(j).

Thus, the above product is∏
j

ϕ(xσ−1τ(j))(yj̃) = ϕ∗(τ
−1σ(x)⊗ y). �

Therefore, when µ = λ − a, we define dµλ(t) by first taking ϕ∗
restricted to Cλ(t), which lands in F⊗r′ ⊗ G⊗r′ , then following with
e(µF (t))⊗ e(µG(t)) yielding Cµ(t). Hence,

dµλ(t) = e(µF (t))⊗ e(µG(t)) · ϕ∗ restricted to Cλ(t).

The final ingredient in the definition of the boundary map is an
appropriate sign. For a partition λ and a corner a of λ, we let s(λ, a) be
the number of squares in the column above a plus the number of squares
to the right of this column. For example, if λF is as in Example 3.1,
s(λF , 7) = 4 and s(λF , 5) = 1.

We define dk by letting the component from Cλ(t) to Cµ(t) where
µ = λ− a be

(−1)s(λ,a)dµλ(t).

To prove that this defines a complex, we must show that, for every
λF with |λF | = k and νF with |νF | = k−2, the sum of all compositions
dνµdµλ with appropriate signs is zero. For there to be any nonzero
contributions, ν must be of the form λ − a − b for two squares a and
b of λF , where a is a corner of λF and b becomes a corner of λF − a
or vice versa. There are two possible cases: either the squares a and b
can be removed in only one order, in which case they are next to each
other in one column or row, or they can be removed in either order, in
which case they are on different corners of λF . In the first case, λF is
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of the form

b a
or

b
a

In the second case λF is of the form

a
b

or
b

a

In the first case, there is a unique µ with dνµ ̸= 0 and dµλ ̸= 0;
therefore, we must have dνµdµλ = 0. In the second case, we have both
µ = λ− a and µ′ = λ− b, and the condition that we need is:

(−1)s(λ−a,b)dνµ(−1)s(λ,a)dµλ + (−1)s(λ−b,a)dνµ′(−1)s(λ,b)dµ′λ = 0.

We note that, in the second case, where b is below a, s(λ − a, b) =
s(λ, b) − 1 and s(λ − b, a) = s(λ, a). Hence, (−1)s(λ−a,b)(−1)s(λ,a) =
−(−1)s(λ−b,a)(−1)s(λ,b) (the case where a is below b is similar). Thus,
we must show that

dνµdµλ = dνµ′dµ′λ.

Most of the remainder of the paper will be devoted to showing that
C•(ϕ, t) is a complex, that is, that dk−1dk = 0. It follows from the
discussion at the end of Section 1 that Ck(ϕ, t) is a free module for
all k. In addition, if R is local and the rij are in the maximal ideal
m of R, then ϕ∗ is also defined by a matrix with coefficients in m;
thus, [e(µF )(t)⊗ e(µG(t)]ϕ∗ maps Cλ into mCµ, and dk is also defined
by a matrix with coefficients in m. Hence, C•(ϕ, t) is a minimal free
complex. It is shown in [10] that, in the generic case, C•(ϕ, t) is, in
fact, a minimal free resolution of the ideal generated by the t×t minors
of (rij).

In order to see that the map from C0 to C1 is defined by the minors
of the matrix defining the map ϕ from F to G∗, we assume that we have
a basis f1, . . . , fm+t−1 of F and a basis g1, . . . gn+t−1 of G and the (rij)
is the matrix defining ϕ in terms of the given basis of F and the dual
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basis of the given basis of G. The module C0(t) is the tensor product of
two tensor powers over the empty set, which is R⊗R = R. The module
C1(t) has as index set the partition given by the one square in the top
left corner of λ(m,n). Since this square in λ(m,n) corresponds to a
column of t squares in λ(m+ t− 1, n), C1(t) = e(λ)(F⊗t)⊗ e(λ)(G⊗t),
where λ is the partition defined by a column of t squares. This partition
defines the tth exterior power; thus, the map d1 from C1(t) to C0(t) is

a map from
∧t

F ⊗
∧t

G to R.

Let e be the idempotent defining the exterior product so that
e = (1/t!)

∑
σ∈St

(−1)sign(σ)σ. Then, a basis for
∧t

F ⊗
∧t

G is given
by the set of elements

e(fi1 ⊗ · · · ⊗ fit)⊗ e(gj1 ⊗ · · · ⊗ gjt),

where

1 ≤ i1 < · · · < it ≤ m+ t− 1 and 1 ≤ j1 < j2 < · · · < jt ≤ n+ t− 1.

Using Proposition 3.4, since e2 = e and e∗ = e, where ∗ is the involution
defined in that proposition, this can be replaced by

e(fi1 ⊗ · · · ⊗ fit)⊗ (gj1 ⊗ · · · ⊗ gjt).

The map ϕ sends fi to
∑

j rijg
∗
j , and hence, we have

ϕ∗(fi1 ⊗ · · · ⊗ fit)⊗ (gj1 ⊗ · · · ⊗ gjt)

=

(∑
j

ri1jg
∗
j (gj1)

)(∑
j

ri2jg
∗
j (gj2)

)
· · ·

(∑
j

ritjg
∗
j (gjt)

)
= ri1j1ri2j2 · · · ritjt .

If we now apply e, we obtain

(1/t!)
∑
σ∈St

(−1)sign(σ)rσ(i1)j1rσ(i2)j2 · · · rσ(it)jt ,

which is (1/t!) times the minor of (rij) corresponding to the rows
j1, . . . , jt and the columns i1, . . . , it.

4. Proof that C•(ϕ, t) is a complex (Preliminaries). The proof
that C•(ϕ, t) is a complex depends on certain identities involving the
maps dµλ, and the first step in proving these is to reduce them to
identities involving elements of the group algebra Q[S(m+t−1)n].
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A product of the form dνµdµλ can be written as the restriction to
Cλ of

[e(νF (t))⊗ e(νG(t))]ϕ∗[e(µF (t))⊗ e(µG(t))]ϕ∗,

which, since e(λF (t))⊗ e(λG(t)) is the identity on Cλ, can be written
(4.1)
[e(νF (t))⊗ e(νG(t))]ϕ∗[e(µF (t))⊗ e(µG(t))]ϕ∗[e(λF (t))⊗ e(λG(t))].

We next wish to remove ϕ∗ and reduce the problem to identities in
the group algebra. Consider the composition [e(µF (t))⊗e(µG(t))]ϕ∗. If
µF = λ−a, then ϕ∗ contracts a and ã, which are not acted on by e(µF )
or e(µG). Thus, we can apply the idempotent [e(µF (t)) ⊗ e(µG(t))]
first and ϕ∗ second. We then combine the two contractions ϕ∗ to give
a contraction on the union of the two sets. Finally, we apply the same
argument on the next factor to the left and replace (4.1) by

(4.2) ϕ∗[e(νF (t))⊗e(νG(t))][e(µF (t))⊗e(µG(t))][e(λF (t))⊗e(λG(t))].

In order to simplify notation, let ê(λ) denote e(λF (t))⊗ e(λG(t)) for
any partition λ. Let k = (m+ t− 1)n; we can then consider ê(λ) as an
element of Q[S2k], namely, as the product e(λF (t))e(λG(t)) in Q[S2k].

The purpose of expressing dνµdµλ in the form of equation (4.2) is
that, now, identities involving ê(ν)ê(µ)ê(λ) become identities involving
dνµdµλ merely by adding ϕ∗ on the left. Specifically, we have reduced
the proof that C•(ϕ, t) is a complex to the following two lemmas (in
which we denote the partition obtained by removing a corner a from
λF by λ− a, as above).

Lemma 4.1. Let b be a corner of λF , and let a be a square of λF
directly above or to the left of b in such a way that it becomes a corner
of λF − b. Then:

ê(λ− a− b)ê(λ− b)ê(λ) = 0.

Lemma 4.2. Let a and b be distinct corners of λF with b below a.
Then:

ê(λ− a− b)ê(λ− a)ê(λ) = ê(λ− a− b)ê(λ− b)ê(λ).
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We now examine products of the form ê(λ− a− b)ê(λ− b)ê(λ) more
closely. Writing λ− b = µ and λ− a− b = ν, this product is:

[e(νF (t))e(νG(t))][e(µF (t))e(µG(t))][e(λF (t))e(λG(t))].

If two elements of Q[S2k] involve only permutations that move
disjoint sets of elements they commute, then, since the sets indexing
powers of F and those indexing powers of G are disjoint, the above
product is equal to

[e(νG(t))e(µG(t))e(λG(t))][e(νF (t))e(µF (t))e(λF (t))].

Consider the product [e(νF (t))e(µF (t))e(λF (t))]. Letting λ be the
tableau λF (t), it is of the form

e(λ− a− b)e(λ− b)e(λ)

and is an element of Q[Sk]. In fact, it is an element of the subgroup
of Q[Sk] consisting of permutations on the entries in λF (t), and our
computations will take place in this group ring. A similar formula

holds for λG with a and b replaced by ã and b̃.

Products of this form will be calculated herein. The main idea is to
express the products of idempotents involved in terms of a basis for the
left ideal Q[Sk] and show that the terms all become zero. However, we
first must go back and develop more properties of the idempotents e(λ).
The references in the remainder of this section will be to theorems in
[2].

We consider different tableaux with the same partition and denote
them λα, λβ , and so on. One of these will be the above λ (either λF (t)
or λG(t)), which we denote λ1. For each pair of tableaux λα and λβ
we denote sαβ as the permutation that takes λβ to λα, that is, sαβ
takes the entry in a given position in λβ to the entry in that position
in λα. We then have ([2, Theorem V.2.1]; this follows from the usual
properties of conjugation):

sαβ(e(λβ)) = e(λα)sαβ .

There is one property of a pair of tableaux which will arise again
and again; thus, we introduce notation for it. This property is that no
two elements are in the same column in λα and in the same row in λβ .
We denote this by λα ≪ λβ .
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We have the following:

(1) the permutation sα1 can be written as a product pq with p ∈ Pλ

and q ∈ Qλ (so sα1 has a nonzero coefficient in e(λ)) if and only
if λα ≪ λ1 [2, Theorems IV.2.2, IV.2.3].

(2) If λα ̸≪ λ1, then e(λα)e(λβ) = 0 [2, Theorem IV.2.3].

The proof of the second of these properties can be carried out as
follows. Suppose there are elements x and y in the same column in
λα and the same row in λβ . Then, it may quite easily be shown
that e(λα) is divisible on the right by 1 − (xy), where (xy) is the
permutation which transposes x and y, and e(λβ) is divisible on the
left by 1 + (xy). Further, in taking the product e(λα)e(λβ), a factor
(1 − (xy))(1 + (xy)) = 0 is obtained. The proofs of Lemmas 4.1 and
4.2 will use similar, although more complicated, techniques.

Suppose that the elements on which Sk acts are linearly ordered (for
instance, they might be the integers 1, 2, . . . , k with the usual ordering).
A tableau λα in which the entries in each row and in each column are
in increasing order will be called a standard tableau. We can then order
the standard tableaux lexicographically by the rows and, denoting this
order relation by <, by [2, Theorem IV.4.4], we have:

If λα ≪ λβ , then λα < λβ .

The number of standard tableaux is equal to the dimension over Q
of the left ideal Q[Sk]e(λ) [2, Theorem IV.4.6]. In addition, it may
be shown by the method of the proof of [2, Theorem IV.4.5] that the
elements sα1e(λ) = e(λα)sα1, where λα ranges over all the standard
tableaux, are linearly independent over Q; thus, they form a basis for
Q[Sk]e(λ). Hence, in particular, we can write

e(λ− b)e(λ) =
∑

kαsα1e(λ),

where the sum runs over the standard tableaux λα and the kα are
rational numbers defined uniquely by this equation.

In addition to the kα, we define numbers jα which we take to
be κλ times the coefficient of sα1 in e(λ − b)e(λ), where κλ is the
number such that E2

λ = κλEλ. In good cases, it works out that
jα = kα; however, this is not true in general since it can occur that
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we can write sα1 = sβ1pq with p ∈ Pλ and q ∈ Qλ so that the term

(−1)sign(q)kβsβ1pq also contributes to the value of jα.

Proposition 4.3. We can write sα1 = sβ1pq as above if and only if
λα ≪ λβ.

Proof. We have sα1 = sβ1pq if and only if s−1
β1 sα1 = pq. Write s−1

β1 sα1

as sγ1 with corresponding tableau λγ ; we then have s−1
β1 sα1 = pq if and

only if λγ ≪ λ1. Now,

sβ1sγ1s
−1
β1 = sβ1s

−1
β1 sα1s

−1
β1 = sα1s

−1
β1 = sα1s1β = sαβ .

Hence, if the element in the (i, j) position in λ1 is in the (k, l) position
in λγ , then the element in the (i, j) position in λβ is in the (k, l) position
in λα, and λγ ≪ λ1 if and only if λα ≪ λβ . Thus, Proposition 4.3 is
proven. �

Proposition 4.4. Suppose that there are two elements in the same
column in λα and in the same row in λ1, and neither of these is an
entry of b. Then, the coefficient of sα1 in e(λ− b)e(λ) is zero.

Proof. Let x and y be these elements. Let u and v be the entries of
λ in the positions that x and y occupy in λα. Then, the transposition
(uv) is in Qλ and, since neither x nor y is in b, (xy) is in Pλ−b. Hence:

(xy)e(λ− b)e(λ) = e(λ− b)e(λ)

and

e(λ− b)e(λ)(uv) = −e(λ− b)e(λ).

Since sα1 sends u to x and v to y, we have

(xy)sα1 = sα1(uv).

From these equalities, it follows that the coefficient of sα1 in e(λ −
b)e(λ) equals the coefficient of (xy)sα1 equals the coefficient of sα1(uv)
equals minus the coefficient of sα1. Hence, this coefficient must be
zero. �
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We can now reduce the problem of calculating the products e(λ −
a − b)e(λ − b)e(λ) to manageable proportions. The next proposition
shows that, in the expression of e(λ − a)e(λ) as a sum of terms
kαsα1e(λ), we only need consider permutations sα1 that move only
entries in a and b.

Proposition 4.5. Let λ, a and b be as above. Assume that λ is a
standard tableau in which the entries of λ− a− b all precede those of a
and b and, in λ− a− b, the entry in a given row precedes any element
in any lower row. Write

e(λ− b)e(λ) =
∑

kαsα1e(λ),

as above. Then, if sα1 moves any entry of λ− a− b, we have either

(i) kα = 0, or
(ii) e(λ− a− b)sα1e(λ) = 0.

In addition, if sα1 moves only elements of a and b, we have

jα = kα.

Proof. Let λα be a standard tableau in which an entry of λ− a− b
is in a different position than in λ1. Let u be the lowest of these. Since
the entries of λ − a − b are arranged in λ1 in increasing order along
successive rows, there are two possibilities.

(i) u is in a higher row in λα than in λ1.
(ii) u is the first entry in λα of the row below the one it occupies in

λ1.

If case (i) holds, there is a v in the same column as u in λ1 and the
same row as u in λα. Since neither u nor v is an entry of a or b, this
implies that

e(λ− a− b)sα1e(λ) = e(λ− a− b)e(λα)sα1 = 0.

Suppose case (ii) holds; we will show this implies that kα = 0.
Suppose not, and let u be minimal among all λα such that case (ii)
holds and kα ̸= 0. Then, if v is the first element of the row of u in λ1,
u and v are in the same column of λα; thus, jα = 0 by Proposition 4.4.
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Since kα ̸= 0, by Proposition 4.3 there must be a β with λα ≪ λβ and
kβ ̸= 0.

Let w be the lowest element which is moved by sβ1. If w < u and
case (i) holds for λβ , then two elements are in the same column of λα
and in the same row of λβ , contradicting λα ≪ λβ . If case (ii) holds,
this contradicts the minimality of u. Hence, w ≥ u. If w is not moved
by sβ1, this again contradicts λα ≪ λβ . Hence, the elements up to u
are in exactly the same place in λβ as in λα, and jβ = 0. Thus, we
must have a γ with λβ ≪ λγ and kγ ̸= 0. However, this then continues
indefinitely, since there is a linear ordering < on the standard tableaux
such that λα ≪ λβ implies λα < λβ , this procedure must eventually
stop, which is a contradiction.

In order to prove the last statement of Proposition 4.5, suppose that
sα1 is a permutation which moves only elements of a and b. If jα ̸= kα,
we must have a standard tableau λβ with λα ≪ λβ and kβ ̸= 0. If
sα1 moves an entry of λ − a − b, either case (i) or case (ii) above is
true; case (i) contradicts λα ≪ λβ , and case (ii) contradicts kβ ̸= 0.
Since a and b each consist of squares in the same column, two different
standard tableaux that move only elements of a and b must move some
entry from a to b and vice versa. This implies that an entry from
whichever is lower or to the left must move to a position higher and to
the right in λβ , and this again contradicts λα ≪ λβ . Hence, we have
jα = kα. �

The above propositions provide enough machinery for most of the
calculation of the expression e(λ− a− b)e(λ− b)e(λ).

5. Proof of Lemma 4.1. Let a and b be two elements in a row or
column of λF such that b is a corner and a becomes a corner after b is
removed. Let λ = λF (t). Then, there are four possible configurations
for a and b in λ, depending upon whether a and b are in the same row or
the same column in λF and depending upon whether a or b corresponds
to a column of t elements in λ (we can consider the case where both a
and b correspond to single squares as a special case of either of these).
The four possible arrangements are:

a

b
1.

a

b
2.

a

b
3. a

b

4.
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We assume that the elements of λ are ordered as in Proposition 4.5,
where we first have all the elements of λ− a− b arranged row-by-row,
and then the entries of a and b. Since we will only have to deal with
the entries of a and b, however, we will denote them 1, 2, . . . , t+ 1.

Proposition 5.1. In cases 1 and 2 above, the product e(λ−a−b)e(λ−
b)e(λ) is a sum of terms, each of which is divisible on the left by 1+(xy)
for some distinct x and y between 1 and t+ 1.

Proof. We let e(λ − b)e(λ) =
∑
kαsα1e(λ), and, since we are

multiplying on the left by e(λ − a − b), from Proposition 4.5 we
need consider only those terms for which sα1 moves only the elements
1, 2, . . . , t + 1. For each such sα1, two elements between 1 and t + 1,
say x and y, end up in a row in λα.

Hence, sα1e(λ) = e(λα)sα1 is divisible on the left by 1+ (xy). Since
e(λ− a− b) does not involve any of the numbers between 1 and t+ 1,
1 + (xy) commutes with e(λ− a− b); thus, e(λ− a− b)e(λ− b)e(λ) is
a sum of terms divisible on the left by 1+ (xy) for various pairs x, y of
elements between 1 and t+ 1, as was shown. �

We next prove a similar result for cases 3 and 4; however, since
the main idea will be used again in a more general form, we prove it
separately.

Proposition 5.2. Let λ be any tableau, and let c be a column of
consecutive squares of λ, all of which are at the right ends of their
rows (which must therefore have the same length), and such that the
bottom square of c is a corner. Then, e(λ − c) is defined, and for any
permutation q of the entries in c, we have:

qe(λ− c)e(λ) = (−1)sign(q)e(λ− c)e(λ).

Similarly, if d is another corner square of λ, we have

qe(λ− c− d)e(λ) = (−1)sign(q)e(λ− c− d)e(λ).

Proof. Suppose that c is in the nth column of λ. For i = 1, 2, . . . ,
n− 1, define qi to be the permutation which acts on the ith column in
the same way as q acts on the nth column, that is, if q sends the entry
in the (k, n) position to the entry in the (k′, n) position, then qi sends
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the entry in the (k, i) position to the entry in the (k′, i) position. Let
q = q1q2 · · · qn−1.

We then have that qq commutes with e(λ). In fact, if we let
qq = sα1, then sα1e(λ) = e(λα)sα1, and since λα is derived from λ by
interchanging entire rows, e(λα) = e(λ). We note that q also commutes
with q and with e(λ− c). Thus,

qe(λ− c)e(λ) = e(λ− c)qe(λ)

= e(λ− c)q−1qqe(λ)

= [e(λ− c)q−1][e(λ)qq].

Now, q−1 ∈ Qλ−c and qq ∈ Qλ. Hence,

[e(λ− c)q−1][e(λ)qq]

= [e(λ− c)(−1)sign(q
−1)][e(λ)(−1)sign(qq)]

= (−1)sign(q)e(λ− c)e(λ).

If d is another corner square of λ, then it cannot be in any of the rows
containing entries in the column c, and the same proof shows that

qe(λ− c− d)e(λ) = (−1)sign(q)e(λ− c− d)e(λ). �

Remark 5.3. It is not necessarily true that qe(λ) = (−1)sign(q)e(λ) in
the situation of Proposition 5.2. For example, if

λ =
1 3

2 4
,

then (34)e(λ) ̸= e(λ). It follows from Proposition 5.2, however (and
can easily be directly verified) that

(34)[(1− (12))e(λ)] = −[(1− (12))e(λ)].

Proposition 5.4. In cases 3 and 4 above, e(λ− a− b)e(λ− b)e(λ) is
divisible on the left by 1− (xy) for all pairs x, y of numbers between 1
and t+ 1.

Proof. Again, we only need to consider sα1, which move only the
elements 1, 2, . . . , t + 1, and since, in this case, they must remain in
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increasing order since they are all in one column, we have

e(λ− a− b)e(λ− b)e(λ) = k1e(λ− a− b)e(λ),

and we must show that e(λ−a−b)e(λ)is divisible on the left by 1−(xy).
This follows immediately from Proposition 5.2, letting c be a and b
together and letting q = (xy). �

We can now show that

ê(λ− a− b)ê(λ− b)ê(λ) = 0.

Let λ = λF (t) and µ = λG(t). We can write this product as

e(λ− a− b)e(λ− b)e(λ))e(µ− ã− b̃)e(µ− b̃)e(µ).

Since λG is the transpose of λF , a and b are in a column in λF if and
only if they are in a row in λG and vice versa; thus, case 1 or 2 holds
for λ if and only if case 3 or 4 holds for µ (and vice versa). We assume
that case 1 or 2 holds for λ and case 3 or 4 holds for µ; the proof in the
other case is essentially the same. From Proposition 5.1, we can write

e(λ− a− b)e(λ− b)e(λ) =
∑
x,y

(1 + (xy))Ax,y,

where Ax,y are elements of Q[Sk] indexed over pairs out of the set
{1, 2, . . . , t + 1}. By Proposition 5.4, for each x and y we can find a
Bx,y with

e(µ− ã− b̃)e(µ− ã)e(µ) = (1− (x̃ỹ))Bx,y.

Hence,

ê(λ− a− b)ê(λ− b)ê(λ)

= e(λ− a− b)e(λ− b)e(λ)e(µ− ã− b̃)e(µ− ã)e(µ)

=
∑
x,y

(1 + (xy))Ax,ye(µ− ã− b̃)e(µ− ã)e(µ)

=
∑
x,y

(1 + (xy))Ax,y(1− (x̃ỹ))Bx,y.
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We now apply ϕ∗ and Proposition 3.4, using the fact that (1 −
(xy))∗ = 1− (xy) for all x and y.

ϕ∗(ê(λ− a− b)ê(λ− b)ê(λ)) =

= ϕ∗

(∑
x,y

(1 + (xy))Ax,y(1− (x̃ỹ))Bx,y

)
= ϕ∗

(∑
x,y

(1− (xy))(1 + (xy))Ax,yBx,y

)
= 0.

This completes the proof of Lemma 4.1.

6. Proof of Lemma 4.2. We now let a and b be two distinct corners
of λF , and we assume that b is below a. Now, we must calculate the
products:

ê(λ− a− b)ê(λ− a)ê(λ)

and

ê(λ− a− b)ê(λ− b)ê(λ).

As before, we let λ = λF (t), and let a and b denote the squares or
columns of squares of λF (t) corresponding to a and b in λF . We begin
by calculating the products:

e(λ− a− b)e(λ− a)e(λ)

and

e(λ− a− b)e(λ− b)e(λ).

The method is similar to that used to prove Lemma 4.1 in that we
will represent each of these products in the form

e(λ− a− b)
(∑

kαsα1e(λ)
)

where λα ranges over the standard tableaux. We assume that λ = λ1
is a standard tableau of the type in Proposition 4.5 so that the entries
of λ− a− b precede those of a and b and, in λ− a− b, the entries in a
given row precede the entries on any lower row. We will also generally
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assume that either a or b is a column of t squares since the situation in
which both are single squares is a special case of this.

Proposition 6.1. We have k1 = 1.

Proof. From Proposition 4.5, we have k1 = j1, where j1 is κλ times
the coefficient of the identity in e(λ− a)e(λ) (or e(λ− b)e(λ)).

We can write

e(λ− a)e(λ) =
1

κλκλ−a
Eλ−aEλ.

If pqp′q′ = 1 with p ∈ Pλ−a, q ∈ Qλ−a, p
′ ∈ Pλ, and q

′ ∈ Qλ, then pq
leaves the entries in a fixed; thus, p′q′ also does, and, since p′ can only
permute elements in the same row and q′ can only permute elements
in the same column, p′ and q′ must leave the entries in a fixed. Thus,
p′ ∈ Pλ−a and q′ ∈ Qλ−a, and the coefficient of 1 in Eλ−aEλ is the
same as in Eλ−aEλ−a, which is κλ−a. Hence, the coefficient of 1 in
e(λ− a)e(λ) is

1

κλκλ−a
· κλ−a =

1

κλ
,

and j1 = κλ(1/κλ) = 1. �

Proposition 6.2. We have

e(λ− a− b)e(λ− b)e(λ) = e(λ− a− b)e(λ).

Proof. Writing e(λ − b)e(λ) =
∑
kαsα1e(λ), by Proposition 4.5, it

is again only necessary to consider sα1, which move only 1, 2, . . . , t+1.
If λα ̸= λ1, at least one entry from a must go to a position in b in λα;
since b is below a and to the left of a, this means that two elements
in a row in λ1 are in a column in λα; thus, jα = 0 by Proposition 4.4.
Since jα = kα, we therefore have kα = 0.

Hence,

e(λ− a− b)e(λ− b)e(λ) = e(λ− a− b)[k1e(λ)] = e(λ− a− b)e(λ),

since k1 = 1. �
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The calculation of e(λ − a − b)e(λ − a)e(λ) is considerably more
complicated since, in this case, there are nontrivial permutations sα1
of 1, 2, . . . , t+ 1 with kα ̸= 0, and we must find the value of kα.

In the next few propositions we will let 1 be the entry in whichever
of a or b is a single square.

Proposition 6.3. Let s and s′ be permutations of 1, 2, . . . , t+ 1 such
that s(1) = s′(1). Then:

(i) e(λ− a− b)se(λ) = (−1)sign(s)+sign(s′)e(λ− a− b)s′e(λ).
(ii) If j is the coefficient of s in e(λ− a)e(λ) and j′ is the coefficient

of s′, then

j = (−1)sign(s)+sign(s′)j′.

Proof. Since s(1) = s′(1), s−1s′ = q permutes only the numbers 2
through t+1. Since sign(s) + sign(s′) = sign(q) and s and s′ commute
with e(λ− a− b), statement (i) is equivalent to

qe(λ− a− b)e(λ) = (−1)sign(q)e(λ− a− b)e(λ),

which follows from Proposition 5.2.

In order to prove the second statement, since sq = s′, it suffices to
show that

e(λ− a)e(λ)q = (−1)sign(q)e(λ− a)e(λ).

In fact, q is in Qλ, so, in this case, we even have e(λ)q = (−1)sign(q)e(λ);
thus, this equality is clear. �

We will use Proposition 6.3 to replace the permutations sα1 with λα a
standard tableau by other permutations which make calculation easier.
Specifically, let sα1 be a permutation that moves only 1, 2, . . . , t + 1
with λα a standard tableau. Let r be the number in λα in the place
of 1 (thus, sα1(1) = r). Then, the other numbers must be arranged in
increasing order in the remaining squares since they are in a column.
For each r, we can construct such a tableau with r in place of 1; thus,
we see that there is one such λα for each r = 1, 2, . . . , t + 1, and it is
characterized by the property that sα1(1) = r. We replace sα1 by the
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transposition (1r). Then, we can write

e(λ− a− b)e(λ− a)e(λ) = e(λ− a− b)

[ t+1∑
r=1

kr(1r)e(λ)

]
,

where kr is κλ times the coefficient of (1r) in the product e(λ−a)e(λ).

Proposition 6.4. If r and r′ are numbers between 2 and t + 1, then
kr = kr′ .

Proof. We have
(1r′) = (rr′)(1r)(rr′).

We note that (rr′) transposes two elements in the same column at
the ends of rows of the same length. Similarly to Proposition 5.2, we let
q be the product of the transposition of the elements in the same rows
in each column to the left of that containing r and r′. Then, q(rr′)
commutes with e(λ). In addition, q(rr′) commutes with e(λ − a); if
a is the square containing 1, q(rr′) commutes with e(λ − a) for the
same reason it commutes with e(λ), and, if a is the column containing
r and r′, the same reasoning shows that q commutes with e(λ−a). We
thus deduce that q(rr′) commutes with e(λ−a) since e(λ−a) does not
involve either r or r′.

Since q commutes with (rr′) and (1r) and q2 = 1, we have

(1r′) = q(rr′)(1r)q(rr′).

Furthermore,

q(rr′)[e(λ− a)e(λ)]q(rr′)

= e(λ− a)e(λ)[q(rr′)]2

= e(λ− a)e(λ).

From these two equations, it follows that the coefficient of (1r′) in
e(λ− a)e(λ) is the same as that of (1r); thus, kr = kr′ . �

We wish to reduce the calculation of kr to the case where a and b
are single squares. If a is a single square, this is already done since it
is enough to calculate the coefficient of the transposition (1, t + 1) in
e(λ− a)e(λ). If a is a column of t squares, we need one more result.
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Proposition 6.5. Suppose that a is a column of t squares, and let
λ′ be the tableau obtained from λ by removing the squares containing
3, . . . , t+1 so that it leaves only one square a′ of a, and a′ contains the
number 2. The κλ times the coefficient of (12) in e(λ− a)e(λ) is equal
to κλ′ times the coefficient of (12) in e(λ− a′)e(λ′).

Proof. We note that λ′−a′ = λ−a. Hence, the desired equality can
be written

κλ−aκλ[coefficient of (12) in e(λ− a)e(λ)]

= κλ′−aκλ′ [coefficient of (12) in e(λ′ − a′)e(λ′)].

Since κµe(µ) = Eµ for any of the tableaux µ, this equality is equivalent
to the statement that the coefficient of (12) in Eλ−aEλ is equal to the
coefficient of (12) in Eλ′−a′Eλ′ .

Now, Eλ−a = Eλ′−a′ , and Eλ′ is the sum of those terms of Eλ that
leave 3 through t+ 1 fixed. Suppose that (12) = pqp′q′ with p ∈ Pλ−a,
q ∈ Qλ−a, p

′ ∈ Pλ and q′ ∈ Qλ. Then, pq and (12) leave 3 through
t+ 1 fixed; thus, so does p′q′. Hence, the terms of Eλ that contribute
to the coefficient of Eλ are all in Eλ′ , which proves the result. �

Thus, the problem of finding the coefficients kr is reduced to the
following.

Proposition 6.6. Let a and b be two corner squares of λ, with b below
a. Then, the coefficient of (ab) in e(λ − a)e(λ) is 1/(κλη), where η is
the axial distance from a to b in λ. Hence, we have k(ab) = j(ab) = 1/η.

Proof. Let n be the number of entries of λ. The proof will use
Young’s semiformal representation of Q[Sn] (cf., Boerner [2, IV.5].
References to theorems in this proof will be to theorems in this book).

If we have any isomorphism of Q[Sn] with a product of matrix rings

Q[Sn] ∼=
k⊕

i=1

Mfi(Q),
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then the coefficient of 1 of any element x ∈ Q[Sn] is equal to

1

n!

k∑
i=1

fi Tr(xi),

where xi is the ith component of the image of x in
∏k

i=1Mfi(Q) by
the isomorphism above and Tr(xi) is its trace. This may be seen by
calculating the trace of x acting on Q[Sn] in two ways. If we consider

x = (xi) as an element of
∏k

i=1Mfi(Q), this trace is
∑k

i=1 fi Tr(xi),
and, if we consider it as an element of Q[Sn] and use the elements of
Sn as a basis, it is equal to n! times the coefficient of 1 in x. Setting
these equal gives the above formula.

Since the coefficient of (ab) in e(λ− a)e(λ) is the same as the coef-
ficient of 1 in (ab)e(λ− a)e(λ), we can use this formula. Furthermore,

the component of e(λ) is zero in every factor of
∏k

i=1Mfi(Q) except
that of the irreducible representation corresponding to the Young dia-
gram λ; thus, the coefficient we want is equal to (f/n!) Tr(A), where A
is the matrix representing (ab)e(λ− a)e(λ) in the semiformal represen-
tation of Q[Sn] corresponding to λ, and where f is the degree of this
representation.

Let the entries of λ be the integers 1, 2, . . . , n arranged as a standard
tableau in such a way that a = n and b = n − 1. Using the notation
of [2, IV.5], we arrange the standard tableaux T1, . . . , Tf in last letter

sequence and let λ = Tr. Let (gij), (h
λ−a
ij ) and (hλij) be the matrices

representing (ab), e(λ−a) and e(λ), respectively. Then (Theorems 5.4

and 5.5), (hλ−a
ij ) and (hλij) have 1 at the (r, r) position, and the entry

at the (i, j) position is zero if i > r or j < r. In addition, hλ−a
ij = 0

unless both Ti and Tj with n in the same position as in Tr (by Theorem

5.4). Let (kij) = (hλ−a
ij )(hλij); then, krr = 1, kij = 0 if i > r or j < r,

and kij = 0 unless Ti has n in the same position as in Tr.

Our aim is to calculate

Tr((gij)(kij)) =

f∑
i=1

f∑
j=1

gijkji.

We will show, in fact, that gijkji = 0 unless i = j = r, and that
grrkrr = 1/η, where η is the axial distance from a to b.
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Suppose that gijkji ̸= 0. If i = j, then kij = 0 unless i = j = r.
Suppose i ̸= j. Since (gij) represents (ab) = (n, n − 1), this can only
occur when (n, n−1)Ti = Tj (Corollary 1–Theorem 5.6). Furthermore,
since kji ̸= 0, we have j ≤ r ≤ i, and n is in the same position in Tj as
in Tr. Since j ≤ r, the position of n− 1 cannot be higher in Tj than in
Tr. Since n− 1 is below n in Tr, the three tableaux Tr, Tj , and Ti look
like:

Tr :
n

n−1

Tj :
n

n−1

Ti :
n−1

n

However, this implies that the position of n in Tj is higher than in Ti,
so j > i, which contradicts j ≤ r ≤ i. Thus, we cannot have gijkij ̸= 0
for i ̸= j.

Hence, Tr((gij)(kji)) = grrkrr = grr. From Corollary 2–Theorem
5.6, grr = 1/η, where η is the axial distance from n to n − 1, or
equivalently from a to b, in Tr = λ. Therefore, the coefficient of (ab)
in e(λ− a)e(λ) is (f/n!) · (1/η). Since f/n! = 1/κλ ([2, IV.3, equation
(3.1)]), this proves the result. �

We can now finish the proof of Lemma 4.2. Let λ = λF (t) and

λ̃ = λG(t). We have

ê(λ− a− b)ê(λ− a)ê(λ)

= e(λ− a− b)e(λ− a)e(λ)e(λ̃− ã− b̃)e(λ̃− ã)e(λ̃)

and

ê(λ− a− b)ê(λ− b)ê(λ)

= e(λ− a− b)e(λ− b)e(λ)e(λ̃− ã− b̃)e(λ̃− b̃)e(λ̃).

Since b is below a in λ, ã is below b̃ in λ̃. Thus,

e(λ− a− b)e(λ− b)e(λ) = e(λ− a− b)e(λ)
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and

e(λ̃− ã− b̃)e(λ̃− ã)e(λ̃) = e(λ̃− ã− b̃)e(λ̃).

We first assume that a and b correspond to single squares, and we
let η be the axial distance from a to b, which is the same as the axial

distance from b̃ to ã. Denoting the transposition of a and b by (ab), we
have from the results above that

e(λ− a− b)e(λ− a)e(λ) = e(λ− a− b)[1 + (1/η)(ab)]e(λ)

and

e(λ̃− ã− b̃)e(λ̃− b̃)e(λ̃) = e(λ̃− ã− b̃)[1 + (1/η)(ãb̃)]e(λ̃).

Since the permutation (ab) commutes with e(λ − a − b) and (ãb̃)

commutes with e(λ̃− ã− b̃), we have

e(λ− a− b)e(λ− a)e(λ) = [1 + (1/η)(ab)]e(λ− a− b)e(λ)

and

e(λ̃− ã− b̃)e(λ̃− b̃)e(λ̃) = [1 + (1/η)(ãb̃)]e(λ̃− ã− b̃)e(λ̃).

Thus, we have

ê(λ− a− b)ê(λ− a)ê(λ)

= [1 + (1/η)(ab)]e(λ− a− b)e(λ)e(λ̃− ã− b̃)e(λ̃)

and

ê(λ−a−b)ê(λ−b)ê(λ) = e(λ−a−b)e(λ)[1+(1/η)(ãb̃)]e(λ̃−ã−b̃)e(λ̃).

Hence, using Proposition 3.4, we have

ϕ∗(ê(λ− a− b)ê(λ− b)ê(λ))

= ϕ∗(e(λ− a− b)e(λ)[1 + (1/η)(ãb̃)]e(λ̃− ã− b̃)e(λ̃))

= ϕ∗[1 + (1/η)(ab)](e(λ− a− b)e(λ)e(λ̃− ã− b̃)e(λ̃)

= ϕ∗(ê(λ− a− b)ê(λ− a)ê(λ)).

The proof for the case where one of a or b is a column of squares is
basically the same using the above results. However, since the situation
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is more complicated, it is necessary to check that the coefficients which
occur are in fact the same. We will work out the case in which a is a
column of squares; the other case is similar.

We let λ = λF (t) and λ̃ = λG(t). As above, the factors in which we

remove b first from λ and ã first from λ̃ do not involve extra factors
from the group ring. We now consider the other factors.

We have

e(λ− a− b)e(λ− a)e(λ) = e(λ− a− b)
∑
r

kr(1r)e(λ),

where r runs over the entries in column a. From Proposition 6.4, the
coefficients kr are all equal, and from Proposition 6.5, they are equal
to the coefficient we would have if we had begun with the partition
obtained by removing the bottom t− 1 squares of the column given by
a and computed the coefficient in that case. By Proposition 6.6, this is
equal to 1/η, where η is the axial distance from the top square of the
column to b.

Similarly, we have

e(λ̃− ã− b̃)e(λ̃− b̃)e(λ̃) = e(λ̃− ã− b̃)
∑
r̃

kr̃(1r̃)e(λ̃).

In this case, the coefficients kr̃ are equal to one over the axial distance

from b̃ to the corner square of the column ã, which is the bottom
square of the column. This is the same as the axial distance from the
top square of a in λ to b; thus, again, we have that the coefficients are
equal to 1/η.

We illustrate this with a simple case, where t = 2.

λF (t) = a

a
b

and λG(t) =

b̃

ã

ã

.

It is clear that the axial distance from the top a to b in λF (t) is equal

to the axial distance from b̃ to the bottom ã in λG(t); both are equal
to 4. In general, if the axial distance from a to b in λF (not λF (t)) is

η0, then η0 is also the axial distance from ã to b̃ in the transpose λG,
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and the axial distances we have been considering here are both equal
to η0 + t− 1.

The remainder of the proof uses Proposition 3.4, as in the previous
case. This concludes the proof that C•(ϕ, t) is a complex. �
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