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ON 2-STABLY ISOMORPHIC FOUR-
DIMENSIONAL AFFINE DOMAINS

TERUO ASANUMA AND NEENA GUPTA

ABSTRACT. In this paper, we exhibit examples of four-
dimensional seminormal domains A and B which are finitely
generated over the field C (or R) such that A[X,Y] =
B[X,Y] but A[X] 2 B[X].

Introduction. For integral domains C C A, the notation A =
C" will mean that A = Clty,...,t,] for elements ti,...,t, € A
algebraically independent over C'.

Now, let k£ be a field. For m > 0, two finitely generated k-algebras
A and B are said to be m-stably isomorphic if A" 2, Blml. m =0
refers to the case A =, B. A finitely generated k-algebra B is said to
be m-cancelative if any k-algebra A which is m-stably isomorphic to B
is necessarily isomorphic to B.

The cancelation problem investigates whether a specific class of rings
has the m-cancelative property. There are examples of k-algebras A
and B which are 1l-stably isomorphic but not (0O-stably) isomorphic
(see [1, 2, 3, 6]). In fact, when chk > 0 and r > 3, it has been shown
that B = k" is not 1-cancelative (see [4, 5]). A natural question in
the context of the cancelation problem is whether (or when) m-stable
isomorphism implies at least 1-stable isomorphism. In particular, we
have the following question.

Question 1. Let k be a field, and let A and B be finitely generated
k-algebras. Suppose that A2 2=, B2, Does it follow that AN =, BlI¢
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The first known counterexample to the above question was given by
Jelonek ([7]). His rings are smooth algebras over C but are of dimension
at least 10. In this note, we demonstrate a new class of counterexamples
of smaller dimension. Our rings A and B are of dimension 4 and,
although they are not smooth, they are seminormal and their integral
closures are polynomial rings.

We shall first describe (Theorem 1.4) a general method of construc-
tion and then display concrete examples over k = R and k = C (Ex-
amples 1.5 and 1.6).

1. The examples. Let R be a commutative ring. We shall denote
the group of units of R by R* and the set of n x n matrices over R by
M, (R).

Any matrix M in SL,(R) (C M,(R)) can be identified with the
matrix (4 9) € SL,41(R). Hence, for any n, SL,(R) C SLyp41(R),
and J,,~o SLn(R) is a group denoted by SL(R). SK;(R) denotes the
abelian group SL(R)/[SL(R), SL(R)].

Let R be a subring of the integral domain D such that R and D
have the same field of fractions and D is a finite R-module. Then, the
conductor ideal Cp|, of R in D is defined to be the largest ideal of D
contained in R. It can be seen that

Cplp :={r € R|xzD C R}.
The next result is easy to see.

Lemma 1.1. Let D be an integral domain and I' : D — D an
automorphism of rings. Let A be a subring of D such that D is a finite
A-module and A has the same field of fractions as D. If B = I'(A),
then D is a finite B-module and Cp|, = I'(Cp|,)-

The next result follows from [13, Theorem 3.10].

Theorem 1.2. Let C C D be a finite birational extension and I the
conductor ideal of C in D. Suppose that C* = D* and (C/I)* =
(D/I)*. Then, the sequence

0 — Pic (C) -5 Pic (D) x Pic (C/I) = Pic (D/I)
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is exact, where A denotes the diagonal map and + denotes the differ-
ence map sending (L', L) to L' ®@p D/I @cyr L.

The following result is well known (cf., [11, page 201]).
Lemma 1.3. Let k be a field and A a k-subalgebra of a finitely

generated k-algebra D. If D is integral over A, then A is a finitely
generated k-algebra.

We now prove our main result.

Theorem 1.4. Let k be a field, R := k[X,Y] a polynomial ring over
k and f € R an irreducible polynomial. Set S := R/(f), n: R — S
the natural k-algebra surjection and ny, : My (R) — M, (S) the induced
ring homomorphism. Suppose that the following conditions hold:
(i) S* =k*.
(ii) There exists an invertible matriz P € SLa(S) whose image [P)
in SK1(S) is not zero.
(iii) If ¢ : R[U,V,Z] — R[U,V, Z] is a k-algebra automorphism such
that ¢(f) = Af for some X\ € k*, then ¢(R) = R.

Let M = (f{‘ g) € Ms(R) be such that no(M) = P. Let D = R[U, V],

A= R[U*V? + fRIU,V]CD

and
B = R[(aU + BV)?, (yU + 6V)?] + fR[U,V] C D.

Then, A and B are affine domains such that

(1) Al 2, BN,
(11) A2 =~ BRI,
(ITI1) A and B are seminormal rings.

Proof. Tt is easy to see that D is finite integral over A. Hence, A is
affine by Lemma 1.3.

We now show that B is affine. First, we show that
(1.1) R[(aU + V), (vU + 6V)] + fR[U,V] = D.
Clearly, R[(aU + BV), (WU + V)] + fR[U,V] C D.
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Let M’ (:: 'g,/) € M3(R) be such that no(M’) = P~1. Then,

M'M=(}9)+ fM" for some M"” € Ms(R). Hence,

U 1 0\ /U , U n (U
() =6 5) () e () - (7)
g [aU+ BV s (U
=M <VU+5V> - M (V)
Thus, U,V € R[(aU + BV), (WU +6V)] + fR[U,V], and (1.1) follows.

Now, note that aU+ BV and vU 40V are integral over B. Therefore,
by (1.1), D is finite integral over B, and thus, B is affine by Lemma 1.3.

(I) Suppose, if possible, that there exists a k-algebra isomorphism
® : A[Z] — B[Z]. Note that D is the integral closure of A and B in
their field of fractions. Hence, ® extends to a k-algebra automorphism
of the ring D[Z] which we also denote by ®.

By Lemma 1.1, we have ®(Cpz)|,.,) = Cp(2]|p 25 P(A[Z]) =
B[Z]. Now,
C(Z)| a1 = SPIZ] = Cpi2)15-

Hence, ®(f) = Af for some A € (D[Z])*. However, (D[Z])* = D* = k*,
and hence, A € k*. Therefore, ® is a k-algebra automorphism of the
ring D[Z] satisfying ®(f) = Af for some A € k*. Hence, ®(R) = R by
hypothesis (iii). Set

(1.2) Up:=®U), Vi:=8V) and Z, :=o(2).

Let u,v, z,uy, v1, 21 denote, respectively, the images of U, V, Z, Uy, V1, Z3
in D[Z]/(f) and a,b, ¢, d the images of «, 3,7v,6 in S. Thus, we may
make the following identifications:

W wv2] = 57 S u?, 02, 2
(f) _5[7 ) ] S , fD[Z]mA[Z] S[ o, ]
and
fm;}[rzq]g[z] = S[(au+ bv)?, (cu + dv)?, 2.

Since ®(f) = Af and ®(R) = R, ® induces a k-algebra automorphism
¢ of the ring D[Z]/(f) = Slu,v, z] such that ¢(S) = S. Moreover, ¢
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restricts to a k-algebra isomorphism (which we again denote by ¢)

an g 2 2
o 7DIZ N AlZ] = Su*, v, 2] — S[(au + bv)*, (cu + dv)<, 2]
_ Bz
fDIZ]n B[Z]
Hence, by (1.2), we have
(13) S[U127U12,z1] = S[(au + b’U)27 (cu—|— d”U)2,Z],

Therefore, the determinant of the Jacobian matrix

I((au + bv)?, (cu + dv)?, 2)
8(u127 'U12, Zl)

J = det < > €S =k (by (i)).

Now,

() ()
= 4(au + bv)(cu + dv),

as P = (25) € SLy(S). Hence, setting p1 := det (O(uy, vy, 21)/0(u, v, 2))
€ S* = k*, we have

2,2
4(au + bv)(cu + dv) = J - det(@(m,m,zﬂ)

O(u,v, 2)
(1.4) _ (w1, v1?%, 21) O(ur, v1, 21)
=/ det d(uy,v1,21)  O(u,v,z)

=4Jpuqv1.

Since (¢%) € SLa(S), we have S[(au + bv), (cu + dv)] = Slu,v].
As au + bv, cu + dv and wuy,v; are prime elements of S[u,v,z]
(= S[u1,v1, 2] = SBI) and J, u € k*, we have, by (1.4), either

(1.5) up = er(au+bv) and vy = (Juer) H(cu + dv)
or
(1.6) u; = ea(cu+dv) and vy = (Juez) (au + bv)

for some €1, €5 € k*. Therefore, by (1.5) or (1.6),

Sluy, v1, 2] = S[(au + ), (cu + dv), 2] = S[u, v, z] = Sluy, v1, 21]-
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Hence, z = vz; + g(uq,v;) for some polynomial g € S1? and v € §* =
k*. Since S[u1?,v12, 2z1] = S[(au + bv)?, (cu + dv)?, 2] by (1.3), we have
g(u1,v1) € Slur?,v1?].

Now, by (1.5) or (1.6), there exists an S-linear automorphism 6 of
the ring D[Z]/(f) = S[u,v, z] = S[uy,v1, 21] such that

O(u1) = au + bo, 0(v1) = cu + dv, 0(z1) = .

Clearly, 6 can be lifted to an R-linear automorphism © of the ring D[Z]
satisfying ©(B[Z]) = B[Z]. Set ¥ := 0% (a k-algebra automorphism
of D[Z]),

U2 L= @(Ul) = \I’(U),
(1.7) Vy:=0(V) = U(V),
ZQ .= (")(Zl) == \I/(Z)

Then, U(f) = Af, and hence, ¥ induces a k-algebra automorphism
1 = 0¢ of the ring D[Z]/(f). Let ug,ve2,22 denote the images of
Us,Va, Zy in D[Z]/(f). Then,
us = ¢¥(u) = au + bv,
(1.8) ve = 9(v) = cu + dv,
22 =1P(z) = 2.
As VU is a k-algebra automorphism of D[Z] = R[U,V, Z] = R[Uz, V2, Z5],
we have
Us =61+ a U+ 81V +~1Z 4+ higher degree terms,
Vo = 02 + axU + B2V + v9Z 4 higher degree terms,
and

Zy = 03 + azU + B3V + v3Z + higher degree terms

for some v, B;,7:,0; € R, 1 < i < 3, such that

a; B m
N =] as 62 Y2 | € GLg(R)
a3 Pz 73

By (1.8), we have
P 0
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Since det (P) =1 and det (N) € R* = k*, we have det (N) = 1. Thus,
there exists a matrix N in SLg(R) such that n3(N) = (5 9). By Suslin’s
stability theorem ([9, Theorem VI 4.5]), SK;(R) = 0, and so, [N] = [0]
in SK;(R). Hence, [P] =7([N]) = [0] in SK;(5), where 7 denotes the
group homomorphism SK; (R) — SK;(5) induced by 7. However, this
contradicts hypothesis (ii). Thus, A[Z] 2 B[Z].

(IT) We now show that AP = BE Let P, = (15 P0_1 ). Then, by
Whitehead’s lemma (cf., [9, page 44]), P; is an elementary matrix
of S. Thus, there exists an elementary matrix L € SL4(R) such
that n4(L) = P;. Let A be an R-algebra automorphism of the ring

R[U,V, Z, W], defined by

=EN<g
SRS

Recall that ny (1\04 ]\9[,) = P;. Since n4(L) = Py, we have

U U 91
v (M o\[v 9
Llz)= <0 M’) 2| g
W w 94

for some ¢1, g2, 93,94 € R[U,V, Z,W]. Now,
A(A[Z, W)
= A ((RIU*, V] + [R[U,V])[Z,W))
= A (R[U*,V?, Z, W]+ fR[U,V, Z,W])
=A(R[U, V2, Z,W]) + fA(R[U,V, Z,W))
= RIAU)?, A(V)?, A(Z), AW)] + fR[U,V, Z, W]
= R[(aU+BV )%, (ZU+0V )2, (d/Z+BW), (VZ+5'W)|+f R[U,V,Z,W]
= R[(aU + BV)*, (7U +6V)?, Z,W] + [R[U,V, Z, W]
(since no(M') = P71)
= B[Z,W].

Thus, A restricts to an isomorphism: A[Z, W] — B[Z, W].
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(ITI) It is sufficient to show that A is a seminormal ring. Let
I = fD = fDnN A. Since A C D is a finite birational extension
and I is the conductor ideal of A in D, with A* = D* = k* and
(D/I)* = (A/I)* = S* = k*, by Theorem 1.2, we have the exact
sequence

(1.9) 0 —> Pic (4) -2 Pic (D) x Pic (A/I) -5 Pic (D/I).

Since A/I = D/I = S we have Pic(A/I) = Pic(D/I). Hence, by
(1.9), we have Pic(A) = Pic(D) = (0). Similarly, Pic(Al) = 0
Hence, Pic(A) = Pic(AM), and thus, A is a seminormal ring by
[12]. O

Example 1.5. Let £k = R be the field of real numbers,
R =R[X,Y], f=X>4+Y*—-1c€R and S=R/(f).
We show that conditions (i)—(iii) of Theorem 1.4 hold. Let x and y
denote, respectively, the images of X and Y in S.
It is well known that S* = R*. This can be seen by observing that

S* 5 (S@rC)* ={\Nz+1i)' | NeC* Le)
and that \(z +iy)* € S if and only if £ = 0 and \ € R*.

Let P = (%, %) € SLy(S). By [10, Example 13.5], P is not stably
elementary.

Now, let ¢ : R[U,V,W] — R[U,V, W] be an R-algebra automorphism
such that ¢(f) = Af for some A € R*. We show that ¢(R[X,Y]) =
R[X,Y]. Let

r=degy ¢(X) and s=degy o(Y).

Then, degy; ¢(X)? = 2r and degy ¢(Y)? = 2s. Since a® + b* # 0 for
any two non-zero elements a,b € R, we have degy (¢(X)? + ¢(Y)?) =
max{2r,2s}. Now, since ¢(X)? + p(Y)? —1 = N(X2+Y2 1) and
A € R*, we have r = s = 0. Similarly, degy ¢(X) =0, degy ¢(Y) =
degy ¢(X) = 0 and degy, ¢(Y) = 0. Thus, ¢(X), ¢(Y) € RX,Y].

Now, construct A and B as defined in Theorem 1.4. Then, A and B
are seminormal affine domains such that Al = B2l byt Al 2 BAI

7
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Example 1.6. Let £ = C be the field of complex numbers,
R =C[X,Y], f=Y?-X3_XY€R and S=R/(f).

We show that conditions (i)—(iii) of Theorem 1.4 hold. Let z and y
denote, respectively, the images of X and Y in S.

Since S = C[T? — T,T° — T?] — C[T] = CY| we have S* = C*.

By [8, Section 4], SK;(S) = K»(C), and by [10, Theorem 11.10],
K2 (C) is uncountable. Hence, SK;(.S) is an uncountable group. Since
S is a one-dimensional affine variety, the natural map SLs(S) —
SK; (S) is surjective (cf., [9, Theorem III 3.7]). Hence, there exists
a matrix P € SLy(S) such that P is not stably elementary.

Now, let ¢ : R[U,V,W] — R[U,V, W] be a C-algebra automorphism
such that ¢(f) = Af for some A € C*. Let X; = ¢(X), Y1 = ¢(Y).
Then, X;,Y; € R[U,V,W].

Suppose, if possible, that X; ¢ R and Y1 ¢ R. Let K = C(X,Y)
be the field of fractions of R. Then, X;,Y; ¢ K. Since ¢(f) = Af, we
have

(1.10) Y2 - X - X1V, - Af=0.

Thus, dim(K[X;,Y1]) = 1, and the integral closure of K[X;,Y7] in
K[U,V, W] is a polynomial ring in one variable over K. However, (1.10)
is an equation of a non-rational curve which cannot have a polynomial
parameterization. This is a contradiction. Hence, either X; € R or
Y1 € R.

Suppose that X; € R. Then, from (1.10), we have Y] is integral over
C[X1, f] € R. As R is integrally closed in R[U,V, W], we have Y7 € R.
Similarly, if Y7 € R, then X; € R. Hence, both X;,Y; € R.

Now, defining A and B as in Theorem 1.4, we have A and B are
seminormal affine domains such that Al =~ B2l hut Alll 22 BAI
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