ON 2-STABLY ISOMORPHIC FOURDIMENSIONAL AFFINE DOMAINS

TERUO ASANUMA AND NEENA GUPTA

Abstract

In this paper, we exhibit examples of fourdimensional seminormal domains A and B which are finitely generated over the field \mathbb{C} (or \mathbb{R}) such that $A[X, Y] \cong$ $B[X, Y]$ but $A[X] \not \equiv B[X]$.

Introduction. For integral domains $C \subset A$, the notation $A=$ $C^{[n]}$ will mean that $A=C\left[t_{1}, \ldots, t_{n}\right]$ for elements $t_{1}, \ldots, t_{n} \in A$ algebraically independent over C.

Now, let k be a field. For $m \geq 0$, two finitely generated k-algebras A and B are said to be m-stably isomorphic if $A^{[m]} \cong_{k} B^{[m]} ; m=0$ refers to the case $A \cong_{k} B$. A finitely generated k-algebra B is said to be m-cancelative if any k-algebra A which is m-stably isomorphic to B is necessarily isomorphic to B.

The cancelation problem investigates whether a specific class of rings has the m-cancelative property. There are examples of k-algebras A and B which are 1 -stably isomorphic but not (0 -stably) isomorphic (see $[\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{6}]$). In fact, when $\operatorname{ch} k>0$ and $r \geq 3$, it has been shown that $B=k^{[r]}$ is not 1 -cancelative (see $[4,5]$). A natural question in the context of the cancelation problem is whether (or when) m-stable isomorphism implies at least 1-stable isomorphism. In particular, we have the following question.

Question 1. Let k be a field, and let A and B be finitely generated k-algebras. Suppose that $A^{[2]} \cong_{k} B^{[2]}$. Does it follow that $A^{[1]} \cong_{k} B^{[1]}$?

[^0]The first known counterexample to the above question was given by Jelonek ([7]). His rings are smooth algebras over \mathbb{C} but are of dimension at least 10. In this note, we demonstrate a new class of counterexamples of smaller dimension. Our rings A and B are of dimension 4 and, although they are not smooth, they are seminormal and their integral closures are polynomial rings.

We shall first describe (Theorem 1.4) a general method of construction and then display concrete examples over $k=\mathbb{R}$ and $k=\mathbb{C}$ (Examples 1.5 and 1.6).

1. The examples. Let R be a commutative ring. We shall denote the group of units of R by R^{*} and the set of $n \times n$ matrices over R by $\mathcal{M}_{n}(R)$.

Any matrix M in $\operatorname{SL}_{n}(R)\left(\subset \mathcal{M}_{n}(R)\right)$ can be identified with the matrix $\left(\begin{array}{cc}M & 0 \\ 0 & 1\end{array}\right) \in \mathrm{SL}_{n+1}(R)$. Hence, for any $n, \mathrm{SL}_{n}(R) \subset \mathrm{SL}_{n+1}(R)$, and $\bigcup_{n \geq 0} \mathrm{SL}_{n}(R)$ is a group denoted by $\mathrm{SL}(R) . \mathbf{S K}_{1}(R)$ denotes the abelian group $\mathrm{SL}(R) /[\mathrm{SL}(R), \mathrm{SL}(R)]$.

Let R be a subring of the integral domain D such that R and D have the same field of fractions and D is a finite R-module. Then, the conductor ideal $C_{\left.D\right|_{R}}$ of R in D is defined to be the largest ideal of D contained in R. It can be seen that

$$
\mathcal{C}_{\left.D\right|_{R}}:=\{x \in R \mid x D \subseteq R\} .
$$

The next result is easy to see.

Lemma 1.1. Let D be an integral domain and $\Gamma: D \rightarrow D$ an automorphism of rings. Let A be a subring of D such that D is a finite A-module and A has the same field of fractions as D. If $B=\Gamma(A)$, then D is a finite B-module and $\mathcal{C}_{\left.D\right|_{B}}=\Gamma\left(\mathcal{C}_{\left.D\right|_{A}}\right)$.

The next result follows from [13, Theorem 3.10].
Theorem 1.2. Let $C \subseteq D$ be a finite birational extension and I the conductor ideal of C in D. Suppose that $C^{*}=D^{*}$ and $(C / I)^{*}=$ $(D / I)^{*}$. Then, the sequence

$$
0 \longrightarrow \operatorname{Pic}(C) \xrightarrow{\Delta} \operatorname{Pic}(D) \times \operatorname{Pic}(C / I) \xrightarrow{ \pm} \operatorname{Pic}(D / I)
$$

is exact, where Δ denotes the diagonal map and \pm denotes the difference map sending $\left(L^{\prime}, L\right)$ to $L^{\prime} \otimes_{D} D / I \otimes_{C / I} L^{-1}$.

The following result is well known (cf., [11, page 201]).
Lemma 1.3. Let k be a field and A a k-subalgebra of a finitely generated k-algebra D. If D is integral over A, then A is a finitely generated k-algebra.

We now prove our main result.
Theorem 1.4. Let k be a field, $R:=k[X, Y]$ a polynomial ring over k and $f \in R$ an irreducible polynomial. Set $S:=R /(f), \eta: R \rightarrow S$ the natural k-algebra surjection and $\eta_{n}: \mathcal{M}_{n}(R) \rightarrow \mathcal{M}_{n}(S)$ the induced ring homomorphism. Suppose that the following conditions hold:
(i) $S^{*}=k^{*}$.
(ii) There exists an invertible matrix $P \in \mathrm{SL}_{2}(S)$ whose image $[P]$ in $\mathbf{S K}_{1}(S)$ is not zero.
(iii) If $\phi: R[U, V, Z] \rightarrow R[U, V, Z]$ is a k-algebra automorphism such that $\phi(f)=\lambda f$ for some $\lambda \in k^{*}$, then $\phi(R)=R$.

Let $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathcal{M}_{2}(R)$ be such that $\eta_{2}(M)=P$. Let $D=R[U, V]$,

$$
A=R\left[U^{2}, V^{2}\right]+f R[U, V] \subseteq D
$$

and

$$
B=R\left[(\alpha U+\beta V)^{2},(\gamma U+\delta V)^{2}\right]+f R[U, V] \subseteq D
$$

Then, A and B are affine domains such that
(I) $A^{[1]} \not ¥_{k} B^{[1]}$.
(II) $A^{[2]} \cong_{k} B^{[2]}$.
(III) A and B are seminormal rings.

Proof. It is easy to see that D is finite integral over A. Hence, A is affine by Lemma 1.3.

We now show that B is affine. First, we show that

$$
\begin{equation*}
R[(\alpha U+\beta V),(\gamma U+\delta V)]+f R[U, V]=D \tag{1.1}
\end{equation*}
$$

Clearly, $R[(\alpha U+\beta V),(\gamma U+\delta V)]+f R[U, V] \subseteq D$.

Let $M^{\prime}=\left(\begin{array}{cc}\alpha^{\prime} & \beta^{\prime} \\ \gamma^{\prime} & \delta^{\prime}\end{array}\right) \in \mathcal{M}_{2}(R)$ be such that $\eta_{2}\left(M^{\prime}\right)=P^{-1}$. Then, $M^{\prime} M=\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)+f M^{\prime \prime}$ for some $M^{\prime \prime} \in \mathcal{M}_{2}(R)$. Hence,

$$
\begin{aligned}
\binom{U}{V} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{U}{V}=M^{\prime} M\binom{U}{V}-f M^{\prime \prime}\binom{U}{V} \\
& =M^{\prime}\binom{\alpha U+\beta V}{\gamma U+\delta V}-f M^{\prime \prime}\binom{U}{V}
\end{aligned}
$$

Thus, $U, V \in R[(\alpha U+\beta V),(\gamma U+\delta V)]+f R[U, V]$, and (1.1) follows.
Now, note that $\alpha U+\beta V$ and $\gamma U+\delta V$ are integral over B. Therefore, by (1.1), D is finite integral over B, and thus, B is affine by Lemma 1.3.
(I) Suppose, if possible, that there exists a k-algebra isomorphism $\Phi: A[Z] \rightarrow B[Z]$. Note that D is the integral closure of A and B in their field of fractions. Hence, Φ extends to a k-algebra automorphism of the ring $D[Z]$ which we also denote by Φ.

By Lemma 1.1, we have $\Phi\left(\mathcal{C}_{\left.D[Z]\right|_{A[Z]}}\right)=\mathcal{C}_{\left.D[Z]\right|_{B[Z]}}$ as $\Phi(A[Z])=$ $B[Z]$. Now,

$$
C_{\left.D[Z]\right|_{A[Z]}}=f D[Z]=C_{\left.D[Z]\right|_{B[Z]}} .
$$

Hence, $\Phi(f)=\lambda f$ for some $\lambda \in(D[Z])^{*}$. However, $(D[Z])^{*}=D^{*}=k^{*}$, and hence, $\lambda \in k^{*}$. Therefore, Φ is a k-algebra automorphism of the ring $D[Z]$ satisfying $\Phi(f)=\lambda f$ for some $\lambda \in k^{*}$. Hence, $\Phi(R)=R$ by hypothesis (iii). Set

$$
\begin{equation*}
U_{1}:=\Phi(U), \quad V_{1}:=\Phi(V) \quad \text { and } \quad Z_{1}:=\Phi(Z) \tag{1.2}
\end{equation*}
$$

Let $u, v, z, u_{1}, v_{1}, z_{1}$ denote, respectively, the images of $U, V, Z, U_{1}, V_{1}, Z_{1}$ in $D[Z] /(f)$ and a, b, c, d the images of $\alpha, \beta, \gamma, \delta$ in S. Thus, we may make the following identifications:

$$
\frac{D[Z]}{(f)}=S[u, v, z]=S^{[3]}, \quad \frac{A[Z]}{f D[Z] \cap A[Z]}=S\left[u^{2}, v^{2}, z\right]
$$

and

$$
\frac{B[Z]}{f D[Z] \cap B[Z]}=S\left[(a u+b v)^{2},(c u+d v)^{2}, z\right]
$$

Since $\Phi(f)=\lambda f$ and $\Phi(R)=R, \Phi$ induces a k-algebra automorphism ϕ of the ring $D[Z] /(f)=S[u, v, z]$ such that $\phi(S)=S$. Moreover, ϕ
restricts to a k-algebra isomorphism (which we again denote by ϕ)

$$
\begin{aligned}
\phi: \frac{A[Z]}{f D[Z] \cap A[Z]} & =S\left[u^{2}, v^{2}, z\right] \longrightarrow S\left[(a u+b v)^{2},(c u+d v)^{2}, z\right] \\
& =\frac{B[Z]}{f D[Z] \cap B[Z]}
\end{aligned}
$$

Hence, by (1.2), we have

$$
\begin{equation*}
S\left[u_{1}^{2}, v_{1}^{2}, z_{1}\right]=S\left[(a u+b v)^{2},(c u+d v)^{2}, z\right] . \tag{1.3}
\end{equation*}
$$

Therefore, the determinant of the Jacobian matrix

$$
J:=\operatorname{det}\left(\frac{\partial\left((a u+b v)^{2},(c u+d v)^{2}, z\right)}{\partial\left(u_{1}^{2}, v_{1}^{2}, z_{1}\right)}\right) \in S^{*}=k^{*} \quad(\text { by }(\mathrm{i}))
$$

Now,

$$
\begin{aligned}
J \cdot \operatorname{det}\left(\frac{\partial\left(u_{1}^{2}, v_{1}^{2}, z_{1}\right)}{\partial(u, v, z)}\right) & =\operatorname{det}\left(\frac{\partial\left((a u+b v)^{2},(c u+d v)^{2}, z\right)}{\partial(u, v, z)}\right) \\
& =4(a u+b v)(c u+d v)
\end{aligned}
$$

as $P=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(S)$. Hence, setting $\mu:=\operatorname{det}\left(\partial\left(u_{1}, v_{1}, z_{1}\right) / \partial(u, v, z)\right)$ $\in S^{*}=k^{*}$, we have

$$
\begin{align*}
4(a u+b v)(c u+d v) & =J \cdot \operatorname{det}\left(\frac{\partial\left(u_{1}^{2}, v_{1}^{2}, z_{1}\right)}{\partial(u, v, z)}\right) \\
& =J \cdot \operatorname{det}\left(\frac{\partial\left(u_{1}^{2}, v_{1}^{2}, z_{1}\right)}{\partial\left(u_{1}, v_{1}, z_{1}\right)} \frac{\partial\left(u_{1}, v_{1}, z_{1}\right)}{\partial(u, v, z)}\right) \tag{1.4}\\
& =4 J \mu u_{1} v_{1}
\end{align*}
$$

Since $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(S)$, we have $S[(a u+b v),(c u+d v)]=S[u, v]$. As $a u+b v, c u+d v$ and u_{1}, v_{1} are prime elements of $S[u, v, z]$ $\left(=S\left[u_{1}, v_{1}, z_{1}\right]=S^{[3]}\right)$ and $J, \mu \in k^{*}$, we have, by (1.4), either

$$
\begin{equation*}
u_{1}=\epsilon_{1}(a u+b v) \quad \text { and } \quad v_{1}=\left(J \mu \epsilon_{1}\right)^{-1}(c u+d v) \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{1}=\epsilon_{2}(c u+d v) \quad \text { and } \quad v_{1}=\left(J \mu \epsilon_{2}\right)^{-1}(a u+b v) \tag{1.6}
\end{equation*}
$$

for some $\epsilon_{1}, \epsilon_{2} \in k^{*}$. Therefore, by (1.5) or (1.6),

$$
S\left[u_{1}, v_{1}, z\right]=S[(a u+b v),(c u+d v), z]=S[u, v, z]=S\left[u_{1}, v_{1}, z_{1}\right]
$$

Hence, $z=\nu z_{1}+g\left(u_{1}, v_{1}\right)$ for some polynomial $g \in S^{[2]}$ and $\nu \in S^{*}=$ k^{*}. Since $S\left[u_{1}^{2}, v_{1}^{2}, z_{1}\right]=S\left[(a u+b v)^{2},(c u+d v)^{2}, z\right]$ by (1.3), we have $g\left(u_{1}, v_{1}\right) \in S\left[u_{1}{ }^{2}, v_{1}{ }^{2}\right]$.

Now, by (1.5) or (1.6), there exists an S-linear automorphism θ of the ring $D[Z] /(f)=S[u, v, z]=S\left[u_{1}, v_{1}, z_{1}\right]$ such that

$$
\theta\left(u_{1}\right)=a u+b v, \quad \theta\left(v_{1}\right)=c u+d v, \quad \theta\left(z_{1}\right)=z
$$

Clearly, θ can be lifted to an R-linear automorphism Θ of the ring $D[Z]$ satisfying $\Theta(B[Z])=B[Z]$. Set $\Psi:=\Theta \Phi$ (a k-algebra automorphism of $D[Z]$),

$$
\begin{align*}
U_{2} & :=\Theta\left(U_{1}\right)=\Psi(U), \\
V_{2} & :=\Theta\left(V_{1}\right)=\Psi(V), \tag{1.7}\\
Z_{2} & :=\Theta\left(Z_{1}\right)=\Psi(Z) .
\end{align*}
$$

Then, $\Psi(f)=\lambda f$, and hence, Ψ induces a k-algebra automorphism $\psi=\theta \phi$ of the ring $D[Z] /(f)$. Let u_{2}, v_{2}, z_{2} denote the images of U_{2}, V_{2}, Z_{2} in $D[Z] /(f)$. Then,

$$
\begin{align*}
& u_{2}=\psi(u)=a u+b v, \\
& v_{2}=\psi(v)=c u+d v, \tag{1.8}\\
& z_{2}=\psi(z)=z
\end{align*}
$$

As Ψ is a k-algebra automorphism of $D[Z]=R[U, V, Z]=R\left[U_{2}, V_{2}, Z_{2}\right]$, we have

$$
\begin{aligned}
U_{2} & =\delta_{1}+\alpha_{1} U+\beta_{1} V+\gamma_{1} Z+\text { higher degree terms } \\
V_{2} & =\delta_{2}+\alpha_{2} U+\beta_{2} V+\gamma_{2} Z+\text { higher degree terms }
\end{aligned}
$$

and

$$
Z_{2}=\delta_{3}+\alpha_{3} U+\beta_{3} V+\gamma_{3} Z+\text { higher degree terms }
$$

for some $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in R, 1 \leq i \leq 3$, such that

$$
N:=\left(\begin{array}{ccc}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right) \in \operatorname{GL}_{3}(R)
$$

By (1.8), we have

$$
\eta_{3}(N)=\left(\begin{array}{cc}
P & 0 \\
0 & 1
\end{array}\right)
$$

Since $\operatorname{det}(P)=1$ and $\operatorname{det}(N) \in R^{*}=k^{*}$, we have $\operatorname{det}(N)=1$. Thus, there exists a matrix N in $\mathrm{SL}_{3}(R)$ such that $\eta_{3}(N)=\left(\begin{array}{cc}P & 0 \\ 0 & 1\end{array}\right)$. By Suslin's stability theorem $\left(\left[\mathbf{9}\right.\right.$, Theorem VI 4.5]), $\mathbf{S K}_{1}(R)=0$, and so, $[N]=[0]$ in $\mathbf{S K}_{1}(R)$. Hence, $[P]=\bar{\eta}([N])=[0]$ in $\mathbf{S K}_{1}(S)$, where $\bar{\eta}$ denotes the group homomorphism $\mathbf{S K}_{1}(R) \rightarrow \mathbf{S K}_{1}(S)$ induced by η. However, this contradicts hypothesis (ii). Thus, $A[Z] \nsupseteq B[Z]$.
(II) We now show that $A^{[2]} \cong B^{[2]}$. Let $P_{1}=\left(\begin{array}{cc}P & 0 \\ 0 & P^{-1}\end{array}\right)$. Then, by Whitehead's lemma (cf., [9, page 44]), P_{1} is an elementary matrix of S. Thus, there exists an elementary matrix $L \in \mathrm{SL}_{4}(R)$ such that $\eta_{4}(L)=P_{1}$. Let Λ be an R-algebra automorphism of the ring $R[U, V, Z, W]$, defined by

$$
\Lambda\left(\begin{array}{c}
U \\
V \\
Z \\
W
\end{array}\right)=L\left(\begin{array}{c}
U \\
V \\
Z \\
W
\end{array}\right)
$$

Recall that $\eta_{4}\left(\begin{array}{cc}M & 0 \\ 0 & M^{\prime}\end{array}\right)=P_{1}$. Since $\eta_{4}(L)=P_{1}$, we have

$$
L\left(\begin{array}{c}
U \\
V \\
Z \\
W
\end{array}\right)=\left(\begin{array}{cc}
M & 0 \\
0 & M^{\prime}
\end{array}\right)\left(\begin{array}{c}
U \\
V \\
Z \\
W
\end{array}\right)+f\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3} \\
g_{4}
\end{array}\right)
$$

for some $g_{1}, g_{2}, g_{3}, g_{4} \in R[U, V, Z, W]$. Now,

$$
\begin{aligned}
& \Lambda(A[Z, W]) \\
& \quad=\Lambda\left(\left(R\left[U^{2}, V^{2}\right]+f R[U, V]\right)[Z, W]\right) \\
& \quad=\Lambda\left(R\left[U^{2}, V^{2}, Z, W\right]+f R[U, V, Z, W]\right) \\
& \quad=\Lambda\left(R\left[U^{2}, V^{2}, Z, W\right]\right)+f \Lambda(R[U, V, Z, W]) \\
& \quad=R\left[\Lambda(U)^{2}, \Lambda(V)^{2}, \Lambda(Z), \Lambda(W)\right]+f R[U, V, Z, W] \\
& \quad=R\left[(\alpha U+\beta V)^{2},(\gamma U+\delta V)^{2},\left(\alpha^{\prime} Z+\beta^{\prime} W\right),\left(\gamma^{\prime} Z+\delta^{\prime} W\right)\right]+f R[U, V, Z, W] \\
& \quad=R\left[(\alpha U+\beta V)^{2},(\gamma U+\delta V)^{2}, Z, W\right]+f R[U, V, Z, W] \\
& \text { (since } \left.\eta_{2}\left(M^{\prime}\right)=P^{-1}\right) \\
& \quad=B[Z, W] .
\end{aligned}
$$

Thus, Λ restricts to an isomorphism: $A[Z, W] \rightarrow B[Z, W]$.
(III) It is sufficient to show that A is a seminormal ring. Let $I=f D=f D \cap A$. Since $A \subseteq D$ is a finite birational extension and I is the conductor ideal of A in D, with $A^{*}=D^{*}=k^{*}$ and $(D / I)^{*}=(A / I)^{*}=S^{*}=k^{*}$, by Theorem 1.2, we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow \operatorname{Pic}(A) \xrightarrow{\Delta} \operatorname{Pic}(D) \times \operatorname{Pic}(A / I) \xrightarrow{ \pm} \operatorname{Pic}(D / I) \tag{1.9}
\end{equation*}
$$

Since $A / I \cong D / I \cong S^{[2]}$, we have $\operatorname{Pic}(A / I) \cong \operatorname{Pic}(D / I)$. Hence, by (1.9), we have $\operatorname{Pic}(A) \cong \operatorname{Pic}(D)=(0)$. Similarly, $\operatorname{Pic}\left(A^{[1]}\right)=0$. Hence, $\operatorname{Pic}(A)=\operatorname{Pic}\left(A^{[1]}\right)$, and thus, A is a seminormal ring by [12].

Example 1.5. Let $k=\mathbb{R}$ be the field of real numbers,

$$
R=\mathbb{R}[X, Y], \quad f=X^{2}+Y^{2}-1 \in R \quad \text { and } \quad S=R /(f)
$$

We show that conditions (i)-(iii) of Theorem 1.4 hold. Let x and y denote, respectively, the images of X and Y in S.

It is well known that $S^{*}=\mathbb{R}^{*}$. This can be seen by observing that

$$
S^{*} \hookrightarrow\left(S \otimes_{\mathbb{R}} \mathbb{C}\right)^{*}=\left\{\lambda(x+i y)^{\ell} \mid \lambda \in \mathbb{C}^{*}, \ell \in \mathbb{Z}\right\}
$$

and that $\lambda(x+i y)^{\ell} \in S$ if and only if $\ell=0$ and $\lambda \in \mathbb{R}^{*}$.
Let $P=\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right) \in \mathrm{SL}_{2}(S)$. By [10, Example 13.5], P is not stably elementary.

Now, let $\phi: R[U, V, W] \rightarrow R[U, V, W]$ be an \mathbb{R}-algebra automorphism such that $\phi(f)=\lambda f$ for some $\lambda \in \mathbb{R}^{*}$. We show that $\phi(\mathbb{R}[X, Y])=$ $\mathbb{R}[X, Y]$. Let

$$
r=\operatorname{deg}_{U} \phi(X) \quad \text { and } \quad s=\operatorname{deg}_{U} \phi(Y)
$$

Then, $\operatorname{deg}_{U} \phi(X)^{2}=2 r$ and $\operatorname{deg}_{U} \phi(Y)^{2}=2 s$. Since $a^{2}+b^{2} \neq 0$ for any two non-zero elements $a, b \in \mathbb{R}$, we have $\operatorname{deg}_{U}\left(\phi(X)^{2}+\phi(Y)^{2}\right)=$ $\max \{2 r, 2 s\}$. Now, since $\phi(X)^{2}+\phi(Y)^{2}-1=\lambda\left(X^{2}+Y^{2}-1\right)$ and $\lambda \in \mathbb{R}^{*}$, we have $r=s=0$. Similarly, $\operatorname{deg}_{V} \phi(X)=0, \operatorname{deg}_{V} \phi(Y)=0$, $\operatorname{deg}_{W} \phi(X)=0$ and $\operatorname{deg}_{W} \phi(Y)=0$. Thus, $\phi(X), \phi(Y) \in \mathbb{R}[X, Y]$.

Now, construct A and B as defined in Theorem 1.4. Then, A and B are seminormal affine domains such that $A^{[2]} \cong B^{[2]}$ but $A^{[1]} \nsupseteq B^{[1]}$.

Example 1.6. Let $k=\mathbb{C}$ be the field of complex numbers,

$$
R=\mathbb{C}[X, Y], \quad f=Y^{2}-X^{3}-X Y \in R \quad \text { and } \quad S=R /(f)
$$

We show that conditions (i)-(iii) of Theorem 1.4 hold. Let x and y denote, respectively, the images of X and Y in S.

Since $S \cong \mathbb{C}\left[T^{2}-T, T^{3}-T^{2}\right] \hookrightarrow \mathbb{C}[T]=\mathbb{C}^{[1]}$, we have $S^{*}=\mathbb{C}^{*}$.
By [8, Section 4], $\mathbf{S K}_{1}(S) \cong \mathbf{K}_{2}(\mathbb{C})$, and by [10, Theorem 11.10], $\mathbf{K}_{2}(\mathbb{C})$ is uncountable. Hence, $\mathbf{S K}_{1}(S)$ is an uncountable group. Since S is a one-dimensional affine variety, the natural map $\mathrm{SL}_{2}(S) \rightarrow$ $\mathbf{S K}_{1}(S)$ is surjective (cf., [9, Theorem III 3.7]). Hence, there exists a matrix $P \in \mathrm{SL}_{2}(S)$ such that P is not stably elementary.

Now, let $\phi: R[U, V, W] \rightarrow R[U, V, W]$ be a \mathbb{C}-algebra automorphism such that $\phi(f)=\lambda f$ for some $\lambda \in \mathbb{C}^{*}$. Let $X_{1}=\phi(X), Y_{1}=\phi(Y)$. Then, $X_{1}, Y_{1} \in R[U, V, W]$.

Suppose, if possible, that $X_{1} \notin R$ and $Y_{1} \notin R$. Let $K=\mathbb{C}(X, Y)$ be the field of fractions of R. Then, $X_{1}, Y_{1} \notin K$. Since $\phi(f)=\lambda f$, we have

$$
\begin{equation*}
Y_{1}^{2}-X_{1}^{3}-X_{1} Y_{1}-\lambda f=0 \tag{1.10}
\end{equation*}
$$

Thus, $\operatorname{dim}\left(K\left[X_{1}, Y_{1}\right]\right)=1$, and the integral closure of $K\left[X_{1}, Y_{1}\right]$ in $K[U, V, W]$ is a polynomial ring in one variable over K. However, (1.10) is an equation of a non-rational curve which cannot have a polynomial parameterization. This is a contradiction. Hence, either $X_{1} \in R$ or $Y_{1} \in R$.

Suppose that $X_{1} \in R$. Then, from (1.10), we have Y_{1} is integral over $\mathbb{C}\left[X_{1}, f\right] \subseteq R$. As R is integrally closed in $R[U, V, W]$, we have $Y_{1} \in R$. Similarly, if $Y_{1} \in R$, then $X_{1} \in R$. Hence, both $X_{1}, Y_{1} \in R$.

Now, defining A and B as in Theorem 1.4, we have A and B are seminormal affine domains such that $A^{[2]} \cong B^{[2]}$ but $A^{[1]} \not \equiv B^{[1]}$.

Acknowledgments. The authors thank Professor Amartya K. Dutta for carefully going through the earlier draft and suggesting improvements.

REFERENCES

1. T. Asanuma, Non-invariant two dimensional affine domains, Math. J. Toyama Univ. 14 (1991), 167-175.
2. T. Asanuma, Non-linearizable algebraic k^{*}-actions on affine spaces, Invent. Math. 138 (1999), 281-306.
3. W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, 1989, preprint.
4. Neena Gupta, On the cancellation problem for the affine space \mathbb{A}^{3} in characteristic p, Invent. Math. 195 (2014), 279-288.
5. \qquad , On Zariski's cancellation problem in positive characteristic, Adv. Math. 264 (2014), 296-307.
6. M. Hochster, Non-uniqueness of the ring of coefficients in a polynomial ring, Proc. Amer. Math. Soc. 34 (1972), 81-82.
7. Z. Jelonek, On the cancellation problem, Math. Annal. 344 (2009), 769-778.
8. M. Krusemeyer, Fundamental groups, algebraic K-theory, and a problem of Abhyankar, Invent. Math. 19 (1973), 15-47.
9. T.Y. Lam, Serre's problem on projective modules, Springer-Verlag, Berlin, 1996.
10. J. Milnor, Introduction to algebraic K-theory, Ann. Math. Stud. 72, Princeton University Press, Princeton, 1971.
11. M. Nagata, A theorem on finite generation of a ring, Nagoya Math. J. 27 (1966), 193-205.
12. C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. 24 (1970), 585-595.
13. C. Weibel, The K-book: An introduction to algebraic K-theory, Grad. Stud. Math. 145 (2013).

University of Toyama, 3190 Gofuku, Toyama-shi 930-8555, Japan
Email address: tasanumathing@yahoo.co.jp
Indian Statistical Institute, Statistics and Mathematics Unit, 203 B.T. Road, Kolkata 700 108, India
Email address: neenag@isical.ac.in, rnanina@gmail.com

[^0]: 2010 AMS Mathematics subject classification. Primary 13B25, 13F20, 13F45, 14R10.

 Keywords and phrases. Cancelation problem, stable isomorphism, K-groups, seminormal domain.

 Received by the editors on July 28, 2015, and in revised form on January 12, 2016.

