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ON 2-STABLY ISOMORPHIC FOUR-
DIMENSIONAL AFFINE DOMAINS

TERUO ASANUMA AND NEENA GUPTA

ABSTRACT. In this paper, we exhibit examples of four-
dimensional seminormal domains A and B which are finitely
generated over the field C (or R) such that A[X,Y ] ∼=
B[X,Y ] but A[X] � B[X].

Introduction. For integral domains C ⊂ A, the notation A =
C [n] will mean that A = C[t1, . . . , tn] for elements t1, . . . , tn ∈ A
algebraically independent over C.

Now, let k be a field. For m ≥ 0, two finitely generated k-algebras
A and B are said to be m-stably isomorphic if A[m] ∼=k B

[m]; m = 0
refers to the case A ∼=k B. A finitely generated k-algebra B is said to
be m-cancelative if any k-algebra A which is m-stably isomorphic to B
is necessarily isomorphic to B.

The cancelation problem investigates whether a specific class of rings
has the m-cancelative property. There are examples of k-algebras A
and B which are 1-stably isomorphic but not (0-stably) isomorphic
(see [1, 2, 3, 6]). In fact, when ch k > 0 and r ≥ 3, it has been shown
that B = k[r] is not 1-cancelative (see [4, 5]). A natural question in
the context of the cancelation problem is whether (or when) m-stable
isomorphism implies at least 1-stable isomorphism. In particular, we
have the following question.

Question 1. Let k be a field, and let A and B be finitely generated
k-algebras. Suppose that A[2] ∼=k B

[2]. Does it follow that A[1] ∼=k B
[1]?

2010 AMS Mathematics subject classification. Primary 13B25, 13F20, 13F45,
14R10.

Keywords and phrases. Cancelation problem, stable isomorphism, K-groups,
seminormal domain.

Received by the editors on July 28, 2015, and in revised form on January 12,
2016.
DOI:10.1216/JCA-2018-10-2-153 Copyright c⃝2018 Rocky Mountain Mathematics Consortium

153



154 TERUO ASANUMA AND NEENA GUPTA

The first known counterexample to the above question was given by
Jelonek ([7]). His rings are smooth algebras over C but are of dimension
at least 10. In this note, we demonstrate a new class of counterexamples
of smaller dimension. Our rings A and B are of dimension 4 and,
although they are not smooth, they are seminormal and their integral
closures are polynomial rings.

We shall first describe (Theorem 1.4) a general method of construc-
tion and then display concrete examples over k = R and k = C (Ex-
amples 1.5 and 1.6).

1. The examples. Let R be a commutative ring. We shall denote
the group of units of R by R∗ and the set of n× n matrices over R by
Mn(R).

Any matrix M in SLn(R) (⊂ Mn(R)) can be identified with the
matrix (M 0

0 1 ) ∈ SLn+1(R). Hence, for any n, SLn(R) ⊂ SLn+1(R),
and

∪
n≥0 SLn(R) is a group denoted by SL(R). SK1(R) denotes the

abelian group SL(R)/[SL(R), SL(R)].

Let R be a subring of the integral domain D such that R and D
have the same field of fractions and D is a finite R-module. Then, the
conductor ideal CD|R of R in D is defined to be the largest ideal of D
contained in R. It can be seen that

CD|R := {x ∈ R | xD ⊆ R}.

The next result is easy to see.

Lemma 1.1. Let D be an integral domain and Γ : D → D an
automorphism of rings. Let A be a subring of D such that D is a finite
A-module and A has the same field of fractions as D. If B = Γ (A),
then D is a finite B-module and CD|B = Γ (CD|A).

The next result follows from [13, Theorem 3.10].

Theorem 1.2. Let C ⊆ D be a finite birational extension and I the
conductor ideal of C in D. Suppose that C∗ = D∗ and (C/I)∗ =
(D/I)∗. Then, the sequence

0 −→ Pic (C)
∆−→ Pic (D)× Pic (C/I)

±−→ Pic (D/I)
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is exact, where ∆ denotes the diagonal map and ± denotes the differ-
ence map sending (L′, L) to L′ ⊗D D/I ⊗C/I L

−1.

The following result is well known (cf., [11, page 201]).

Lemma 1.3. Let k be a field and A a k-subalgebra of a finitely
generated k-algebra D. If D is integral over A, then A is a finitely
generated k-algebra.

We now prove our main result.

Theorem 1.4. Let k be a field, R := k[X,Y ] a polynomial ring over
k and f ∈ R an irreducible polynomial. Set S := R/(f), η : R → S
the natural k-algebra surjection and ηn : Mn(R) → Mn(S) the induced
ring homomorphism. Suppose that the following conditions hold :

(i) S∗ = k∗.
(ii) There exists an invertible matrix P ∈ SL2(S) whose image [P ]

in SK1(S) is not zero.
(iii) If ϕ : R[U, V, Z] → R[U, V, Z] is a k-algebra automorphism such

that ϕ(f) = λf for some λ ∈ k∗, then ϕ(R) = R.

Let M =
(

α β
γ δ

)
∈ M2(R) be such that η2(M) = P . Let D = R[U, V ],

A = R[U2, V 2] + fR[U, V ] ⊆ D

and
B = R[(αU + βV )2, (γU + δV )2] + fR[U, V ] ⊆ D.

Then, A and B are affine domains such that

(I) A[1] �k B
[1].

(II) A[2] ∼=k B
[2].

(III) A and B are seminormal rings.

Proof. It is easy to see that D is finite integral over A. Hence, A is
affine by Lemma 1.3.

We now show that B is affine. First, we show that

(1.1) R[(αU + βV ), (γU + δV )] + fR[U, V ] = D.

Clearly, R[(αU + βV ), (γU + δV )] + fR[U, V ] ⊆ D.
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Let M ′ =
(

α′ β′

γ′ δ′

)
∈ M2(R) be such that η2(M

′) = P−1. Then,

M ′M = ( 1 0
0 1 ) + fM ′′ for some M ′′ ∈ M2(R). Hence,(
U
V

)
=

(
1 0
0 1

)(
U
V

)
=M ′M

(
U
V

)
− fM ′′

(
U
V

)
=M ′

(
αU + βV
γU + δV

)
− fM ′′

(
U
V

)
.

Thus, U, V ∈ R[(αU + βV ), (γU + δV )] + fR[U, V ], and (1.1) follows.

Now, note that αU+βV and γU+δV are integral over B. Therefore,
by (1.1), D is finite integral over B, and thus, B is affine by Lemma 1.3.

(I) Suppose, if possible, that there exists a k-algebra isomorphism
Φ : A[Z] → B[Z]. Note that D is the integral closure of A and B in
their field of fractions. Hence, Φ extends to a k-algebra automorphism
of the ring D[Z] which we also denote by Φ.

By Lemma 1.1, we have Φ(CD[Z]|A[Z]
) = CD[Z]|B[Z]

as Φ(A[Z]) =

B[Z]. Now,
CD[Z]|A[Z]

= fD[Z] = CD[Z]|B[Z]
.

Hence, Φ(f) = λf for some λ ∈ (D[Z])∗. However, (D[Z])∗ = D∗ = k∗,
and hence, λ ∈ k∗. Therefore, Φ is a k-algebra automorphism of the
ring D[Z] satisfying Φ(f) = λf for some λ ∈ k∗. Hence, Φ(R) = R by
hypothesis (iii). Set

(1.2) U1 := Φ(U), V1 := Φ(V ) and Z1 := Φ(Z).

Let u, v, z, u1, v1, z1 denote, respectively, the images of U, V, Z, U1, V1, Z1

in D[Z]/(f) and a, b, c, d the images of α, β, γ, δ in S. Thus, we may
make the following identifications:

D[Z]

(f)
= S[u, v, z] = S[3],

A[Z]

fD[Z] ∩A[Z]
= S[u2, v2, z]

and
B[Z]

fD[Z] ∩B[Z]
= S[(au+ bv)2, (cu+ dv)2, z].

Since Φ(f) = λf and Φ(R) = R, Φ induces a k-algebra automorphism
ϕ of the ring D[Z]/(f) = S[u, v, z] such that ϕ(S) = S. Moreover, ϕ
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restricts to a k-algebra isomorphism (which we again denote by ϕ)

ϕ :
A[Z]

fD[Z] ∩A[Z]
= S[u2, v2, z] −→ S[(au+ bv)2, (cu+ dv)2, z]

=
B[Z]

fD[Z] ∩B[Z]
.

Hence, by (1.2), we have

(1.3) S[u1
2, v1

2, z1] = S[(au+ bv)2, (cu+ dv)2, z].

Therefore, the determinant of the Jacobian matrix

J := det

(
∂((au+ bv)2, (cu+ dv)2, z)

∂(u12, v12, z1)

)
∈ S∗ = k∗ (by (i)).

Now,

J · det
(
∂(u1

2, v1
2, z1)

∂(u, v, z)

)
= det

(
∂((au+ bv)2, (cu+ dv)2, z)

∂(u, v, z)

)
= 4(au+ bv)(cu+ dv),

as P =
(
a b
c d

)
∈ SL2(S). Hence, setting µ := det (∂(u1, v1, z1)/∂(u, v, z))

∈ S∗ = k∗, we have

(1.4)

4(au+ bv)(cu+ dv) = J · det
(
∂(u1

2, v1
2, z1)

∂(u, v, z)

)
= J · det

(
∂(u1

2, v1
2, z1)

∂(u1, v1, z1)

∂(u1, v1, z1)

∂(u, v, z)

)
= 4Jµu1v1.

Since
(
a b
c d

)
∈ SL2(S), we have S[(au + bv), (cu + dv)] = S[u, v].

As au + bv, cu + dv and u1, v1 are prime elements of S[u, v, z]
(= S[u1, v1, z1] = S[3]) and J, µ ∈ k∗, we have, by (1.4), either

(1.5) u1 = ϵ1(au+ bv) and v1 = (Jµϵ1)
−1(cu+ dv)

or

(1.6) u1 = ϵ2(cu+ dv) and v1 = (Jµϵ2)
−1(au+ bv)

for some ϵ1, ϵ2 ∈ k∗. Therefore, by (1.5) or (1.6),

S[u1, v1, z] = S[(au+ bv), (cu+ dv), z] = S[u, v, z] = S[u1, v1, z1].
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Hence, z = νz1 + g(u1, v1) for some polynomial g ∈ S[2] and ν ∈ S∗ =
k∗. Since S[u1

2, v1
2, z1] = S[(au+ bv)2, (cu+ dv)2, z] by (1.3), we have

g(u1, v1) ∈ S[u1
2, v1

2].

Now, by (1.5) or (1.6), there exists an S-linear automorphism θ of
the ring D[Z]/(f) = S[u, v, z] = S[u1, v1, z1] such that

θ(u1) = au+ bv, θ(v1) = cu+ dv, θ(z1) = z.

Clearly, θ can be lifted to an R-linear automorphism Θ of the ring D[Z]
satisfying Θ(B[Z]) = B[Z]. Set Ψ := ΘΦ (a k-algebra automorphism
of D[Z]),

(1.7)

U2 : = Θ(U1) = Ψ(U),

V2 : = Θ(V1) = Ψ(V ),

Z2 : = Θ(Z1) = Ψ(Z).

Then, Ψ(f) = λf , and hence, Ψ induces a k-algebra automorphism
ψ = θϕ of the ring D[Z]/(f). Let u2, v2, z2 denote the images of
U2, V2, Z2 in D[Z]/(f). Then,

(1.8)

u2 = ψ(u) = au+ bv,

v2 = ψ(v) = cu+ dv,

z2 = ψ(z) = z.

As Ψ is a k-algebra automorphism ofD[Z] = R[U, V, Z] = R[U2, V2, Z2],
we have

U2 = δ1 + α1U + β1V + γ1Z + higher degree terms,

V2 = δ2 + α2U + β2V + γ2Z + higher degree terms,

and

Z2 = δ3 + α3U + β3V + γ3Z + higher degree terms

for some αi, βi, γi, δi ∈ R, 1 ≤ i ≤ 3, such that

N :=

α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

 ∈ GL3(R).

By (1.8), we have

η3(N) =

(
P 0
0 1

)
.
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Since det (P ) = 1 and det (N) ∈ R∗ = k∗, we have det (N) = 1. Thus,
there exists a matrixN in SL3(R) such that η3(N) = ( P 0

0 1 ). By Suslin’s
stability theorem ([9, Theorem VI 4.5]), SK1(R) = 0, and so, [N ] = [0]
in SK1(R). Hence, [P ] = η([N ]) = [0] in SK1(S), where η denotes the
group homomorphism SK1(R) → SK1(S) induced by η. However, this
contradicts hypothesis (ii). Thus, A[Z] � B[Z].

(II) We now show that A[2] ∼= B[2]. Let P1 =
(
P 0
0 P−1

)
. Then, by

Whitehead’s lemma (cf., [9, page 44]), P1 is an elementary matrix
of S. Thus, there exists an elementary matrix L ∈ SL4(R) such
that η4(L) = P1. Let Λ be an R-algebra automorphism of the ring
R[U, V, Z,W ], defined by

Λ


U
V
Z
W

 = L


U
V
Z
W

 .

Recall that η4
(
M 0
0 M ′

)
= P1. Since η4(L) = P1, we have

L


U
V
Z
W

 =

(
M 0
0 M ′

)
U
V
Z
W

+ f


g1
g2
g3
g4


for some g1, g2, g3, g4 ∈ R[U, V, Z,W ]. Now,

Λ(A[Z,W ])

= Λ
(
(R[U2, V 2] + fR[U, V ])[Z,W ]

)
= Λ

(
R[U2, V 2, Z,W ] + fR[U, V, Z,W ]

)
= Λ

(
R[U2, V 2, Z,W ]

)
+ fΛ (R[U, V, Z,W ])

= R[Λ(U)2,Λ(V )2,Λ(Z),Λ(W )] + fR[U, V, Z,W ]

= R[(αU+βV )2, (γU+δV )2, (α′Z+β′W ), (γ′Z+δ′W )]+fR[U,V,Z,W ]

= R[(αU + βV )2, (γU + δV )2, Z,W ] + fR[U, V, Z,W ]

(since η2(M
′) = P−1)

= B[Z,W ].

Thus, Λ restricts to an isomorphism: A[Z,W ] → B[Z,W ].
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(III) It is sufficient to show that A is a seminormal ring. Let
I = fD = fD ∩ A. Since A ⊆ D is a finite birational extension
and I is the conductor ideal of A in D, with A∗ = D∗ = k∗ and
(D/I)∗ = (A/I)∗ = S∗ = k∗, by Theorem 1.2, we have the exact
sequence

(1.9) 0 −→ Pic (A)
∆−→ Pic (D)× Pic (A/I)

±−→ Pic (D/I).

Since A/I ∼= D/I ∼= S[2], we have Pic (A/I) ∼= Pic (D/I). Hence, by
(1.9), we have Pic (A) ∼= Pic (D) = (0). Similarly, Pic (A[1]) = 0.
Hence, Pic (A) = Pic (A[1]), and thus, A is a seminormal ring by
[12]. �

Example 1.5. Let k = R be the field of real numbers,

R = R[X,Y ], f = X2 + Y 2 − 1 ∈ R and S = R/(f).

We show that conditions (i)–(iii) of Theorem 1.4 hold. Let x and y
denote, respectively, the images of X and Y in S.

It is well known that S∗ = R∗. This can be seen by observing that

S∗ ↩→ (S ⊗R C)∗ = {λ(x+ iy)ℓ | λ ∈ C∗, ℓ ∈ Z}

and that λ(x+ iy)ℓ ∈ S if and only if ℓ = 0 and λ ∈ R∗.

Let P =
( x y
−y x

)
∈ SL2(S). By [10, Example 13.5], P is not stably

elementary.

Now, let ϕ : R[U, V,W ] → R[U, V,W ] be an R-algebra automorphism
such that ϕ(f) = λf for some λ ∈ R∗. We show that ϕ(R[X,Y ]) =
R[X,Y ]. Let

r = degU ϕ(X) and s = degU ϕ(Y ).

Then, degU ϕ(X)2 = 2r and degU ϕ(Y )2 = 2s. Since a2 + b2 ̸= 0 for
any two non-zero elements a, b ∈ R, we have degU (ϕ(X)2 + ϕ(Y )2) =
max{2r, 2s}. Now, since ϕ(X)2 + ϕ(Y )2 − 1 = λ(X2 + Y 2 − 1) and
λ ∈ R∗, we have r = s = 0. Similarly, degV ϕ(X) = 0, degV ϕ(Y ) = 0,
degW ϕ(X) = 0 and degW ϕ(Y ) = 0. Thus, ϕ(X), ϕ(Y ) ∈ R[X,Y ].

Now, construct A and B as defined in Theorem 1.4. Then, A and B
are seminormal affine domains such that A[2] ∼= B[2] but A[1] � B[1].
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Example 1.6. Let k = C be the field of complex numbers,

R = C[X,Y ], f = Y 2 −X3 −XY ∈ R and S = R/(f).

We show that conditions (i)–(iii) of Theorem 1.4 hold. Let x and y
denote, respectively, the images of X and Y in S.

Since S ∼= C[T 2 − T, T 3 − T 2] ↩→ C[T ] = C[1], we have S∗ = C∗.

By [8, Section 4], SK1(S) ∼= K2(C), and by [10, Theorem 11.10],
K2(C) is uncountable. Hence, SK1(S) is an uncountable group. Since
S is a one-dimensional affine variety, the natural map SL2(S) →
SK1(S) is surjective (cf., [9, Theorem III 3.7]). Hence, there exists
a matrix P ∈ SL2(S) such that P is not stably elementary.

Now, let ϕ : R[U, V,W ] → R[U, V,W ] be a C-algebra automorphism
such that ϕ(f) = λf for some λ ∈ C∗. Let X1 = ϕ(X), Y1 = ϕ(Y ).
Then, X1, Y1 ∈ R[U, V,W ].

Suppose, if possible, that X1 /∈ R and Y1 /∈ R. Let K = C(X,Y )
be the field of fractions of R. Then, X1, Y1 /∈ K. Since ϕ(f) = λf , we
have

(1.10) Y 2
1 −X3

1 −X1Y1 − λf = 0.

Thus, dim(K[X1, Y1]) = 1, and the integral closure of K[X1, Y1] in
K[U, V,W ] is a polynomial ring in one variable overK. However, (1.10)
is an equation of a non-rational curve which cannot have a polynomial
parameterization. This is a contradiction. Hence, either X1 ∈ R or
Y1 ∈ R.

Suppose that X1 ∈ R. Then, from (1.10), we have Y1 is integral over
C[X1, f ] ⊆ R. As R is integrally closed in R[U, V,W ], we have Y1 ∈ R.
Similarly, if Y1 ∈ R, then X1 ∈ R. Hence, both X1, Y1 ∈ R.

Now, defining A and B as in Theorem 1.4, we have A and B are
seminormal affine domains such that A[2] ∼= B[2] but A[1] � B[1].
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