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ASSOCIATED PRIMES OF LOCAL COHOMOLOGY
AFTER ADJOINING INDETERMINATES.

PART 2: THE GENERAL CASE

HANNAH ROBBINS

ABSTRACT. Let A be a domain finitely generated as
an algebra over a field, k of characteristic zero, R =
A[t1, . . . , tℓ] or A[[t1, . . . , tℓ]], and I an ideal of R. If A
has a resolution of singularities, Y0, which is the blowup of A
along an ideal of depth at least 2 and is covered by a finite
number of open affines with Hj(Y0,OY0 ) of finite length over

A for j > 0, we prove that AssRHi
I(R) is finite for every

i. In particular, this holds when A is a finite-dimensional
normal domain with an isolated singularity which is a
finitely generated algebra over a field of characteristic 0.

1. Introduction. The problem of when the assassinators of local
cohomology modules are finite has been widely studied for some time.
Many mathematicians have looked at the general case where one con-
siders the local cohomology of any module, but others have restricted
their focus to the case where we only attempt to control the local co-
homology of the ring itself. In this setting, the case of regular rings is
particularly nice. If S is a regular ring of equal characteristic p > 0,
Huneke and Sharp showed in [3] that AssSH

i
I(S) is always finite. In

characteristic 0, Lyubeznik used the theory of D-modules in [4] to
show that AssSH

i
I(S) is finite for regular domains, S, which are finite

algebras over a field of characteristic 0.

My last paper [7] began exploring a way to extend these results on
the finiteness of AssSH

i
I(S) to polynomial or power series extensions

of a ring, whose resolution of singularities is covered by regular rings
of the type studied by Lyubeznik. This allowed the use of techniques
from algebraic geometry to link the good behavior of the regular rings
covering the resolution of singularities to the polynomial or power
series extensions of the base ring. In that paper, I considered base

2010 AMS Mathematics subject classification. Primary 13D45.
Keywords and phrases. Associated primes, local cohomology.
Received by the editors on March 11, 2015.

DOI:10.1216/JCA-2016-8-4-589 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

589



590 HANNAH ROBBINS

rings whose resolutions of singularities can be covered by two or three
open affines, but here we extend those ideas to the case of a base ring
whose resolution of singularities is covered by any finite number of open
affines.

The main result of this paper is Theorem 3.1. In it, we take a
Noetherian domain which is a finite algebra over a field of characteristic
zero as our base ring, A. We form R by adjoining finitely many variables
to A, either as polynomials or power series. If A has a blowup, Y0,
along an ideal of depth at least 2 which is covered by finitely many
affine patches so that all higher cohomology of its structure sheaf OY0

has finite length over A, then Theorem 3.1 shows that AssRH
i
I(R) is

always finite.

2. New material. We start by establishing some basic notation.
Let k be a field of characteristic 0. Let A be a Noetherian domain
finitely generated as a k-algebra, which has a resolution of singularities,
Y0, that is the blowup of A along an ideal of depth at least 2 and has
an open cover by affine patches U1, . . . , Um so that Hj(Y0,OY0) has
finite length over A for all j > 0. We will let Sp be the regular ring
corresponding to Up.

Let R = A[t1, . . . , tℓ] or A[[t1, . . . , tℓ]], and let I be any ideal of R.
Note that our proofs will be done in the polynomial case, but the same
proofs work for power series.

Our first step in controlling the assassinators of the local cohomology
modules of R with respect to I is to create two collections of double
complexes.

Take generators of I so that I = (f1, . . . , fn) ⊂ R. Let A••
0 be the

double complex formed by tensoring the complex used to compute the
sheaf cohomology of OY ,

0 −→ ⊕Sp −→ ⊕Spq −→ · · · −→ S1···m −→ 0,

with the complex used to compute local cohomology of R with respect
to I,

0 −→ R −→ ⊕Rfi −→ ⊕Rfifj −→ · · · −→ Rf1···fn −→ 0.

Thus, A••
0 is the complex given below, with the 0th column on the left

and the (m− 1)st column on the right.
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We filter this complex by subcomplexes A••
0 ⟨k⟩, which are simply

A••
0 with the first k rows replaced by zeros. Let E0 be the associated

graded complex with respect to this filtration, so that E1 is the total
complex of A••

1 where Aij
1 =

⊕
Hj(Y,OY )fk1

···fki
, the horizontal maps

are 0, and the vertical maps are induced by the vertical maps of A••
0 .

Here, d1 : Aij
1 → Ai+1,j

1 , so we are simply taking cohomology along
each column. This means E2 is the total complex of A••

2 , where

Aij
2 = Hi

I(H
j(Y,OY )).

We can continue this process to create a set of double complexes,

A••
1 , A••

2 , . . . , A••
k , . . . , A••

m ,

where the differential at stage k is dk : Aij
k → A

i+k,j−(k−1)
k .

Lemma 2.1. Aij
k is holonomic for all k ≥ 2 and all j > 0.

Proof. (By induction on k.) Our base case is k = 2, so we are looking

at Aij
2 = Hi

I(H
j(Y,OY )), where j > 0.

To show this module is holonomic, we use D-module methods. Let
D = k[t1, . . . , tℓ, ∂1, . . . , ∂ℓ], where ∂i is differentiation with respect to
ti. We can extend the action of k[t1, . . . , tℓ] on R to an action of D by
setting ∂i(a) = 0 for all a ∈ A.
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As each Sp is generated over R by finitely many fractions of elements
fromR, we can define an action ofD on them via the quotient rule. This
D action extends to all localizations and is compatible with localization
maps, making every module in A••

0 a D-module and all its maps D-
module maps. In fact, all the modules and maps in every A••

k will have
a D-module structure.

Because Hj(Y0,OY0) has finite length over A for j > 0, as a
module over k it is a finite dimensional k-vector space. This means
Hj(Y,OY ) ∼= Hj(Y0,OY0) ⊗k k[t1, . . . , tm] is just a direct sum of
copies of k[t1, . . . , tm], which is holonomic by [4, Property 2.2 (a) and

Remark 2.9]. Thus, whenever j > 0, Aij
2 = Hi

I(H
j(Y,OY )) is the local

cohomology of a holonomic D-module and therefore is also holonomic
by [4, Property 2.2 (d)].

Now assume that Aij
k is holonomic for every j > 0.

We know Aij
k+1 is the cohomology of the map dk at the ijth spot.

Since dk maps up k rows and left k − 1 columns, we have

Aij
k+1 =

ker(dk : Aij
k → A

i+k,j−(k−1)
k )

dk(A
i−k,j+(k−1)
k )

.

By our induction hypothesis, Aij
k is holonomic. Since the kernel of

dk in the numerator is a D-submodule of Aij
k , this means it is also

holonomic by [4, Property 2.2 (c)].

Similarly, since j + (k − 1) > 0, we have A
i−k,j+(k−1)
k holonomic by

our induction hypothesis. Since dk is a D-module map, the image in
the denominator is holonomic by [4, Property 2.2 (c)].

Therefore, Aij
k+1 is a quotient of holonomic of D-modules and hence

is holonomic by [4, Property 2.2 (c)]. �

Lemma 2.2. If k ≥ 3 and AssRA
i0
k is finite, then AssRA

i0
k−1 is also

finite.

Proof. We know Ai0
k =

Ai0
k−1

dk−1(A
i−(k−1),k−2
k−1 )

. Since k ≥ 3, we have

A
i−(k−1),k−2
k−1 holonomic by Lemma 2.1. This means that its image

under dk−1 is also holonomic, so AssRd
k−1(A

i−(k−1),k−2
k−1 ) is finite.
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Since AssRA
i0
k is finite, we see Ai0

k−1 has a finite assassinator after
a quotient by a module which also has a finite assassinator. Thus,
AssRA

i0
k−1 is finite as claimed. �

We can also filter our original double complex A••
0 by columns

instead of rows. We will call the double complexes from this new
filtration B••

k s to avoid confusion. Here, B••
0 = A••

0 , and B••
0 ⟨k⟩ is

just B••
0 with the first k columns replaced by zeros. Similar to our

filtration by rows, let E0 be the associated graded complex with respect
to this new filtration. This makes E1 the total complex of B••

1 where

Bi0
1 = Hi

I(⊕Sk), B
i1
1 = Hi

I(⊕Skℓ) and so on up to Bi,m−1
1 = Hi

I(S1···m).
All vertical maps are 0, and the horizontal maps are induced by the
corresponding maps in B••

0 .

Here, d1 : Epq
1 → Ep,q+1

1 , so, to get E2, we are taking cohomology
along each row. The ith row is the Čech complex which computes
cohomology of the sheaf Hi

I(OY ) with respect to the cover of Y by

U1, . . . , Um. Thus, E2 is the total complex of B••
2 , where Bij

2 =

Hj(Y,Hi
I(OY )) and the differential is d2 : Bij

2 → Bi−1,j+2
2 .

As with filtration by rows, we can continue this to create a set of
double complexes

B••
1 , B••

2 , . . . , B••
k , . . . , B••

m−1,

where our differential is dk : Bij
k → B

i−(k−1),j+k
k .

Lemma 2.3. AssRB
i0
k is finite for all k ≥ 2.

Proof. (By induction on k.) Our base case is k = 2, where Bi0
2 =

H0(Y,Hi
I(OY )).

We know H0(Y,Hi
I(OY )) ⊆ Hi

I(S1)⊕· · ·⊕Hi
I(Sm), where the Sp are

all regular. This means AssSpH
i
I(Sp) is finite for 1 ≤ p ≤ m. Since the

associated primes of Hi
I(Sp) over R will be restrictions of the associated

primes over Sp, we conclude that AssRB
i0
2 is finite.

Now assume that AssRB
i0
k is finite.

We know that Bi0
k+1 is the cohomology of the map dk, which maps

down k − 1 rows and right k columns, at the i0th spot. The image of
dk is 0 at this spot, so we have

Bi0
k+1 = ker(dk : Bi0

k −→ B
i−(k−1),k
k ) ⊆ Bi0

k .
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Since AssRB
i0
k is finite by our induction hypothesis, this means

AssRB
i0
k+1 is finite as well, and we are done. �

3. Main result. Our main theorem shows that the local cohomol-
ogy of our polynomial or power series ring R with respect to any ideal
I ⊆ R has only finitely many associated primes. For ease of reference,
all our assumptions will be restated in the statement of Theorem 3.1.

We will act in the proof as if the number of affine patches covering
the resolution of singularities Y0 is three or more. For the case of two
affine patches, see [7, Theorem 2].

Theorem 3.1. Let A be a domain, finitely generated as an algebra over
a field, k of characteristic 0, and let R = A[t1, . . . , tℓ] or A[[t1, . . . , tℓ]].
If A has a resolution of singularities, Y0, which is the blowup of A
along an ideal of depth at least 2 and has an open affine cover by
U1, . . . , Um, where Hj(Y0,OY0) has finite length over A for all j > 0,
then AssRH

i
I(R) is finite for any i and any ideal I ⊂ R.

Proof. Consider our double complexes A••
k . From [7, Lemma 1], we

get H0(Y,OY ) ∼= R. This means Ai0
2 = Hi

I(H
0(Y,OY )) ∼= Hi

I(R), so
we are really just interested in controlling the associated primes of Ai0

2

for every i.

To do this, let us consider the last double complex in this sequence:

A••
m . Our differential here is dm : Aij

m → A
i+m,j−(m−1)
m . There are

only m nonzero columns, so this map is only nontrivial if j = m − 1,
i.e., dm : Ai,m−1

m → Ai+m,0
m . This means that our associated graded

complex E••
m+1 has

Ei0
m+1 =

Ai0
m

dm(Ai−m,m−1
m )

,

Eij
m+1 = Aij

m for all 1 ≤ j ≤ m− 2,

and

Ei,m−1
m+1 = ker

(
dm : Ai,m−1

m −→ Ai+m,0
m

)
.

Since we have dr ≡ 0 for all r ≥ m+ 1, meaning that Em+1 = E∞,
we get an exact sequence for every i,
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0 −→ Ei−m,m−1
∞ −→ Ai−m,m−1

m −→ Ai0
m −→ Ei0

∞ −→ 0,

where the middle map is dm.

Letting T • denote the total complex of E∞, then T i = Ei0
∞⊕Ei−1,1

∞ ⊕
· · · ⊕ E

i−(m−1),m−1
∞ , gives us an exact sequence

T i−1 −→ Ai−m,m−1
m −→ Ai0

m −→ T i,

where the first map is a projection onto Ei−m,m−1
∞ , the middle map is

dm and the last map comes from the projection of Ai0
m onto Ei0

∞ ⊆ T i.

We can therefore think of Ai0
m as the center of the short exact

sequence

0 −→ dm
(
Ai−m,m−1

m

)
−→ Ai0

m −→ im
(
Ai0

m

)
−→ 0,

where im(Ai0
m) is the image of Ai0

m inside T i.

Sincem > 3, and hencem−1 > 0, Lemma 2.1 implies that Ai−m,m−1
m

is holonomic. This means that its image under the D-module map
dm is also holonomic, and hence, dm(Ai−m,m−1

m ) has finitely many
associated primes. Thus, to show AssRA

i0
m is finite, we need only control

AssR im(Ai0
m).

To do this, we look at the B••
k s. The last nonzero such complex

is B••
m−1, where our differential is dm−1 : Bij

m−1 → B
i−(m−2),j+(m−1)
m−1 .

Since there are only m nonzero columns, the differential is the zero map

except for dm−1 : Bi0
m−1 → B

i−(m−2),m−1
m−1 . This means that Em is the

total complex of B••
m , where

Bi0
m = ker(dm−1 : Bi0

m−1 → B
i−(m−2),m−1
m−1 ),

Bij
m = Bij

m−1 for all 1 ≤ j ≤ m− 2,

and

Bi,m−1
m =

Bi,m−1
m−1

dm−1(B
i+(m−2),0
m−1 )

.

Because dm ≡ 0, we have E∞ = Em. For each i, this gives us the
short exact sequence
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0 −→ Ei0
∞ −→ Bi0

m−1 −→ B
i−(m−2),m−1
m−1 −→ Ei−(m−2),m−1

∞ −→ 0,

where the middle map is dm−1.

Again, letting T • be the total complex of E∞, we have

T i = Ei0
∞ ⊕ Ei−1,1

∞ ⊕ · · · ⊕ Ei−(m−1),m−1
∞ .

This means that T i maps onto Ei0
∞ = Bi0

m via the short exact sequence

0 −→ Bi−1,1
m ⊕ · · · ⊕Bi−(m−1),m−1

m −→ T i −→ Bi0
m −→ 0.

Since Ai0
m maps to T i, its image in T i also maps to Bi0

m, and the
kernel of this mapping is the intersection of the images of im(Ai0

m) and

Bi−1,1
m ⊕ · · · ⊕B

i−(m−1),m−1
m inside T i.

Lemma 3.2. The images of Ai0
m and Bi−1,1

m ⊕· · ·⊕B
i−(m−1),m−1
m inside

T i have a trivial intersection.

Proof. Elements of T i are equivalence classes of m-tuples (z0, . . . ,

zm−1) in Ai0
0 ⊕ · · · ⊕A

i−(m−1),m−1
0 , where z0 7→ 0 ∈ Ai+1,0

0 and im(zk)

= im(zk+1) ∈ Ai−k,k+1
0 for all 0 ≤ k ≤ m− 2.

The module Ai0
m comes from our filtration by rows, so its elements

can be thought of as equivalence classes of elements z ∈ Ai0
0 for which

z 7→ 0 ∈ Ai1
0 and z 7→ 0 ∈ Ai+1,0

0 . Therefore, elements of Ai0
m map to

T i by [z] 7→ [(z, 0, . . . , 0)].

Turning our attention to B••
m , the piece Bi−k,k

m for each 1 ≤ k ≤
m− 2, comes from the filtration by columns. This means it consists of

equivalence classes of elements wk ∈ Bi−k,k
0 , where

wk 7−→ 0 ∈ Bi−k+1,k
0

and

wk 7−→ im(Bi−k−1,k+1
0 ) ⊆ Bi−k,k+1

0 ,

so we have an element wk+1 ∈ Bi−k−1,k+1
0 with im(wk) = im(wk+1) ∈

Bi−k,k+1
0 . Thus, the map Bi−k,k

0 → T i is just
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[wk] 7−→ [(0, . . . , 0, wk, wk+1, 0, . . . , 0)],

where wk and wk+1 appear in the kth and k + 1th spots, respectively.

Our last module, B
i−(m−1),m−1
m also comes from the filtration by

columns, so its elements are equivalence classes of elements wm−1 ∈
B

i−(m−1),m−1
0 , where

wm−1 7−→ 0 ∈ B
i−(m−1)+1,m−1
0 .

This means that our map B
i−(m−1),m−1
m → T i sends

[wm−1] 7−→ [(0, . . . , 0, wm−1)].

Since im(Ai0
m) has entries only in the 0th component, while the

images of the Bi−k,k
m s have entries only in the first through (m − 1)st

components, it is clear that the images of Ai0
m and Bi−1,1

m ⊕ · · · ⊕
B

i−(m−1),m−1
m have a trivial intersection. �

Lemma 3.2 tells us that im(Ai0
m) ⊆ T i is a submodule of im(T i) ⊆

Bi0
m. Since, by Lemma 2.3, we know AssRB

i0
m−1 is finite, this means

that AssR im(Ai0
m) is also finite. Therefore, AssRA

i0
m is finite as well.

Now that we know AssRA
i0
m is finite, we can repeatedly apply

Lemma 2.2 to show that AssRA
i0
2 is finite. Since Ai0

2
∼= Hi

I(R), this
means AssRH

i
I(R) is finite for all i as claimed. �

The following corollary is a special case of the previous theorem
whose assumptions are perhaps more familiar.

Corollary 3.3. Let A be a finite-dimensional normal domain with an
isolated singularity, where A is finitely generated as an algebra over
a field of characteristic 0. If R = A[t1, . . . , tℓ] or A[[t1, . . . , tℓ]], then
AssRH

i
I(R) is finite for any i and any ideal I of R.

Proof. Let m ⊂ A be the maximal ideal which defines the non-
singular locus of A. Since dim(A) = m is finite, we know m is generated,
up to radical, by at most m elements. Let Y0 be the blow-up of A
along m. It is clear that Y0 is covered by at most m affine patches
corresponding to the generators of m, and also that depthm R ≥ 2
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since ht(m) ≥ 2 and R is normal. Finally, we know that the higher
cohomology of the structure sheaf of A’s desingularization will consist
of finitely generated A-modules supported only on the singular locus
of A. Since Sing (A) = {m}, this means all higher cohomology of Y0

is killed by some power of m, and hence is of finite length over A.
Theorem 3.1 now implies that AssRH

i
I(R) is finite. �

The only part of the proof of Theorem 3.1 which uses the fact that we
are in characteristic 0 is the D-module theory needed for Lemma 2.2.
(We also use D-module theory in the proof of Lemma 2.1, but this
lemma is used only in the proof of Lemma 2.2, not in the proof of
Theorem 3.1.) In equal characteristic p > 0, Lyubeznik and others
have successfully used the theory of F -modules to control the local
cohomology of regular local rings in a way analogous to the use of D-
modules in characteristic 0, see [5]. Since many results about local
cohomology which are proved in characteristic 0 using D-modules can
be proved in equal characteristic p > 0 using F -modules, it would
be interesting to see if Lemma 2.2 can be proven using F -module
theory. If it were possible, this would extend Theorem 3.1 to the equal
characteristic p case.
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