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SPERNER PROPERTY AND
FINITE-DIMENSIONAL GORENSTEIN ALGEBRAS
ASSOCIATED TO MATROIDS

TOSHIAKI MAENO AND YASUHIDE NUMATA

ABSTRACT. We prove the Lefschetz property for a cer-
tain class of finite-dimensional Gorenstein algebras associ-
ated to matroids. Our result implies the Sperner property
of the vector space lattice. More generally, it is shown that
the modular geometric lattice has the Sperner property. We
also discuss the Grobner fan of the defining ideal of our
Gorenstein algebra.

Introduction. The Lefschetz property for Artinian Gorenstein rings
is a ring-theoretic abstraction of the Hard Lefschetz theorem for com-
pact Kahler manifolds. Stanley developed the ideas of applications
of the Lefschetz property to combinatorial problems. For example, he
showed in [18] the Sperner property of the Bruhat ordering on the Weyl
groups based on the Hard Lefschetz theorem for the flag varieties. One
of the main topics of the present paper is an application of the Lefschetz
property for a certain kind of finite-dimensional Gorenstein algebras to
the Sperner property of the vector space lattice V(g,n) consisting of
the linear subspaces of the vector space Fy. A finite ranked poset
P = ;5o P; with the level sets P; is said to have the Sperner property
if the maximal cardinality of antichains of P is equal to max;(#PF;).

For a given ranked poset P = |J, P, let V; be the vector space

spanned by the elements of P;. The Sperner property for P can be
shown by constructing a sequence (fo, f1, f2,...) of linear maps f; :

V; — Viq1 satisfying a certain condition. Let A®) = (a&ig)uepi,vepm
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be the matrix representing f;, i.e.,

filu) = Z aWv, weP,.

vEP; 11

If every matrix AW gatisfies the condition aSj;} # 0= u <wv and is of
full rank, then P has the Sperner property (see, e.g., [10] for details).

The Sperner property of the vector space lattice V(g,n) can be
deduced from the result on the rank of its incidence matrices due to
Kantor [11]. We will give another proof of the Sperner property of
V(g,n) by the construction of a finite-dimensional Gorenstein algebra
A (q,n) associated to the matroid M (g, n) on the finite projective space
P"~1(F,) and by showing that A M(q,n) has the Lefschetz property.

Our construction can be done for general matroids. For a matroid
M and its bases B, we introduce a polynomial ®; := > 5 g xp. The
Gorenstein algebra Aj; will be defined to be the quotient algebra of
the ring of the differential polynomials by the annihilator Ann ®,; of
® . We will generalize the results for the matroid M(q,n) to the case
of matroids corresponding to modular geometric lattices. The Sperner
property of the modular geometric lattice has been proved by Baker [1].
Our argument based on the Gorenstein algebra A); leads us to another
proof of Baker’s result.

For a general polynomial F', though F' has all the information on the
annihilator Ann F' in principle, the combinatorial structure of Ann F' is
quite delicate in general, so it is difficult to describe directly from F.
It is remarkable that in our case the Grobner fan G(Ann ® s, ) of
the annihilator of ®,;(, ) is a refinement of that of the principal ideal
generated by ®pz(4 n), Which is also a consequence of our main theorem.
As discussed in [2], the Grobner fan of an ideal is often difficult to
compute. We will see that G(Ann ®;(,,)) can be recovered from the
tropical hypersurfaces of certain polynomials defined by the bases of
the linear subspaces of P"~1(F,).

The main results of this paper have been given in [12, 13].

1. Finite-dimensional Gorenstein algebras and Lefschetz
property. In this section, we summarize some fundamental results
on the structure of finite-dimensional Gorenstein algebras and on the
Lefschetz property, which will be used in the subsequent sections.
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Definition 1.1. Let A = @5 A4, Ap # 0, be a graded Artinian
algebra. We say that A has the strong Lefschetz property (in the narrow
sense) if there exists an element L € A; such that the multiplication
map

XLD72Z‘ : Az — ADfi

is bijective for i = 0,...,[D/2].

In the rest of this paper, we consider the Gorenstein algebras that
are finite-dimensional over a field k£ of characteristic zero.

Definition 1.2. (see [16, Chapter 5, 6.5]). A finite-dimensional
graded k-algebra A = @dD:OAd is called the Poincaré duality algebra
if dimg Ap = 1 and the bilinear pairing

AdXAD_d—>ADg]€

is non-degenerate for d =0,...,[D/2].

The following is a well-known fact (see, e.g., [6, 10, 14]).

Proposition 1.3. A graded Artinian k-algebra A is a Poincaré duality
algebra if and only if A is Gorenstein.

Corollary 1.4. The tensor product of two graded Artinian Gorenstein
k-algebras is again Gorenstein.

Let P = k[x1,...,z,] and @ = k[X4,...,X,] be polynomial rings
over k. We may regard P as a (-module via the identification
X; =0/0x;,i=1,...,n. For apolynomial F(x) € P, denote by Ann F’
the ideal of @ generated by the differential polynomials annihilating F,
ie.,

A F = {p(X) € Q | p(X)F(x) = 0}.
The following is immediate from the theory of inverse systems (see

[3, 5, 7]).

Proposition 1.5. Let I be an ideal of Q = k[X1,..., X, and A=Q/I
the quotient algebra. Denote by m the maximal ideal (X1,...,X,) of
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Q. Then /I =m and the k-algebra A is Gorenstein if and only if there
exists a polynomial F € R = k[z1,...,x,] such that I = Anng F.

Example 1.6. The coinvariant algebra Ry, of the finite Coxeter group
W is an example of the finite-dimensional Gorenstein algebra with the
strong Lefschetz property. The coinvariant algebra Ry is defined to
be a quotient of the ring of polynomial functions on the reflection
representation V' of W by the ideal generated by the fundamental
W-invariants. When W is crystallographic (i.e., Weyl group), the
Lefschetz property of Ry is a consequence of the Hard Lefschetz
theorem for the corresponding flag variety G/B. Stanley [18] has
shown the Sperner property of the strong Bruhat ordering on W from
the Lefschetz property of Ry (except for type Hy). The Lefschetz
property of Ry of type Hy has been confirmed in [15]. Since Ry is
Gorenstein, it has a presentation as in Proposition 1.5. In fact, Ry is
isomorphic to the algebra Sym V*/ Ann F', where F' is the product of
the positive roots.

Definition 1.7. Let G be a polynomial in k[x1, ..., x,]. When a family
By = {al(-d)}i of homogeneous polynomials of degree d > 0 is given, we
call the polynomial

det ((a§d>(X)a§d> (X)G(z))#Be ) € klzy, ..., 2]

3,7=1

the dth Hessian of G with respect to By, and denote it by Hessgz G.

We denote the dth Hessian simply by Hess'¥ G if the choice of By is
clear.

When d = 1 and a§-1)(X) = X,, j = 1,...,n, the first Hessian

Hess™") G coincides with the usual Hessian:

2
Hess') G = Hess G := det rG .
8%8:@ ij

Let a finite-dimensional graded Gorenstein algebra A = &4A4,4 have
the presentation A = @@/ Anng F. The following gives a criterion for
an element L € A; to be a Lefschetz element.
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Proposition 1.8. ([21, Theorem 4]). Fiz an arbitrary k-linear basis
By of Aq ford=1,...,[D/2]. An element L = a1 X1 + -+ -+ ap,X, €
Ay is a strong Lefschetz element of A = Q/Anng F if and only if
F(ay,...,a,) # 0 and

(Hessgli F)(a1,...,a,) #0
ford=1,...,[D/2].

Corollary 1.9. If one of the Hessians Hessgi F,d=1,...,[D/2],
is identically zero, then A = Q/Anng F does not have the strong
Lefschetz property.

2. Matroids.

Definition 2.1. A pair (E,F) of a finite set E and F C 2% is called
a matroid if it satisfies the following axioms (M1), (M2) and (M3).

(M1) 0 e F.

(M2) If X e FandY C X, thenY € F.

(M3) If X,)Y € F and #X > #Y, then there exists an element
x € X \Y such that Y U{z} € F. Here, F is called the system
of independent sets.

Definition 2.2. Let M = (E, F) be a matroid.

(1) A maximal element B € F is called a basis of M. We denote by
B = B(M) C F the set of bases of M.

(2) For a subset S C E, define r(S) := max{#F | F € F,F C S}.
The map r : 2F — Z is called the rank function of M.

(3) For a subset S C E, define the closure o(S) of S by

a(S):={y e E[r(SU{y}) =r(5)}
We define an equivalence relation ~ on 27 by
S~T < o(S)=0(T).
A subset S of E is called a flat of M if S = o(S).

Example 2.3. The projective space P := P"~!(F,) over a finite field
F, has the structure of a matroid by the usual linear independence.



554 T. MAENO AND Y. NUMATA

More precisely, if we define the system of independence set F by
F :={F € 2% | F is linearly independent over F,},

then (P, F) is a matroid. We denote it by M(¢,n). In this case, the
closure o(S5) of a subset S € P coincides with the linear subspace (S)
of P spanned by S.

Lemma 2.4. Let S,T € F. Then we have

ST {UecF|UNS=0,UUS € F}
={UeF|UNT=0,UUT e F}.

Proof. Let S,U be independent sets. If UNS =0 and SUU € F,
then r(SU{y}) =7(S)+1 for all y € U, and we have UNo(S) = 0. If
UNS =0 and SUU ¢ F, then there exists an element y € U such that
r(SU{y}) =r(S). So we have U Na(S) # 0. Hence, o(S) determines
theset {U € F|UNS=0,UUS € F}, and vice versa. O

Definition 2.5. For a given matroid M = (E, F), the matroid polytope
Py € RE is defined by the following system of inequalities:

2e>0 (e€E), Y z <r(4) (Ae2”).
ecA

For each independent set F' € F, we define the incidence vector
Tr = (Vre)eer € RY as follows:

1 ifeeF,
VFe ‘= .
’ 0 otherwise.

Proposition 2.6. (Edmonds [4]). The matroid polytope Py coincides
with the convex hull of the union of {6} and the set of the incidence
vectors of F:

Py = conv ({0} U {0 | F € F}).

Let Ajps be the face of Py defined by the equation ), x. = 7(E),
which is also obtained as the convex hull of the incidence vectors
corresponding to the bases of M.
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Example 2.7. Let M be a matroid defined by the following vectors.

V1 | V2 | V3 | Vg | Us
170(011/0
0O|j1]0|1]1
00| 1]0]1

Then the basis of M is B ={{1,2,3},{1,2,5},{1,3,4},{1, 3,5}, {1,4, 5},
{2,3,4},42,4,5},{3,4,5}}. The polytope Ay is the convex hull of the
following points in R5:

(17 ]'7 ]" 07 0)7 (17 ]" 0, 07 1)7 (17 07 17 170)7 (1707 ]'7 0’ 1)7

(1707 07 17 1)7 (07 17 1’ 170)7 (0’ 1707 ]‘7 1)7 (07 07 17 17 1)'

3. Gorenstein algebras associated to matroids. For a matroid
M = (E,F), we define a polynomial ®,, € k[z. | e € E] by

Dy = E zRB,
BeB

where rp := [[,c 5 Z5. Note that the Newton polytope of ® s coincides
with Ay in RE. Let Q = Qu = k[0/0x, | e € E] denote the ring of
differential polynomials. For a subset S C E, we put x5 := [[.cq Te
and 0% := []..4(0/0z.). In the subsequent part of this paper, we
discuss the structure of the Gorenstein ring Aj := Q/ Anng @ .

Proposition 3.1. The ideal Ann ®,; contains
Ay = {2%lec E}U{zs5| S ¢ F}
U {.CEA — T A | A,A/ eEF, A~ A/}

Proof. Since ®,; is square-free and does not contain the monomials
of form zg, S ¢ F, the ideal Ann®); contains {z? | ¢ € E}
and {zg | S ¢ F}. If AJ/A" € F are equivalent, then we have
04®,; = 04 @, from Lemma 2.4. O

We denote by Jy; C @ the ideal generated by the set Ap;. Let
M = (E,F) be a matroid, and F; C F for i = 1,...,7(E) the set of
independent sets of cardinality i, i.e.,

]'—i::{FGJ:|#F:’L'}.
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Let Q:=2F/ ~ F;:= F;/ ~ and m; := #F;. We can identify Q with
the set of the flats of M. Under this identification, we define the subset
Q),1=1,...,r(E), of Q by

Q) == {S €27 | S = o(5),r(S) = I}

For an equivalence class 7 € €2, consider a polynomial f. given by

S o

FeFnr
Proposition 3.2. We have
Jy = ﬂ Ann f;.
TEQ

Proof. 1t is easy to see that Ajp; is contained in N,cq Ann f,. It is
enough to show that a polynomial p € N.cq Ann f, of form

pZE E apxTp, ap €k,
TeEQ FeEFNT

is a linear combination of polynomials of Ay;. Put p, := ZFE}-OT aAFTEp
and consider the polynomial
>

TEQ
pr &AM

Choose 19 € Q with p, # 0 of minimum rank. Then

p(a)fn) :p'ro fTO == Z ap = 0.

FeFNnty

Let FN7={F,...,Fs}. Then we have

Pr =ap (xFl - sz) + (a’Fl + aF2)(xF2 - sz) +ee

+(ap, +- - +ap,_,)(TF_, —TF,) O

Proposition 3.3. The subset Ay of Q is a universal Grébner basis of
I

The proof is based on Buchberger’s criterion.
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Proof. Fix a monomial ordering < on the polynomial ring Q. For
non-zero monic polynomials f, g € @, the S-polynomial S(f, g) is given
as follows:

_ TI'(fg9), I(f9)
D= )

I'(f,9) == L. C.M(in<(f), in<(9))-

Let Ay i={za—z4 | A A € F,A~ A’} and Ay := {22 | e € E} and
Az :={xg| S ¢ F}. We will show that the S-polynomials S(f,g) are
reduced to zero by the division algorithm with respect to Ay \ {f, g}
for cases:

(l) f,g S Al, (11) f S Al, g < AQ, (lll) f S Al, g < Ag, (IV) f,g e AQUAg.

Case (i). Take polynomials f:=xz4 — x4 and g :=2xp —zp € Ay
with 24 > 24 and 25 > zp. If AN B = 0, it is easy to see that
S(f,g) is reduced to zero. Assume that AN B # 0. Let C := AN B,
A=A\C and B = B\ C. Then we have S(f,g) = TATp — TRT 4
Note that we have

r(A'UB)=r(AUB)=r(AUC

r(BUA)=r(BUA)=r(AUC

)

so r(A'UB) = r(B' U A).

(a) If A'N B # 0, then x4z € Ay. In this case, we have
() 7(AUB') = r(A'UB) < r(A") +1(B) = #A +#B = # A+ #B/,
which means that AN B’ # () or AU B’ ¢ F. Hence, we also have
xR € Ap U Az.

(b) Assume that A'NB = 0. If A/UB ¢ F, then we have x4 5 € As.
Moreover, again from the inequality (), we see that z ;25 € Ay U As.

If A/'UB € F, we have

r(AUB) = (A UB) =r(A') +71(B) = #A + #B = #A+ #B',
which means that AU B’ € F. Hence, we have S(f,g) = TATH —
TR 4 € Ay

Case (ii). Take polynomials f := x4 — 24 € Aj and g := 22 € Ay
with 4 > za/. If e ¢ A, then S(f,g) = 22w s is reduced to zero. If
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e € A, then S(f,g) = zcxar. Since r(A" U {e}) = r(AU{e}) = r(4),
we have x.x 4 € Ay U As.

Case (iii). Take polynomials f := x4 —xz4 € Ay and g := zp € A3
with x4 > za. If ANB =0, then S(f,g) = x4 xp is reduced to zero.
If AN B # 0, then S(f,g) = zaxp\a. The inequality

r(AU(B\A)=r(AU(B\ A) =r(AUB)
<#(AUB) =#(A"U(B\ A))
implies that z4/xp\a € A2 U A3.

Case (iv). This case is easy because Ag and Az consist of monomials.
O

Corollary 3.4. The Hilbert function of Q/Jr is given by

r(E)
Hilb(Q/Jum,t) = Z(#?i)ti'

=0

Example 3.5. Let M be the matroid defined in Example 2.7. Then
the ideal Ann ®,; contains an additional generator other than A,s. In
fact, we have

Ann @y = Iy + (213 + 245 — T15 — T34).

The Hilbert series of Q/Ann®,, is (1,5,5,1) and that of Q/Jys
is (1,5,6,1). In particular, Q/Jy is not Gorenstein. By direct
computation, we get

Hess @py = 8(x1 + x4) (x5 + 25) Py

This implies that Ay = Q/ Ann @), has the strong Lefschetz property.

4. Vector space lattice. In this section, we treat the matroid
M = M(q,n) defined in Example 2.3. We define polynomials <I>§\1/[) =
ZGEE zq for i =1,...,n. Note that @S\Z) = o,

Lemma 4.1. For M = M(q,n) andl < [n/2], the polynomials 8F¢§@Z),
F € F;, are linearly independent over k.
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Proof. In the following, (S) stands for a linear subspace in Fy
spanned by a subset S C P""!(F,). For B € F, and 0 < i < [,
define

Fi(B,i) :={A € Fi [ dim((A) N (B)) = i}.

Then, we have
Fi(B,l)={AeF | A~ B}

and l
Fi = J Fu(B,i).
i=0
For A, B € F;, we also define
F(B,i) = {A" € Fi(B,i) | (A)n (A) = {0}
={A" € Fi(B,i) | AU A" € Fy}.

For B € F;, consider a polynomial ®(B,i) := ZAE;NB’Z,) x4 and a
differential polynomial P(B, ) :=}_ sc 7 (5.4 04, We have

Py = > o= > 3 aa

A€Fi(B,i) AcFi(B)i) A'er

AUA'€Fy
=> >

A'eFy AeFi(B,i)
AUA’'€Fqy

l
:Z Z #{AE.F[(B,’L'”AUA/G}—QZ}IA/

J=0 A’eFi(B.j)

Z S #FN(Bii)za

'eFi(B,j5)

Here, #]-'IA/ (B,1i) is independent of the choice of A’ € Fi(B,j) for
M = M(q,n). Put af = #F/(B,i) for B € F; and A’ € Fi(B, ).
Now we have

!
21) Za” Z Tar = z:laf;@(B,j).
=

Jj=1 A’€F(B,j)
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If i 4+ j > [, then dim((4) N (B)) + dim((A") N (B)) =i+j > L
Hence, we have dim((A) N (4’) N (B)) > 0 and (A) N (4’) # {0}. This
means that af; = #]—'ZA,(B, i) =0.

Assume that i+ j = [. For A € Fi(B,j), take an element A, € F;
such that (A1) = (A) N (B). We also take an element Ay € Fj_; = F;
such that (A; U Az) = (B), and A3 € F,,—; such that (BU A3z) = Fp.
Put A* := Ay U Az. Since dim(A*) = n —j > n —1 > [, there
exists an element A’ € F; such that (A*) N (B) C (A’) C (A*). Since
(A"YN(B) = (A*)N(B) = (As), we can see that A’ € F/*(B, ). Hence,
we have ag- > 0 in this case.

l
1,j=

J Ha”2>0

Since the matrix (a;;—;); is invertible, ®5,(B,[) may be written as a
linear combination of P(B, O)<I>(2l) P(B, 1)@(2[) ..., P(B, Z)@ﬁl), and
hence it is a linear combination of the polynomials 6F o F e 7.
On the other hand, it is easy to see the linear mdependence of the
polynomials ®,,(B,1) for B € F;. Therefore, the polynomials 9 @S\ffl)
for F' € F;, are linearly independent. ]

We have seen that the matrix (afl_ j) o is upper-triangular, so

det l l

Proposition 4.2. Let M = M(q,n). Take a representative Fy, ..., Fp,
€ F, of F;. Then the determinant of the matrix
(070 @)

1,j=1

is not identically zero.

Proof. For F' € Fj, define ¢(F,i) == #{F' € F; | FUF' € Fii;}.
Then the equality ¢(Fi,7) = c¢(F2,4) holds for any Fi, Fy € F; and for
j=1,...,r(E) — 1. Tt is easy to see that

det (0707 @ar); 1 | =7 det (Ooryor), ;-

where v = ¢(F,1)"™ # 0 for any F € Fi, and 0, -,, 71,72 € (1), is
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defined by

s L 1 ileﬂTQZ(D,
™10 otherwise.

At the same time, we have

det (aFiaFf@(Ai”)  =det (057 ,0(r)))

i ij

Note that the algebra B®Y) := Q/ Ann @S\il) is also Gorenstein, and the
natural pairings

(e B, — B

are non-degenerate for ¢ = 0, ...,l. From Lemma 4.1, we see that {xp, |
i=1,...,m} gives a basis of Bl(2l). Since the matrix (9% 9% @ﬁl))i’j

represents the pairing ( , ) at the intermediate part Bl(zl) X Bl(2l) -k,
we see that its determinant is non-zero. Therefore, det(9¥1 9% ® M)‘
is non-zero, and hence it cannot be identically zero.

r=1

Theorem 4.3.

(1) The algebra Aprq,n) has the strong Lefschetz property.

(2) The ideal Ann @ sy ) is generated by App(g.n), i-e., Ann @ gy =
Jri(gny- In particular, it is a binomial ideal.

(3) We have

n (T
Hil Ann ® = ¢
lb(Q/ nn M(q,n)at) Zt (i>qa

i=0
where (?)q, 0 <i < n, are g-binomial coefficients.

(4) The vector space lattice V(q,n) consisting of the linear subspaces
of Fy has the Sperner property.

Proof. Proposition 4.2 implies that the monomials Xp,,i=1,...,my,
are linearly independent in the algebra A,;. Hence, we get Q/Jy =
Apr by comparing their dimension over k. This shows (2) and (3).
Since the monomials Xp,, i = 1,...,m;, form a linear basis of (A);,
Proposition 4.2 also implies that the polynomial

Hess(l))(ﬂ}:g1 D sy = det (O 6F<7'<I>M)m

{ 3,7=1
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is a nonzero polynomial for [ = 1,...,[n/2]. Then we have the strong
Lefschetz property for Aj; by Proposition 1.8. The deduction of the
Sperner property for M from the Lefschetz property is a standard
argument (see, e.g., [10, 1.4.1] for details.) O

Remark 4.4. For i < n, let M (g,n) be a matroid structure on
P"~1(F,) obtained by regarding JF; as a system of bases. We see that

_ @
(I)M“)(q,n) - (I)Z\Zl(q,n)

of Proposition 4.2 that @/ Ann @ ;¢ (4 ,,) has the Lefschetz property.

. It can be shown by a similar manner as the proof

Example 4.5. Let [n] := {1,2,...,n} be an n-element set. The set
2[7] of the subsets of [n] has a natural lattice structure induced by
the operations U and N. This lattice is called the Boolean lattice.
Sperner’s theory originates his work [17] on the maximal cardinality
of the antichains of the Boolean lattice. On the other hand, M([n]) :=
([n], 2["]) satisfies the axioms for a matroid. The matroid M ([n]) has
the unique basis [n], so the corresponding Gorenstein algebra is given
by

Ap(p= kX1, ..., Xl /Ann(zy - 20) =k[X1, ..., X /(XE, ... XD).

In [9], it has been proved that M([n]) is another example of ma-
troids for which Proposition 4.2 holds. As a consequence, we obtain
Ann @ /(1)) = Ju((n)) and the Lefschetz property for Aps((,)), which
gives another proof of the Sperner property for the Boolean lattice.

5. Modular geometric lattice. In this section, we discuss a char-
acterization of the matroids for which the algebra @/Jas is Gorenstein.

Definition 5.1. Let L be a finite graded lattice with the rank func-
tion 7.

(1) The lattice L is called (upper) semimodular if r(xz) + r(y) >
r(x ANy) +r(x Vy) for all z,y € L. If the equality holds for all
x,y € L, then L is called modular.

(2) Assume that L has the unique minimal element 0. An element
of L is called an atom if it covers 0. The term coatom is dually
defined as an element covered by the unique maximal element 1.
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The lattice L is atomic if every element of L is written as a join of
atoms.
(3) The lattice L is said to be geometric if L is atomic and semimodular.

The set of the flats of a matroid forms a lattice, which we denote
by L(M). It is known that a finite lattice L is geometric if and only if
L = L(M) for a matroid M (see [19, Theorem 3.8]).

Proposition 5.2. (Greene [8]). Let L be a finite geometric lattice.
The sets of atoms and of coatoms have the same cardinality if and only
if L is modular.

Greene’s characterization of the modular geometric lattice implies
the following.

Proposition 5.3. If Q/Jy is Gorenstein, then L(M) is a modular
geometric lattice.

Proof. Let n be the dimension of M. Then the socle degree of Q/Jys
is n. Suppose that Q/Jys is Gorenstein. From Proposition 1.3, the part
(Q/Jr)1 of degree 1 is isomorphic to (Q/Jar)n—1 of degree n — 1 as
vector spaces. Since

#{atoms of L(M)} = dim(Q/Jnr)1 = dim(Q/JIpr)n—1
= #{coatoms of L(M)},

we can conclude that the lattice L(M) is a modular geometric lattice
by Proposition 5.2. O

The fundamental theorem of projective geometry shows that a
modular geometric lattice decomposes into a direct product of boolean
lattices, vector space lattices, lattices of rank 2 and incidence lattices
of (non-Desarguesian) finite projective planes (see, e.g., [19]).

Proposition 5.4. Let M(II) be the matroid associated to a finite
projective plane I1. Then we have Jyrr) = Ann @ ).

Proof. Let II be a projective plane of order v. Since Jyym) C
Ann @y, we have a surjective homomorphism ¢ : Q/Jyary —
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Aprry- From Corollary 3.4, we have dim(Q/Jpr ()1 = dim(Q/Jar(my )2
= 1?2 + v+ 1. Hence, in order to show that ¢ is an isomorphism, it
is enough to show dim(Q/Jyrqmy)1 = dim(Apzamy)1. For two distinct
points p,q € II, denote by L,, the line passing through p and q. We
have
OO (1) = Z T,
T#Lpq

for p # q. Consider the specialization S of the matrix (9?09® p(mmy)p,qett
at x, = 1 for all a € II. Then we have

0 ifp=yq,
Spq: 2 gf
ve ifp#gq,

and det S # 0. So the polynomials 0P®ypy, p € II, are linearly
independent. This shows dim(Q/Jasm))1 = dim(Apzmy)1- |

Corollary 5.5. The algebra Apyry has the strong Lefschetz property.

The following lemma is easy.

Lemma 5.6. If M is the direct sum of two matroids M1 and Mo, then
Qurr/JInm = Qury /I, @ Qury /I, -

Theorem 5.7. The algebra Q/Jp is Gorenstein if and only if L(M)
is a modular geometric lattice.

Proof. In Proposition 5.3, we have proved that L(M) is a modular
geometric lattice if Q/Jys is Gorenstein.

Conversely, assume that L(M) is a modular geometric lattice. Then
L(M) decomposes into a direct product of boolean lattices 2", vector
space lattices V(¢,n) = L(M(g,n)) and incidence lattices of finite
projective planes II. For the boolean lattice 2"}, we have seen in
Example 4.5 that Q/Jps([n)) is Gorenstein. For the matroid M (q,n),
it has been shown in Theorem 4.3 (2) that Jys(g,n) = Ann ®z(q.p), SO
Q/Jn(g,n) is Gorenstein. In Proposition 5.4, we see that Q/Jysm) is
Gorenstein for a finite projective plane II. Hence, from Corollary 1.4
and Lemma 5.6, the algebra Q/Jy; is Gorenstein. O
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Corollary 5.8.

(1) The ideal Jyr coincides with Ann®yr if and only if L(M) is a
modular geometric lattice.

(2) If L(M) is a modular geometric lattice, then Ap; has the strong
Lefschetz property.

(3) Every modular geometric lattice has the Sperner property.

6. Grobner fan of Jy;. In this section, we discuss the Grobner fan
of the ideals Jps and Ann ® (4 ). The initial ideal ing (/) of an ideal
I C @ with respect to the weight vector & € R¥ is given by

ing(1) = (ins(f) | £ € I, f #0).

For a weight vector @, the set C(&) := closure{X € R¥ | ing(I) =
ing(1)} is a polyhedral cone in RE. The set of cones {C(@) | & €
RZ\{0}} forms a fan G(I). The fan G(I) is called the Grébner fan of I.
Denote by G¢(I) the set of d-dimensional cones in G(I). The Grobner
fan G(I) of a homogeneous ideal I has the translation invariance in
the direction of 77 := (1,...,1) € R¥. Let H be the hyperplane in R¥
defined by the equation Y __, x. = 0. Denote by G(I) the restriction
of G(I) to H.

For two distinct independent sets F, F’ € F with F' ~ F’, define a
cone Wg g/ by the condition

er=zxe, eré er

eceF ecF’ ecF ecF"
(for all F” € F, F" ~ F).

eclE

Let Ci,...,C), be the closures of the connected components of

Proposition 6.1. The mazimal cones of G(Jar) are given by C1,. . ., Cp,
i.e., G*E(Jy) = {Ch,...,Cp}.

Proof. Since Ay is a universal Grobner basis of Jyy, ing(Js) is not
a monomial ideal if and only if ing(Jys) contains zp — xps for two
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distinct independent sets F, F’ with F' ~ F’ and does not contain zp
or xps. This is the case when & € Wg p. O

The tropical hypersurface Viyop(Par) C R¥E is defined as the locus in
R where the piecewise linear function

trop (®,7) = max ( > e

ecB

BEB)

is not smooth. The tropical hypersurface Viyop(®as) can be considered
as a subcomplex of G(®ps) (see [2]). Since ®p; is homogeneous,
the corresponding tropical hypersurface Viyop(®as) has the translation
invariance in the direction of the vector 7. Denote by Vtrop(fb M) the
restriction of Viyop(®as) to H. In our case, Viop(®ar) is also regarded
as a fan. The following proposition shows that the tropical variety
Virop(®ar) is directly obtained from the matroid polytope of M.

Proposition 6.2. The piecewise linear function trop(®p)|lm is a
support function for the polytope A, := Ay —r(E)(#E)~! -7 C H.

Proof. The polytope AY, is spanned by the vectors ip := Tp —
r(E)(#E)~t-i, B € B, by Proposition 2.6. We also have the inequality

(B, 77) =Y yp < trop(®ar) (), for all § = (ye)eer € H,
beB

and, for ¢ = up,

E 2
(iip, iip) = r(E) — r;; = trop(®y) (ilp).
Hence, the polytope A9, is described as
Ay = {7 H| (#7) < trop(@u)(§), forall je H). O

For a fan 3, define —% := {—0c|o € X}.

Proposition 6.3.
(1) For an equivalence class T € Q(l) with | > 2, we have

GFEN(f,) = {~Wrp | F,F' € FO7,F # F'}.
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‘QHm(fT):: LJ 0 = LJ _LVFJW~

cEGH#E-1(f,) F.F'eFrnr

(3) The fan —G(Jar) is the common refinement of the fans defined by
the tropical hypersurfaces Virop(fr), T € Q.

Proof. Since the Newton polytope of f, does not contain interior
lattice points, every monomial xg, F' € F N7, appearing in f;, can be
the initial monomial for a choice of monomial ordering. Hence, ing(f;)
is not a monomial ideal if & belongs to —Wg g/ for a pair F, F' € FN,
F # F’. This shows (1).

The second claim (2) follows from the definition of the tropical
hypersurface Virop(f-).

Claim (3) is a consequences of (2) and Proposition 6.1. O

Corollary 6.4. The tropical hypersurface Vivop(®ar) is a subcomplex
of the fan —G(Jpr).

For M = M(q,n), we have G(Ann ®y;(qn)) = G(Jpr(gn)) from
Corollary 4.3 (2). By Proposition 6.3, the Grobner fan G(Ann ®/(4.))
can be computed from the tropical hypersurfaces Viyop(fr)-

Example 6.5. The matroid M(2,2) is defined by the following three
vectors:

V1 | V2 | U3
110]1
111

so we have

Dpr(2,2) = T1T2 + T173 + T2T3,
2 2 2
Ann @00y = (27,23, 23, L1027 — 123, 1T — 223, T1T3 — T2T3).

In this case, Grobner fans G(Ann @y (2,2)), G(Jar(2,2)) and =G (Pas(2,2))
are the same. Their restrictions G(Ann Prr(2,2))s G(JM@Q)) and
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—é((I)M(ZQ)) to the plane H are determined by three rays:
R1 = REO(_Z 17 ].)7
R2 = RZC'(L —2, 1),
R3 = RZO(L 1, —2)

Moreover, Vicop(®as(2,2)) = (—R1) U (—Ra) U (= Ry).

The following examples are obtained by using Sage [20].

Example 6.6. The Grobner fan G(Ann®y(23)) = G(Jp(2,3)) con-
tains 420 cones of maximal dimension 6 and 49 rays. The fan
G(Pps(2,3)) contains 28 maximal cones and 21 rays.

Example 6.7. Let M be the matroid from Example 2.7. The fan
G(Jar) contains 12 cones of maximal dimension 4 and 7 rays:

Rxo(—4, 1,1,1,1) Rso(—2,—2,3,-2,3),
Rso(—1 —1,-1),  Rso(1,1,-4,1,1),
]R>o(1,1,1, ) Rso(1,1,1,1,—4),
R>0(3, —2).

The fan G(® ) contains eight maximal cones, and G (Ppr) = -G (Jar)-
In this case, G(Ann @) is a refinement of G(Jps). The fan G(Ann ®,y)

contains 20 maximal cones and 9 rays:

Rso(—4,1,1,1,1), Rso(— 3,2,2, ~3,2),
Rso(—2,-2,3,-2,3), Rso(—1 ~1,-1),
R>0(, —4,1,1), R0(1,11 )
Rso(1,1,1,1, — ) R>0(2,2,—3,2, —3),
Ro(3, —2).
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