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REPRESENTATIONS OF FINITE POSETS OVER THE
RING OF INTEGERS MODULO A PRIME POWER

DAVID ARNOLD, ADOLF MADER, OTTO MUTZBAUER

AND EBRU SOLAK

ABSTRACT. The classical category Rep(S,Zp) of repre-
sentations of a finite poset S over the field Zp is extended to
two categories, Rep(S,Zpm ) and uRep(S,Zpm ), of represen-
tations of S over the ring Zpm . A list of values of S and m
for which Rep(S,Zpm ) or uRep(S,Zpm ) has infinite represen-
tation type is given for the case that S is a forest. Appli-
cations include a computation of the representation type for
certain classes of abelian groups, as the category of sincere
representations in (uRep(S,Zpm )) Rep(S,Zpm ) has the same
representation type as (homocyclic) (S, pm)-groups, a class
of almost completely decomposable groups of finite rank.
On the other hand, numerous known lists of examples of
indecomposable (S, pm)-groups give rise to lists of indecom-
posable representations.

1. Introduction. Let (S,≤) be a finite poset and p a prime. The
category Rep(S,Zp) of representations of S over the field Zp has objects
U = (U0, Us | s ∈ S) such that U0 =

∑
s∈S Us is a finite dimensional

Zp–vector space, Us is a subspace of U0 and Us is a subspace of Ut if
s ≤ t, (called I-spaces in [23] with I = S ∪ {0}). The representation
type of Rep(S,Zp) (finite, tame or wild) is characterized in terms of S
by the classical Kleiner-Nazarova theorems, [23].

Representations of a finite poset over a commutative ring are inves-
tigated in [19, 20]. In particular, posets S such that Repfg(S,Zpm) has
finite representation type are characterized in [20], where the objects of
Repfg(S,Zpm) are those U = (U0, Us | s ∈ S) such that U0 =

∑
s∈S Us

is a finite Zpm -module, Us is a submodule of U0, and Us is a submodule
of Ut if s ≤ t. The category Repfg(S,Zpm) has the same represen-

tation type as Rep(Ŝm,Zp) for a finite poset Ŝm constructed from S
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and m ([10]). For most S and m, Repfg(S,Zpm) has infinite or wild
representation type.

In this paper, we consider a natural extension of Rep(S,Zp), properly
contained in Repfg(S,Zpm), that has not been investigated in depth.

Let Rep(S,Zpm) be the category of representations U = (U0, Us |
s ∈ S) such that

• U0 =
∑

s∈S Us is a finite Zpm-module,
• for every s ∈ S, Us is a free Zpm-submodule of U0,
• for every s ∈ S,

∑
t<s Ut is a free Zpm-submodule of Us.

Since the ring Zpm is self-injective (see Section 2), the free module
Us is a summand of U0, and the free module

∑
t<s Ut is a summand of

Us. Indecomposables in Rep(S,Zpm) have local endomorphism rings,
whence a representation is uniquely a direct sum of indecomposables.

The category of uniform representations is denoted by uRep(S,Zpm),
where U = (U0, Us | s ∈ S) in Rep(S,Zpm) is uniform if U0 is a free
Zpm-module. Notice that Rep(S,Zp) = uRep(S,Zp).

It is assumed herein that S is a forest, i.e., for each s ∈ S, the
subset {t ∈ S | t ≤ s) is a chain, and m ≥ 2. When S is a
forest and U = (U0, Us) ∈ Rep(S,Zpm), then

∑
t<s Ut = Utm where

tm = max{t | t < s}, so it suffices to require that Us is free for all s. It
is not known how much of the theory for Rep(S,Zpm) carries over to
posets that are not forests.

There is a bijection [U ] → [MU ] from isomorphism classes of rep-
resentations U in Rep(S,Zpm) to equivalence classes of Zpm -matrices
MU in Mat(S, pm) such that U is indecomposable in Rep(S,Zpm) if
and only if MU is indecomposable in Mat(S, pm) and U is uniform if
and only if MU is uniform (Lemma 3.1). Hence, indecomposability of
U in Rep(S,Zpm) can be determined by solving a “matrix problem” in
Mat(S, pm), in the sense of [11, 23] for representations over a field and
[19, 20] for Rep(S,Zpm).

Given U = (U0, Us | s ∈ S) ∈ Rep(S,Zpm), define

dim(U) =
∑

s∈S rk
(
Us

/∑
t<s Ut

)
.

Call U sincere if
∑

t<s Ut ̸= Us for each s. The category Rep(S,Zpm)
is unbounded (has infinite representation type) if for each positive
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integer n, there is an indecomposable U in Rep(S,Zpm) with dim(U) ≥
n and Rep(S,Zpm) is bounded (has finite representation type) if it is
not unbounded.

Let Sn denote an antichain with n elements, i.e., of width n. A
disjoint union of r chains of widths n1, . . . , nr is denoted by (n1, . . . , nr).

Theorem I. Assume S is a forest. Then Rep(S,Zpm) is unbounded
if :

(i) S ⊇ S3, m ≥ 2;
(ii) S ⊇ (1, 2), m ≥ 6;
(iii) S ⊇ (1, 3), m ≥ 4;
(iv) S ⊇ (1, 5), m ≥ 3;
(v) S ⊇ (2, 2), m ≥ 3;
(vi) S ⊇ (3, 3), m ≥ 2;
(vii) S ⊇ (2, 5), m ≥ 2.

Theorem I is proved in subsection 4.1 by finding arbitrarily large
indecomposable matrices MU . If S is a disjoint union of chains, then
the only unresolved values of (S,m) for Rep(S,Zpm) to be bounded or
unbounded are (Corollary 6.3 (a)):

(i) S = (1, 2), m = 5;
(ii) S = (1, 4), m = 3;
(iii) S = (2, n), 3 ≤ n ≤ 4, m = 2.

There is an analogous theorem for uRep(S,Zpm), proved in subsec-
tion 4.2.

Theorem II. Assume S is a forest. Then uRep(S,Zpm) is un-
bounded if :

(i) S ⊇ S4, m ≥ 1;
(ii) S ⊇ (1, 1, 2), m ≥ 2;
(iii) S ⊇ (1, 1, 1), m ≥ 3;
(iv) S ⊇ (1, 3), m ≥ 6;
(v) S ⊇ (2, 2), m ≥ 4;
(vi) S ⊇ (1, 4), m ≥ 4;
(vii) S ⊇ (1, 6), m ≥ 3;
(viii) S ⊇ (2, 3), m ≥ 3;



464 ARNOLD, MADER, MUTZBAUER AND SOLAK

(ix) S ⊇ (3, 3), m ≥ 2;
(x) S ⊇ (2, 5), m ≥ 2.

If S is a disjoint union of chains, then the only unresolved values
of (S,m) for uRep(S,Zpm) to be bounded or unbounded are Corollary
6.3 (b):

(i) S = (1, 3), m = 5;
(ii) S = (1, n), 4 ≤ n ≤ 5, m = 3;
(iii) S = (2, n), 3 ≤ n ≤ 4, m = 2.

The category Rep(S,Zpm) is related to a category of almost com-
pletely decomposable abelian groups, called (S, pm)-groups (Section 5),
[2]. An (S, pm)-group is, up to near-isomorphism, uniquely the direct
sum of indecomposable (S, pm)-groups, so that finding the indecompos-
able (S, pm)-groups amounts to a classification of these groups up to
near-isomorphism. Near-isomorphism is a weakening of isomorphism.
There is evidence that a classification up to isomorphism is not feasible
(see [16, Chapter 9]) and near-isomorphism is accepted as the proper
equivalence relation for almost completely decomposable groups.

If (S,≤) is an inverted forest of p-locally free types, i.e., for each
s ∈ S, the subset {t ∈ S | t ≥ s) is a chain, then the opposite poset
Sop = (S,≥) is a forest. In this case, there is a bijection from near-
isomorphism classes of (S, pm)-groups [G] to isomorphism classes [DG]
of sincere representations in Rep(Sop,Zpm) called anti-representations,
such that G is homocyclic (Section 5) if and only if DG is uniform, and
G is indecomposable if and only ifDG is indecomposable (Theorem 5.1).
Other applications of representations of finite posets to abelian groups
include [9, 21].

Corollary III. Assume S is a disjoint union of chains.

(a) (S, pm)-groups are unbounded if S and m satisfy one of the
conditions of Theorem I.

(b) Homocyclic (S, pm)-groups are unbounded if S and m satisfy one
of the conditions of Theorem II.

Corollary III is an application of Theorems I and II, since if S ⊂ T
are disjoint unions of chains, then sincere (uniform) indecomposables in
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Rep(S,Zpm) can be extended to sincere (uniform) indecomposables in
Rep(T,Zpm) (Theorem 5.2). The applications of Theorem I to groups
(Corollary III) are new except for (i)–(iii) and (v) that were settled in
[2], the applications of Theorem II are new except for (i), (iii) published
in [6].

Resolution of the unresolved cases following Theorems I and II await
criteria for bounded other than a finite complete list of indecompos-
ables. For instance, the list of Theorem I would be complete if the
following conjecture were true, where (S,m − 1) is the disjoint union
of S and a chain of length m− 1.

Conjecture. If Rep((S,m − 1),Zp) is bounded, then Rep(S,Zpm)
is bounded.

2. Preliminaries. It is well-known that the ring Zpm is self-injective,
i.e., if X is a free Zpm-submodule of a finite Zpm -module Y , then X is
a summand of Y . This is a consequence of the classical fact that an
element of maximal order in a finite p-group generates a summand.

The following terminology is standard. A homomorphism in Rep
(S,Zpm) from U = (U0, Us | s ∈ S) to W = (W0,Ws | s ∈ S) is a
Zpm-homomorphism f : U0 → W0 with f(Us) ⊆ Ws for each s ∈ S.
A homomorphism f : U → W is an isomorphism in Rep(S,Zpm) if
f−1 : W → U exists, equivalently, if f : U → W is an isomorphism and,
for all s ∈ S, f(Us) = U ′

s. An endomorphism of U is a homomorphism
f : U → U . The ring of endomorphisms of U is denoted by End(U).
The direct sum of U and W in Rep(S,Zpm) is

U ⊕W = (U0 ⊕W0, Us ⊕Ws | s ∈ S).

It can be shown that idempotents split in Rep(S,Zpm), i.e., each
idempotent e of End(U) determines a decomposition U = e(U) ⊕
(1 − e)(U). Hence, U is indecomposable if and only if 0 and 1
are the only idempotents of End(U). If U is indecomposable, then
End(U) ⊆ End(U0) is finite, hence left artinian. In this case, End(U)
is semi-perfect, [1, page 303], and so End(U) is a local ring, [9,
Proposition 2.1.3]. As a consequence of the categorical version of the
Krull, Schmidt and Azumaya theorem ([1] for the module version or
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[8, Theorem 7.4]), a U in Rep(S,Zpm) is uniquely a direct sum of
indecomposable representations.

The following crucial lemma contains properties of representations
in Rep(S,Zpm) for a forest S. Part (a) is known to be false if S is not
a forest.

Lemma 2.1. Assume S is a forest.

(a) U = (U0, Us | s ∈ S) is in Rep(S,Zpm) if and only if, for each
s ∈ S, there is a finite free Zpm-module Vs with U0 =

∑
s∈S Vs and

Us =
⊕

t≤s Vt.

(b) If U = (U0, Us | s ∈ S) is in Rep(S,Zpm) with U0 =
∑

s∈S Vs,
Us =

⊕
t≤s Vt a free module, and U∗ the kernel of the epimorphism

π0 :
⊕

s∈S Vs → U0 defined by π0(⊕vs) =
∑

vs, then U∗ ∩
⊕

t≤s Vt = 0
for every s.

(c) U = (U0, Us | s ∈ S) in Rep(S,Zpm) is in uRep(S,Zpm) if and
only if U∗ is a free Zpm-module.

Proof.

(a) Let U = (U0, Us | s ∈ S) be in Rep(S,Zpm), i.e., U0 =
∑

s∈S Us

is a finite Zpm-module, Us is a free submodule of U0, and
∑

t<s Ut is a
free submodule, hence a summand, of Us. Choose a free Zpm-module
Vs with

Us =

(∑
t<s

Ut

)
⊕ Vs.

Since {t ∈ S | t ≤ s} is a chain, it follows by induction that
Us =

⊕
t≤s Vt. Moreover, U0 =

∑
s∈S Us =

∑
s∈S Vs. The converse

is clear as U0 is finite and Us =
⊕

t≤s Vt is a free module.

(b) Since Us =
⊕

t≤s Vt ⊆
⊕

s∈S Vs, the map π0 �Us : Us → Us is

one-to-one. Then U∗ ∩ Us = 0 because U∗ = ker(π0).

(c) If U is in uRep(S,Zpm), then U0 is a free Zpm-module. Since
π0 :

⊕
s∈S Vs → U0 is onto, U∗ = ker(π0) is a summand of the free

module
⊕

s∈S Vs, hence free.

Conversely, if U∗ = ker(π0) is free, then, since
⊕

s∈S Vs is finite, U∗
is a summand of

⊕
s∈S Vs. Hence, U0 = image(π0) is a summand of

the free module
⊕

s∈S Vs, and so U0 is free. �
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Following Lemma 2.1, define cdRep(S,Zpm) to be the category of
representations U = (U0, Us, U∗ | s ∈ S) such that

• for each s, there is a finite free Zpm-module Vs with U0 =⊕
s∈S Vs and Us =

⊕
t≤s Vt,

• U∗ a submodule of U0 with U∗ ∩ Us = 0.

Notice that cdRep(S,Zpm) is a proper subcategory of Repfg(S
∗,Zpm),

where S∗ = S ∪ {∗} is a poset with ∗ incomparable to any element of
S.

The subcategory of cdRep(S,Zpm) with representations U = (U0, Us,
U∗ | s ∈ S) such that U∗ is a free module is denoted by hcdRep(S,Zpm),
[5].

We state an observation that will be used later.

Lemma 2.2. Let U = (U0, Us, U∗ | s ∈ S) ∈ cdRep(S,Zpm). Suppose
that Us = Ws⊕

∑
t≤s Ut for each s ∈ S. Then U0 =

⊕
s∈S Ws and, for

each s ∈ S, Us =
⊕

t≤s Wt.

Proof. By definition of cdRep(S,Zpm), there exist free modules Vs

such that U0 =
⊕

s∈S Vs and Us =
⊕

t≤s Vt for each s ∈ S. Hence,

Vs
∼=

Us∑
t<s Ut

∼= Ws.

It follows by induction that U0 =
∑

s∈S Ws. This sum must be direct
because of cardinalities:

|U0| =
∑
s

∣∣∣∣ Us∑
t<s Ut

∣∣∣∣ = ∑
s∈S

|Ws|.

Similarly, Us =
⊕

t≤s Wt. �

Both cdRep(S,Zpm) and hcdRep(S,Zpm) are subcategories of Repfg
(S ∪ {∗},Zpm). The category cdRep(S,Zpm) is not a subcategory of
Rep(S ∪ {∗},Zpm) because, in the latter, the U∗ must be free and it
is easy to make examples of (U0, Us, U∗) ∈ cdRep(S,Zpm) where U∗
is not free. However, hcdRep(S,Zpm) evidently is a subcategory of
Rep(S ∪ {∗},Zpm).
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Recall that, for a forest S, the object U = (U0, Us | s ∈ S) is in
Rep(S,Zpm) if and only if U0 =

∑
s∈S Us and, for every s ∈ S, Us is a

finite free Zpm -submodule of U0.

We are now in a position to show that the categories cdRep(S,Zpm)
and Rep(S,Zpm) are equivalent (see [22, Theorem 5.3]).

Lemma 2.3. Assume S is a forest.

(1) There is an equivalence

D : cdRep(S,Zpm) −→ Rep(S,Zpm).

(2) U ∈ hcdRep(S,Zpm) if and only if D(U) ∈ uRep(S,Zpm).

Consequently, the functor D induces a bijection [U ] → [D(U)]
between isomorphism classes [U ] of indecomposable representations
U in cdRep(S,Zpm) and isomorphism classes [D] of indecomposable
representations D in Rep(S,Zpm) such that U is in hcdRep(S,Zpm) if
and only if DU is in uRep(S,Zpm).

Proof.

(1) (a) Let U = (U0, Us, U∗ | s ∈ S) and (U ′
0, U

′
s, U

′
∗ | s ∈ S) be objects

of Repfg (S ∪ {∗},Zpm). Define

D(U) =

(
D0 =

U0

U∗
, Ds =

Us + U∗

U∗

∣∣∣∣ s ∈ S

)
and, for f : (U0, Us, U∗ | s ∈ S) → (U ′

0, U
′
s, U

′
∗ | s ∈

S) ∈ Repfg(S ∪ {∗},Zpm), let D(f) be the induced map
U0/U∗ → U ′

0/U
′
∗ that obviously maps Ds = Us + U∗/U∗ into

D′
s = U ′

s + U ′
∗/U

′
∗. Then, clearly, D is a covariant additive

functor.
(b) Suppose U ∈ cdRep(S,Zpm). Then D(U) is in Rep(S,Zpm)

because D0 =
∑

s∈S Ds and Ds = (Us + U∗)/U∗ ∼= Us/(U∗ ∩
Us) = Us is free.

(c) To show that D is dense, let D = (D0, Ds | s ∈ S) be in
Rep(S,Zpm). By Lemma 2.1 (a), there are finite free Zpm-
modules Es with Ds =

⊕
t≤s Et and D0 =

∑
s∈S Es.
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Define

UD =

(
U0 =

⊕
s∈S

Es, Us =
⊕
t≤s

Et, U∗ | s ∈ S

)
where, as in Lemma 2.1 (b), U∗ is the kernel of the epimorphism
π0 :

⊕
s∈S Es → D0 defined by π0(⊕es) =

∑
es. Then UD is

in cdRep(S,Zpm) since U0 =
⊕

s∈S Es, Us =
⊕

t≤s Et and

U∗ ∩ Us = ker(π0) ∩ (
⊕

t≤s Et) = 0. It is straightforward to
check that D(UD)

∼= D.
(d) We show next thatD is faithful. Suppose f : U = (U0, Us, U∗) →

U ′ = (U ′
0, U

′
s, U

′
∗) and D(f) = 0. Then f(U0) ⊆ U ′

∗, and hence,
f(Us) ⊆ U ′

s ∩ U∗ = 0. Hence, f(U0) = 0 as U0 =
∑

s∈S Us.
(e) Finally, we show that D is full. Let U = (U0, Us, U∗) and

U ′ = (U ′
0, U

′
s, U

′
∗) be objects in cdRep(S,Zpm), and let g :

D(U) → D(U ′) be a representation homomorphism, i.e., g :
U0/U∗ → U ′

0/U
′
∗ is a module homomorphism with g((Us +

U∗)/U∗) ⊆ (U ′
s + U ′

∗)/U
′
∗. There exist free modules Vs such

that U0 =
⊕

s∈S Vs and Us =
⊕

t≤s Vt. Let {vs,i} be a basis

of Vs. Then g(vs,i + U∗) = us,i + U ′
∗ for a unique element

us,i ∈ U ′
s, uniqueness following from U ′

s ∩ U ′
∗ = 0. The

specification f(vs,i) = us,i determines a well-defined module
homomorphism f : U0 → U ′

0 with f(Us) ⊆ U ′
s. Furthermore,

g(vs,i+U∗) = us,i+U ′
s = f(vs,i)+U ′

∗ showing that f(U∗) ⊆ U ′
∗,

that f is a representation homomorphism, and that D(f) = g.
So D is full.

(2) In view of Lemma 2.1 (c), U is in hcdRep(S,Zpm) if and only if
D(U) is in uRep(S,Zpm). �

3. Mat(S,Zm
p ). By Lemma 2.3, indecomposables in Rep(S,Zpm)

correspond to indecomposables in cdRep(S,Zpm). Recall that U =
(U0, Us, U∗ | s ∈ S) is in cdRep(S,Zpm) if there are finite free Zpm-
modules Vs with U0 =

⊕
s∈S Vs, Us =

⊕
t≤s Vt and U∗ is a submodule

of U0 such that U∗ ∩ Us = 0 for each s. Moreover, U is isomorphic to
U ′ if and only if there is an isomorphism f : U0 → U ′

0 with f(Us) = U ′
s

and f(U∗) = U ′
∗.

Choosing bases H = {h} of U∗ and V = {v} of U0, we get

h =
∑

v∈V mhvv,
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M = MHV := (mhv), the representing matrix of U,

and U∗ is isomorphic to the row space rsp(M) of M , the rows consti-
tuting a basis of the row space.

Let H′ = {h′} be another basis of U∗. Then h′ =
∑

h∈H αh′hh, and
(α)V = (αh′h) is the matrix of the automorphism α of U∗ given by
α(h) = h′. It is straightforward to check that

(3.1) MH′V = (αh′h)MHV .

Let V ′ = {v′} be another basis of U0. Then v′ =
∑

v∈V βv′vh, and
(β)V = (βv′v) is the matrix of the automorphism β of U0 given by
β(v) = v′. Again, it is straightforward to check that

(3.2) MHV′ = MHV′(βv′v).

In order to account for the representation structure of U , the bases V
need to be chosen as follows. Let Vs be a basis of Vs. Then V =

∪
s∈S Vs

is a basis of U0 that we call conforming. Let V =
∪

s∈S Vs be a
conforming basis of U and h ∈ H. Then

h =
∑
s∈S

∑
v∈Vs

mhvv,(3.3)

M = MHV := (. . .Ms . . .) where Ms = (mhv | v ∈ Vs).(3.4)

The preceding considerations motivate the following definition of
Mat(S,Zm

p ).

For any matrix M let dim(M) denote the number of columns of M .

Define an element M of Mat(S,Zpm) to be a Zpm-matrix such that

(i) M has a column block structure M = (Ms | s ∈ S);
(ii) Regulator condition: the rows of M form a basis of the row

space rsp(M) ⊆ (Zpm)N where N = dim(M);
(iii) for all s ∈ S : rsp(M) ∩ rsp(M≤s) = 0 where

M≤s = (M ′
t | t ∈ S) and M ′

t =

{
Mt if t ≤ s
0r×nt otherwise.

Given M = (Ms | s ∈ S) in Mat(S,Zpm) satisfying (i)–(iii) above,
the matrix M is sincere if each ns = dim(Ms) ̸= 0, and M is uniform
if rsp(M) is a free Zpm-module. The collection of uniform matrices is
denoted by uMat(S,Zpm).
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The following definition reflects the choices of bases.

Two elements M = (Ms | s ∈ S) and M ′ = (M ′
s | s ∈ S) of

Mat(S,Zpm) are equivalent if M can be transformed into M ′ by a
sequence of invertible Zpm -row and column operations:

(a) Add a Zpm -multiple of a row of M of order pj to another row of
M of order pi if j ≤ i;

(b) add a p j−iZpm-multiple of a row of M of order pj to another row
of M of order pi if j > i;

(c) multiply a row of M by a unit of Zpm ;
(d) interchange any two rows of M ;
(e) add a Zpm-multiple of a column of Ms to a column of Mt if s ≥ t

in S;
(f) multiply a column of M by a unit of Zpm ;
(g) interchange any two columns of Ms.

Assume that M = (Ms | s ∈ S) and M ′ = (M ′
s | s ∈ S) are in

Mat(S,Zpm). The direct sum of M and M ′ is M ⊕M ′ = (Ms ⊕M ′
s |

s ∈ S), where

Ms ⊕M ′
s =

(
Ms 0
0 M ′

s

)
.

As condition (iii) holds, M ⊕M ′ is in Mat(S,Zpm).

In Mat(S,Zpm) we set M = 0 if r = N = 0, i.e., if M is the empty
matrix. A matrix M in Mat(S,Zpm) is indecomposable if M equivalent
to M ′ ⊕M ′′ implies that M ′ = 0 or M ′′ = 0.

Lemma 3.1. Let S be a forest. There is a bijection [U ] → [MU ]
from isomorphism classes of representations U in cdRep(S,Zpm) to
equivalence classes of Zpm-matrices MU in Mat(S,Zpm) such that :

(a) U is indecomposable if and only if MU is indecomposable.
(b) U is in hcdRep(S,Zpm) if and only if MU is in uMat(S,Zpm).

Proof. Assume U = (U0, Us, U∗ | s ∈ S) is in cdRep(S,Zpm) with

U0 =
⊕
s∈S

Vs, Us =
⊕
t≤s

Vt,

U∗ ⊆ U0, and U∗ ∩ Us = 0.
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Let Bs be a basis of Vs, CU = {h1, . . . , hr} a basis of U∗, and define
MU = (Ms | s ∈ S) as in (3.3). Then MU is in Mat(S,Zpm) with
rsp(MU ) ∼= U∗.

On the other hand, let M = (Ms | s ∈ S) be in Mat(S,Zpm) of size
r ×N , Ms having size r × ns. Then

rsp(M) ⊆ (Zpm)
N

=
⊕
s∈S

(Zpm)
ns .

We assume that Bs is the set of the canonical (unit) basis elements of
(Zpm)ns , so that B :=

∪
s∈S Bs is the canonical basis of (Zpm)N .

Define UM = (U0, Us, U∗ | s ∈ S) by setting

U0 = (Zpm)
N

=
⊕
b∈B

Zpmb,

Us = (Zpm)
ns =

⊕
b∈Bs

Zpmb,

and U∗ = rsp(M). Then UM is in cdRep(S,Zpm), in particular,
U∗ ∩ Us = 0 by condition (iii) on M .

We outline an argument that U is isomorphic to U ′ in cdRep(S,Zpm)
if and only if MU is equivalent to MU ′ in Mat(S,Zpm). Details are left
to the reader.

Assume U is isomorphic to U ′, and reduce to the case that U0 = U ′
0,

Us = U ′
s and U∗ = U ′

∗. In this case, MU and MU ′ represent matrices
of U with

U∗ = rsp(MU ) = rsp(MU ′),

Bs and B′
s are bases of Vs and V ′

s , respectively, and C and C ′ are
ordered bases of U∗. It follows from (3.2) and Appendix C that MU

can be transformed into MU ′ by a series of invertible column operations
(e)–(g) corresponding to basis changes in U0.

Furthermore, by (3.1) and Appendix B, MU can be transformed by
a sequence of invertible row transformations (a)–(d) corresponding to
basis changes of U∗. It now follows that MU is transformed into MU ′

by a sequence of row and column operations (a)–(g), whence MU and
MU ′ are equivalent.

Conversely, assume MU and MU ′ are equivalent. A sequence of
invertible row and column operations (a)–(g) transforming MU into
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MU ′ amounts to replacing a conforming basis (Bs : s ∈ S) of U0 by a
conforming basis (B′

s : s ∈ S) of U ′
0 and a basis C of U∗ = rsp(MU ) by

another basis C ′ of U ′
∗ inducing an isomorphism U → U ′.

It is routine to verify that M is equivalent to MUM
and U is

isomorphic to UMU , whence [U ] → [MU ] is a bijection.

(a) If MU is indecomposable and U = (U0, Us, U∗ | s ∈ S) is
isomorphic to W ⊕Y = (W0⊕Y0,Ws⊕Ys,W∗⊕Y∗ | s ∈ S), then, from
the definition of MU and equivalence of matrices, MU is equivalent to
MW ⊕MY . Hence, MW = 0 or MY = 0, W = 0 or Y = 0, and so U is
indecomposable.

Conversely, if U is indecomposable and MU = K ⊕ L, then, as a
consequence of the definitions, U is equivalent to UK ⊕ UL. Since U is
indecomposable, K = 0 or L = 0, and so MU is indecomposable.

(b) is clear from the fact that U∗ = rsp(MU ). �

Following is a description of an endomorphism of

U =

(
U0 =

⊕
s∈S

Vs, Us =
⊕
t≤s

Vt, U∗ | s ∈ S

)
∈ cdRep(S,Zpm),

in terms of MU . Recall that an endomorphism of U is a homomorphism
f :

⊕
s∈S Vs →

⊕
s∈S Vs with f(

⊕
t≤s Vt) ⊆

⊕
t≤s Vt for each s and

f(U∗) ⊆ U∗. In particular, f(Vt) ⊆
⊕

s≤t Vs = Ut and, for the maximal

t′ < t in the forest S, f(Ut′ =
⊕

s<t Vs) ⊆
⊕

s<t Vs = Ut′ . Let
πs : U0 → Vs be the projection along

⊕
t ̸=s Vt, and let f ∈ End(U).

Let

fs = πs (f �Vs) : Vs −→ Vs

and

fts = πt (f �Vs) : Vs −→ Vt for t > s.

Then

fs+
∑

t>s fts :Vs −→
⊕

t≥s Vt :

(
fs+

∑
t>s fts

)
(x) = fs(x)+

∑
t>s fts(x)

describes f in terms of its action on Vs, and we write

f = ⊕s∈S(fs +
∑

t>s fts).
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If u ∈ Zr
pm , then uMU = (uMs | s ∈ S) ∈ U∗ = rsp(MU ), and so

f(uMU ) = ⊕s(fs(uMs) +
∑

t>s fts(uMt)) = wMU ∈ U∗

for some w ∈ Zr
pm .

Notice that fts may be extended to a nilpotent endomorphism hts of
U0 with hts(Vr) = 0 for all r ̸= t.

4. Unbounded representation type.

Theorem 4.1. [12]. The category uRep(S,Zp) = Rep(S,Zp) is
unbounded if and only if :

(i) S ⊇ S4;
(ii) S ⊇ (2, 2, 2);
(iii) S ⊇ (1, 3, 3);
(iv) S ⊇ (1, 2, 5);
(v) S ⊇ (N, 4).

The next lemma is used in the proof of Theorem I. Part (a) of the
lemma is well known for representations over fields as part of a more
elaborate theory involving adjoint functors ([13]). Part (b) has no
analogue for fields. We give simple direct proofs of the facts we need.
Note that both proofs substantially use that S is a forest.

Lemma 4.2. Assume (S,≤) is a forest.

(a) If T ⊆ S and Rep(T,Zpm) is unbounded, then Rep(S,Zpm) is
unbounded.

(b) If k ≤ m and Rep(S,Zpk) is unbounded, then Rep(S,Zpm) is
unbounded.

Proof.
(a) Let U = (U0, Ut | t ∈ T ) be in Rep(T,Zpm), i.e., U0 =∑
t∈T Ut, Ut is a free submodule of U0, and

∑
u<t Uu is free. Define

W = (W0,Ws | s ∈ S), where W0 = U0,Ws = Us if s ∈ T ,
Ws =

∑
{Ut | t ∈ T, t < s} if s /∈ T and there is t ∈ T with t < s, and

Ws = 0 if there is no t ∈ T with t < s. Then W is in Rep(S,Zpm) as

W0 = U0 =
∑
t∈T

Ut =
∑
s∈S

Ws
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and ∑
v<s∈S

Wv =
∑

{Ut | t ∈ T, t < s}

is a free submodule of

Ws =
∑

{Ut | t ∈ T, t ≤ s}.

It can readily be verified that End(U) = End(W ). Consequently,
if U is indecomposable, then W is indecomposable with dim(U) ≤
dim(W ). This shows that, if Rep(T,Zpm) is unbounded, then Rep(S,
Zpm) is unbounded.

(b) Let U = (U0, Us | s ∈ S) be in Rep(S,Zpm) with U0 =
∑

t∈S Us,
Us a free submodule of U0, and

∑
t<s Ut a free submodule of Us. The

free submodule Us is a summand of U0, whence pkU0 ∩ Us = pkUs.

Define U∗ = (U0/p
kU0, (Us + pkU0)/p

kU0 | s ∈ S). Then U∗ is in
Rep(S,Zpk) with dim(U∗) ≤ dim(U) as

U0/p
kU0 =

∑
s∈S

(Us + pkU0)/p
kU0,

(Us + pkU0)/p
kU0) ∼= Us/p

kUs is a free Zpk -submodule of U0/p
kU0,∑

t<s(Ut + pkU0)/p
kU0 is a free submodule of (Us + pkU0)/p

kU0, and,
because S is a forest,

∑
t<s Ut = Ut′ for some t′ < s.

A routine argument shows that, if W is in Rep(S,Zpk), there is some
U = (U0, Us | s ∈ S) in Rep(S,Zpm) with U∗ = W . Moreover, if W is
indecomposable, then U is indecomposable because if U = X⊕Y , then
W = (X⊕Y )∗ = X∗⊕Y ∗. Consequently, if Rep(S,Zpk) is unbounded,
then Rep(S,Zpm) is unbounded. �

Notice that, in the proof of (a), W need not be sincere, even if U is
sincere. By Theorem 5.2, there is a sincere extension W of a sincere U
if T ⊂ S are disjoint unions of chains.

4.1. Proof of Theorem I. In view of Lemmas 2.3, 3.1 and 4.2,
it is sufficient to find indecomposable matrices M in Mat(S,Zpm) of
arbitrarily large dimension for

(i) (S,m) = (S3, 2);
(ii) (S,m) = ((1, 2), 6);
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(iii) (S,m) = ((1, 3), 4);
(iv) (S,m) = ((1, 5), 3);
(v) (S,m) = ((2, 2), 3);
(vi) (S,m) = ((3, 3), 2);
(vii) (S,m) = ((2, 5), 2).

Cases (i), (ii), (iii) and (v) are proved in [2].

An the n× n Zpm-matrix A is module indecomposable, the minimal
polynomial of A(mod p) is a power of an irreducible polynomial in Zp[x].
In this case, Zn

p is an indecomposable Zp[A(mod p)]-module.

The format of the proof for each of the remaining cases is as follows,
see [2] for details of similar arguments. Given M in Mat(S,Zpm) with
a module indecomposable matrix A as a submatrix, there is a U in
cdRep(S,Zpm) with M = MU by Lemma 3.1.

Let f = (⊕s∈S(fs +
∑

t>s fts)) : U0 → U0 be an idempotent en-

domorphism of U and f : U0/pU0 → U0/pU0 the idempotent en-
domorphism of U0/pU0 induced by f . The difficult part of the ar-
gument in each case (details not included) is to use equations aris-
ing from the condition that f(rsp(MU )) ⊆ rsp(MU ) to prove that
f = (a, a, . . . , a) + h for some nilpotent h : U0/pU0 → U0/pU0 and
idempotent a ∈ EndZp(Zn

p ) with aA(mod p) = A(mod p)a. Then
a ∈ EndZp[A(mod p)]

(Zn
p ), and so a = 0, 1 because A is module in-

decomposable.

If a = 0, then f = h = 0, being a nilpotent idempotent. Hence,
f = pf ′ = 0, again is a nilpotent idempotent. Similarly, if a = 1, then
f = 1. This shows that U is an indecomposable representation, whence
M = MU is an indecomposable matrix. In the following, A denotes an
n× n module indecomposable matrix.

We adopt the following notation for matrices M in Mat(S,Zpm) such
that S = (n1, . . . , nk) = C1 ∪ · · · ∪Ck is a disjoint union of chains with
|Ci| = ni. Write

M = (MC1

∥∥ · · · ∥∥MCk
)

with MCk
in Mat(Ck,Zpm). If C = {1, . . . , n} is a chain, then write

MC = (Mn

∥∥ · · ·∥∥M1)

in Mat(C,Zpm). With this convention, column operations are allowed
from left-to-right, i.e., from Mi to Mj if i > j.
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(iv) S ⊇ (1, 5),m ≥ 3. The matrix

M =

 p2In 0 0
∥∥ 0

∣∣ p2In
∣∣ 0

∣∣ 0
∣∣ 0

0 In 0
∥∥ p2In

∣∣ pIn
∣∣ pIn

∣∣ 0
∣∣ In

0 0 In
∥∥ 0

∣∣ pIn
∣∣ pA

∣∣ In
∣∣ 0


is an indecomposable in Mat((1, 5),Zp3) with dimension 8n.

(vi) S ⊇ (3, 3),m ≥ 2. The matrix

M =

(
pIn

∣∣ In
∣∣ 0

∥∥ pIn
∣∣ 0

∣∣ In
pIn

∣∣ 0
∣∣ In

∥∥ pA
∣∣ In

∣∣ 0

)
is an indecomposable in Mat((3, 3),Zp2) of dimension 6n.

(vii) S ⊇ (2, 5), m ≥ 2. The matrix

M =

In 0
∣∣ 0 0

∥∥ pIn
∣∣ 0

∣∣ 0
∣∣ 0

∣∣ In
0 pIn

∣∣ In 0
∥∥ pIn

∣∣ pIn
∣∣ 0

∣∣ In
∣∣ 0

0 0
∣∣ 0 In

∥∥ pIn
∣∣ pA

∣∣ In
∣∣ 0

∣∣ 0


is an indecomposable in Mat((2, 5),Zp2) with dimension 9n.

4.2. Proof of Theorem II. The proof is analogous to the proof of
Theorem I. Assume A is a module-indecomposable n× n Zpm -matrix.

(i) S ⊇ S4, m ≥ 2,

(iii) S ⊇ S3, m = 3.

By [6], uRep(S,Zpm) is unbounded for these cases.

(ii) S ⊇ (1, 1, 2), m ≥ 2. The matrix

M =

(
In

∥∥ In
∥∥ 0

∣∣ In
0

∥∥ In
∥∥ pIn

∣∣ A

)
is an indecomposable in uMat((1, 1, 2), p2) of dimension 4n.

(iv) S ⊇ (1, 3), m ≥ 6. The matrix

M =

 In 0 0
∥∥ p2In 0

∣∣ In 0
∣∣ 0 0

0 In 0
∥∥ p3In p4A

∣∣ 0 p2In
∣∣ In 0

0 0 In
∥∥ p4In p5In

∣∣ 0 0
∣∣ 0 In


is an indecomposable in uMat((1, 3),Zp6)) of dimension 9n.
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(v) S ⊇ (2, 2), m ≥ 4. The matrix

M =

 In 0
∣∣ 0 0

∥∥ In 0
∣∣ 0 0

pIn p2A
∣∣ In 0

∥∥ 0 p2In
∣∣ In 0

p2In p3In
∣∣ 0 In

∥∥ 0 0
∣∣ 0 In


in uMat((2, 2), p4) is indecomposable of dimension 8n.

(vi) S ⊇ (1, 4), m ≥ 4. The matrix

M =

(
In 0

∥∥ p2In
∣∣ pIn

∣∣ In
∣∣ 0

0 In
∥∥ p3In

∣∣ p2A
∣∣ 0

∣∣ In

)
is an indecomposable in uMat((1, 4),Zp4)) of dimension 6n.

(vii) S ⊇ (1, 6), m ≥ 3. The matrix

M =

In 0 0
∥∥ 0

∣∣ p2In
∣∣ 0

∣∣ 0
∣∣ 0

∣∣ In
0 In 0

∥∥ p2In
∣∣ pIn

∣∣ pIn
∣∣ 0

∣∣ In
∣∣ 0

0 0 In
∥∥ 0

∣∣ pIn
∣∣ pA

∣∣ In
∣∣ 0

∣∣ 0

,
is an indecomposable in uMat((1, 6), p3) of dimension 9n.

(viii) S ⊇ (2, 3), m ≥ 3. The matrix

M =

(
In

∣∣ 0
∥∥ pIn

∣∣ In
∣∣ 0

pIn
∣∣ I

∥∥ p2A
∣∣ 0

∣∣ In

)
is indecomposable in uMat(2, 3), p3) of dimension 5n.

(ix) S ⊇ (3, 3), m ≥ 2. The matrix

M =

(
pIn

∣∣ In
∣∣ 0

∥∥ pIn
∣∣ 0

∣∣ In
pIn

∣∣ 0
∣∣ In

∥∥ pA
∣∣ In

∣∣ 0

)
is an indecomposable in uMat((3, 3), p2) of dimension 6n.

(x) S ⊇ (2, 5), m ≥ 2. The matrix

M =

In 0
∣∣ 0 0

∥∥ pIn
∣∣ 0

∣∣ 0
∣∣ 0

∣∣ In
0 pIn

∣∣ In 0
∥∥ pIn

∣∣ pIn
∣∣ 0

∣∣ In
∣∣ 0

0 0
∣∣ 0 In

∥∥ pIn
∣∣ pA

∣∣ In
∣∣ 0

∣∣ 0


is an indecomposable in uMat((2, 5), p2) of dimension 9n.

5. (S, pm)-groups. Let (SG,≤) denote the finite poset of critical
types of an almost completely decomposable (acd) groupG. The regula-
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tor R(G) ofG defined by R(G) =
∩
{C | C a regulating subgroup of G}

is a completely decomposable subgroup of finite index in G. If SG is
an inverted forest, then R(G) is the unique regulating subgroup. These
and other properties of almost completely decomposable groups, in-
cluding near-isomorphism, may be found in [9, 14, 15, 16].

Given a prime p and a finite poset (S,≤), an acd group G is an
(S, pm)-group if S = SG, each type in S is p-locally free, and the
exponent of G/R(G) is pm. If s ∈ SG, then (R(G))(s) = {x ∈ R(G) |
type (x) ≥ s} is a summand of R(G), G/pmG and R(G)/pmR(G) are
finite free Zpm -modules, and each ((R(G))(s) + pmG)/pmG is a finite
free Zpm-module.

An (S, pm)-group G is homocyclic if G/R(G) is a free Zpm-module
[4].

Theorem 5.1. If S is an inverted forest of p-locally free types, then Sop

is a forest and there is a bijection from near-isomorphism classes [G] of
(S, pm)-groups to isomorphism classes [DG] of sincere representations
in Rep(Sop,Zpm) given by

G −→ DG =

(
R(G)

pmG
,
(R(G))(s) + pmG

pmG

∣∣∣∣ s ∈ S

)
such that :

(a) G is homocyclic if and only if DG is in uRep(Sop,Zpm).
(b) G is indecomposable if and only DG is indecomposable.

Proof. By [2, Lemma 4], there is a bijective correspondence from
near-isomorphism classes of (S, pm)-groups [G] to isomorphism classes
of sincere representations [UG] in cdRep(Sop,Zpm) defined by

G −→ UG =

(
R(G)

pmR(G)
,
(R(G))(s) + pmR(G)

pmR(G)
,

pmG

pmR(G)

∣∣∣∣ s ∈ Sop

)
such that G is indecomposable if and only if UG is indecomposable
and G is homocyclic if and only if pmG/pmR(G) is a free Zpm -module.
By Lemma 2.3, there is a bijection from isomorphism classes [UG] in
cdRep(Sop,Zpm) to isomorphism classes [DG] in Rep(Sop,Zpm) given
by

UG −→ DG =

(
R(G)

pmG
,
(R(G))(s) + pmG

pmG

∣∣∣∣ s ∈ Sop

)
,
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observing that the natural epimorphism

ϕ :
R(G)

pmR(G)
−→ R(G)

pmG

has kernel
pmG

pmR(G)

and

ϕ

(
(R(G))(s) + pmR(G)

pmR(G)

)
=

(R(G))(s) + pmG

pmG
.

Moreover, UG is indecomposable if and only if DG is indecomposable
and

G/R(G) ∼= (G/pmG)/R(G)/pmG)

is a free Zpm-module if and only if R(G)/pmG is a free module because
G/pmG is a free Zpm-module. �

Theorem 5.2. Assume S ⊂ T are disjoint unions of chains and
m ≥ 2.

(a) If sincere representations in Rep(S,Zpm) are unbounded, then sin-
cere representations in Rep(T,Zpm) are unbounded.

(b) If sincere representations in uRep(S,Zpm) are unbounded, then
sincere representations in uRep(T,Zpm) are unbounded.

Proof.

(a) In view of Lemma 2.3 and Lemma 3.1, it is sufficient to prove
that if sincere indecomposable matrices in Mat(S,Zpm) are un-
bounded, then sincere indecomposable matrices in Mat(T,Zpm) are
unbounded.

Assume, by way of induction on |S|, that T = S ∪ {t} with t /∈ S.
Write S = C1 ∪ · · · ∪ Ck as a disjoint union of chains Ci.

Case I. t is incomparable with every element of S.

(a) Let n be a natural number and M = (Ms | s ∈ S) a sincere inde-
composable matrix in Mat(S,Zpm) with dim(M) ≥ n. By Lemma 3.1,
there is a sincere indecomposable W = (W0,Ws,W∗) in cdRep(S,Zpm)
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with M = MW and W∗ = rsp(M). Write

M =


pi0M0

pi1M1

· · ·
pirMr


where

rsp(M) ∼= Zl0
pm ⊕ Zl1

pm−i1
⊕ · · · ⊕ Zlr

pm−ir , i0 = 0 < i1 < · · · < ir.

Define

N = (Ms

∥∥Nt | s ∈ S), where Nt =

pi0Il0 · · · 0
· · · · · · · · ·
0 · · · pirIlr

 .

Then N is a sincere matrix in Mat(T,Zpm) with dim(N) > dim(M)
≥ n.

We prove that N is indecomposable. By Lemma 3.1, there is a
sincere representation U = (U0,Ws, Ut, U∗ | s ∈ S) in cdRep(T,Zpm)
with MU = N , U0 = W0 ⊕ Ut, rsp(Nt) ⊆ Ut, and U∗ = rsp(N).

Assume f : U0 → U0 is an idempotent endomorphism of U . Then
g = f �W0 : W0 → W0 is an idempotent endomorphism of W as t is
incomparable to each s ∈ S. Hence, g = 0 or g = 1 because W is
indecomposable.

Assume g = f �W0= 0. Then f(W0) = 0, f(U0) = f(W0 ⊕ Ut) =
f(Ut) ⊆ Ut, and so f(U∗) ⊆ U∗ ∩ Ut = 0. Now f(rsp(Nt)) = 0
since f(W0) = 0 = f(U∗), N = (M

∥∥Nt), and U∗ = rsp(N). Write
Ut = Ul0 ⊕ · · · ⊕ Ulr with each Ulj corresponding to the matrix block

pijIlj in Nt. Then f(Ul0) = 0 because the first row block of Nt

is (Il0 · · · 0) ⊆ rsp(Nt). If 1 ≤ j, then the jth row block of Nt is
(0 · · · pijIlj · · · 0) ⊆ rsp(Nt) so that f(pijUtj ) = 0 for 1 ≤ j. Then
f is nilpotent because U0 = W0 ⊕ Ut, f(W0) = 0, f(Ul0) = 0, and
f(pijUtj ) = 0 with ij > 0, 1 ≤ j. As f is also idempotent, f = 0.
Similarly, if f �W= 1, then f = 1.

This shows that U is indecomposable. By Lemma 3.1, N = MU

is indecomposable. Hence, Mat(T,Zpm) contains indecomposables of
rank ≥ n.
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Case II. For some i, Ci ∪ {t} is a chain contained in T , n is a
natural number and M = (Ms | s ∈ S) is a sincere indecomposable in
Mat(S,Zpm) with dim(M) ≥ n and dim(Mj) > 1 for some j ∈ Ci.

Write Ci = {1 < · · · < j < · · · < v}. Since dim(Mj) > 1, Mj =
Mj1 ∪ Mj2 is the disjoint union of non-zero column blocks Mj1 , Mj2

with dim(Mji) ≥ 1. Define N = (Nr | r ∈ T ), where Nr = Mr if r ̸= j,
Nj = Mj1 , and Nt = Mj2 . Then N is a sincere matrix in Mat(T,Zpm)
with dim(N) = dim(M) ≥ n. Moreover, N is indecomposable since
allowable row and column operations decomposing N induce allowable
row and column operation decomposing M and M is indecomposable.

Case III. S3 ⊆ S and, for some i, Ci ∪ {t} is a chain contained in T .

Let n be a natural number. By [2], there is a sincere indecomposable

M =

(
InT

∥∥ InT

∥∥ A
0

∥∥ pInT

∥∥ pInT

)
in Mat(S3,Zp2) with dim(M) = 3n ≥ n. Repeated applications of
Cases I and II yield a sincere indecomposable N in Mat(T,Zpm) with
dim(N) ≥ dim(M) ≥ n.

Case IV. S = C1 ∪ C2 is the disjoint union of two chains and, for
some i, Ci ∪ {t} is a chain contained in T .

Let n > |S|2 be a natural number and M = (Ms | s ∈ S) a sincere
indecomposable in Mat(S,Zpm) with r rows and dim(M) ≥ n.

Assume, by way of contradiction, that dim(Mj) = 1 for each j ∈ Ci.
Then

∑
j∈Ci

dim(Mj) = |Ci| is the number of elements in the chain Ci.
Given s ∈ S, column operations on Ms reduce Ms to a column echelon
form

Ms =



∗ ∗ ∗ · · · ∗ 0
∗ ∗ ∗ · · · xk 0
∗ ∗ ∗ · · · 0 0
· · · · · · · · · · · · · · · · · ·
∗ ∗ x3 · · · 0 0
∗ ∗ 0 · · · 0 0
∗ x2 0 · · · 0 0
∗ 0 0 · · · 0 0
x1 0 0 · · · 0 0
0 0 0 · · · 0 0


.
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To see this, choose a non-zero element x1 of least p-height in the first
non-zero row from the bottom of Ms and annihilate to the right to
obtain a matrix of the form ∗ ∗ · · · ∗

x1 0 · · · 0
0 0 · · · 0

 .

Induction leads to the desired form. It now follows that dim(Ms) ≤ r
because Ms has no zero columns.

Moreover, r ≤ |Ci| since, if r > |Ci|, then row and column operations
on M lead to a zero row in (Mj | j ∈ Ci), contradicting condition (iii)
on M . Consequently, dim(M) =

∑
s∈S dim(Ms) ≤ |S|r ≤ |S||Ci| ≤

|S|2 < n, a contradiction.

Hence, Case II applies to yield a sincere indecomposable N in
Mat(T,Zpm) with dim(N) ≥ n.

Induction on |S| now completes the proof.

(b) For Case III, uMat(S3, p
2) is bounded but there is an M in

uMat(S3, p
3) with dim(M) = 3n, [6]. Clearly, in Cases I and II, if

M is a sincere indecomposable in uMat(S, pm), then N is a sincere
indecomposable in uMat(T,Zpm). �

Example 5.3.

(a) (Case I). Let S = (1, 3) ⊂ T = (1, 3, 1), and let A be an n × n
module indecomposable matrix. Then

M =

(
In 0

∥∥ p2In
∣∣ pIn

∣∣ In
0 p2In

∥∥ p3A
∣∣ p2In

∣∣ 0

)
is a sincere indecomposable in Mat((1, 3),Zp4) with dimension 5n and

N =

(
In 0

∥∥ p2In
∣∣ pIn

∣∣ In
∥∥ In 0

0 p2In
∥∥ p3A

∣∣ p2In
∣∣ 0

∥∥ 0 p2In

)
is a sincere indecomposable in Mat((1, 3, 1),Zp4) with dimension 7n.

(b) (Case II). Let S = (1, 3) = (1
∥∥2 < 3 < 4) ⊂ T = (1, 4) = {1

∥∥2
< 3 < 5 < 4}. If A is an n× n module indecomposable matrix, then

M = (M1

∥∥M4

∣∣M3

∣∣M2) =

(
In 0

∥∥ p2In
∣∣ pIn

∣∣ In
0 p2In

∥∥ p3A
∣∣ p2In

∣∣ 0

)
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is a sincere indecomposable in Mat((1, 3),Zp4) with dimension 5n.
Write

M3 =

(
pIn
p2In

)
= (M31

∣∣M32) =


pIn1

∣∣ 0
0

∣∣ pIn2

p2In1

∣∣ 0
0

∣∣ p2In2


with n = n1 + n2. Then

N = (N1

∥∥N4

∣∣N5

∣∣N3

∣∣N2) = (M1

∥∥M4

∣∣M31

∣∣M32

∣∣M2)

is a sincere indecomposable in Mat((1, 4),Zp4) with dimension 5n.

6. Bounded representation type.

Theorem 6.1.

(a) Rep(S,Zpm) is bounded in the following cases:
(i) [18]. S = (1, 2), 3 ≤ m ≤ 4.
(ii) [3]. S = (1, 3), m = 3.
(iii) [24]. S = (2, 2), m = 2.

(b) uRep(S,Zpm) is bounded in the following cases:
(i) [6]. S = (1, 1, 1), m = 2.
(ii) [9, Example 5.3.3]. S = (1, 2), 2 ≤ m.
(iii) [5]. S = (1, n), n ≥ 3, m = 2.
(iv) [4]. S = (1, 3), 2 ≤ m ≤ 4.
(v) [7]. S ⊆ (2, 2), 2 ≤ m ≤ 3.

In each case, there is a complete list, up to isomorphism, of inde-
composable sincere representations.

Proof. Each reference in (a) and (b) for the specified S and m, con-
tains a complete finite list of indecomposable (S, pm)-groups, respec-
tively indecomposable homocyclic (S, pm)-groups. By Theorem 5.1,
indecomposable (S, pm)-groups correspond to sincere indecomposable
representations in Rep(S,Zpm), and homocyclic indecomposable (S, pm)-
groups correspond to sincere indecomposable representations in uRep
(S,Zpm). �

Theorem 6.2. Up to equivalence, the indecomposables in Mat((1, n),
Zp2) are (1

∥∥1) and (1
∥∥p∣∣1). Consequently, Rep((1, n),Zp2) is bounded.



REPRESENTATIONS OVER THE RING Zpm 485

Proof. LetM = (M1

∥∥M2) be a sincere indecomposable in Mat((1, n),

Zp2) with rsp(M) ∼= Zl1
p2 ⊕ Zl2

p . Use row and column operations to re-

duce to

M =

(
Il1 0

∥∥ M1

0 pIl2
∥∥ pN

)
.

A row or column transformation is called restorable if the entries that
became nonzero in the process can be made zero again by transforma-
tions that do not affect the achievements of the restorable transforma-
tion.

As in [5], restorable row and column operations on the top row block
of M can be used to show that M1 has an embedded identity matrix,
a rest matrix pB that is a permutation of a matrix of the form(

pI 0
0 0

)
,

and the columns of pB ∪ In are a permutation of the columns of M1.
Then

M =

(
Il1 0

∥∥ pB ∪ I
0 pIl2

∥∥ pC ∪ pD

)
where the columns of

(
pB pC

)tr ∪ (
I pD

)tr
are permutations of the

columns of
(
M1 pN

)tr
.

If the bottom row block of M is empty, then M is equivalent to
(1
∥∥1) or (1∥∥p∣∣1) because M is indecomposable.

Assume the bottom row block of M is not empty and use restorable
row operations from I in the top row block to pD in the bottom row
block of M to get

M =

(
I 0

∥∥ pB ∪ I
0 pI

∥∥ pE ∪ 0

)
.

The matrix pE has an embedded identity matrix pI with 0 as a rest
matrix. By the Regulator condition on M ,

(
pI 0

)
has no zero rows

so that

M =

(
I 0

∥∥ (pF1 pF2) ∪ I
0 pI

∥∥ (pI 0) ∪ 0

)
.

Use restorable row operations from the bottom row block to the upper
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row block of M to obtain

M =

(
I 0

∥∥ (0 pF2) ∪ I
0 pI

∥∥ (pI 0) ∪ 0

)
.

Thus, M is equivalent to
(
I
∥∥pF2

∣∣I) ⊕ (
pI

∥∥pI∣∣0)). Since M is inde-

composable, M is equivalent to (1
∥∥1) or (1

∥∥p∣∣1). By Lemma 2.3 and
Lemma 3.1, Rep((1, n),Zp2) is bounded. �

Corollary 6.3. Assume S is a disjoint union of chains.

(a) The only cases for which Rep(S,Zpm) is not known to be bounded
or unbounded are:
(i) S = (1, 2), m = 5.
(ii) S = (1, 4), m = 3.
(iii) S = (2, n), 3 ≤ n ≤ 4, m = 2.

(b) The only cases for which uRep(S,Zpm) is not known to be bounded
or unbounded are:
(i) S = (1, 3), m = 5.
(ii) S = (1, n), 4 ≤ n ≤ 5, m = 3.
(iii) S = (2, n), 3 ≤ n ≤ 4, m = 2.

Proof.

(a) The cases of (S,m) left unresolved by Theorem I are:
S = (1, n), 2 ≤ n, m = 2;
S = (1, 2), 3 ≤ m ≤ 5;
S = (1, 3), m = 3;
S = (1, 4), m = 3;
S = (2, 2), m = 2;
S = (2, n), 3 ≤ n ≤ 4, m = 2.
By Lemma 4.2, Theorem 6.2 and Theorem 6.1 (a), Rep(S,Zpm)

is bounded for S ⊆ (1, n), m = 2; S ⊆ (1, 2), 3 ≤ m ≤ 4; S ⊆ (1, 3),
m = 3; and S ⊆ (2, 2), m = 2. The only remaining unresolved cases
are those listed in (a), (i)–(iii).

(b) The cases of (S,m) left unresolved in Theorem II are:
S = (1, 1, 1), m = 2;
S = (1, 2), 2 ≤ m;
S = (1, n), n ≥ 3, m = 2;
S = (1, 3), 2 ≤ m ≤ 5;
S = (1, n), 4 ≤ n ≤ 5, m = 3;
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S = (2, 2), 2 ≤ m ≤ 3;
S = (2, n), 3 ≤ n ≤ 4, m = 2.

In view of Lemma 4.2, Theorem 6.1 (b) and Theorem 6.2, uRep
(S,Zpm) is bounded for S ⊆ (1, n), m = 2; S ⊆ (1, 1, 1), m = 2;
S ⊆ (1, 2), 2 ≤ m; S ⊆ (1, n), n ≥ 3, m = 2; S ⊆ (1, 3), 2 ≤ m ≤ 4;
S ⊆ (2, 2), 2 ≤ m ≤ 3. The only remaining unresolved cases are as
listed in (b), (i)–(iii). �

APPENDIX. We show here that a matrix representing an auto-
morphism of a finite abelian p-group or a representation is a product of
elementary matrices and therefore its action is a sequence of elementary
transformations.

(a) First, let A be a homocyclic group of exponent pm, or equiv-
alently a finite free Zpm-module. Let M =

(
mij

)
be the matrix of

α ∈ AutA with respect to some basis of A. Depending on conventions,
we are allowed arbitrary row transformations or arbitrary column trans-
formation. We choose row transformations, the case of column trans-
formations being analogous or settled by transposition. Since M is
invertible, det(M) = 1. There must be a unit in the first column that
we can move to the first row and turn into a 1. By adding suitable mul-
tiples of the first row to rows below, we get the matrix

(
1 m
0 M ′

)
. Now

detM ′ = 1, and we may assume that there is an entry 1 in position

(2, 2). With row transformation, we obtain
(

1 0 m
0 1 m
0 0 M ′′

)
. Continuing in

this fashion, we get the identity matrix which means that the original
matrix M is a product of elementary matrices corresponding to the
elementary transformations used.

(b) Next, let A = A1 ⊕A2 ⊕ · · · ⊕Am be an arbitrary finite abelian
p-group where Ai = 0 or Ai is homocyclic of exponent pi, 1 ≤ i ≤ m.
By [17, Theorem 3.2], every automorphism of A can be identified with
a matrix

M =

 µ11 µ21 ··· µm1
µ12 µ22 ··· µm2

...
...

...
...

µ1m µ2m ··· µmm


where µij ∈ Hom(Ai, Aj). The action is given by M a� where a� =
(a1, . . . , am)tr for ai ∈ Ai. This action can be interpreted as matrix
multiplication and the composite of two endomorphism is the product
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matrix. The endomorphism M = (µij) is an automorphism if and only
if the µii ∈ Hom(Gi, Gi) are automorphisms for all i.

Let such a matrix M be given. Then µ11 is invertible and can
be transformed to the identity I1 by multiplying row 1 by µ−1

11 . By
elementary row transformations or left multiplication by elementary
matrices we get (note that maps act on the left, so that µjkµij ∈
Hom(Ai, Ak))

I1 0 · · · 0
−µ12 I2 · · · 0
...

...
...

...
0 0 · · · Im




I1 µ21 · · · µm1

µ12 µ22 · · · µm2

...
...

...
...

µ1m µ2m · · · µmm



=


I1 µ21 · · · µm1

0 µ22 − µ12µ21 · · · µm2 − µ12µm1

...
...

...
...

µ1m µ2m · · · µmm


Repeating this process for the other rows we obtain the form

I1 µ21 · · · µm1

0 µ′
22 · · · µ′

m2
...

...
...

...
0 µ′

2m · · · µ′
mm

 .

This matrix represents again an automorphism and therefore µ′
22 is

invertible and can be transformed to the identity matrix I2. Using
it, the remaining entries in the second column can be made 0 and,
continuing in this fashion, we get the identity matrix. It remains to
observe that by introducing bases in the summands Ai the matter can
be reduced to numerical matrices.

(c) Let U ′ = (U0, Us, U∗ | s ∈ S) ∈ cdRep(S,Zpm), and consider
U = (U0, Us | s ∈ S). Here U0 =

⊕
s∈S Vs is a free module. Let Bs

be a basis of Vs. Then B =
⊕

s∈S Bs is a basis of U0. For x ∈ U0,
x =

∑
v∈B mvv with unique coefficients mv ∈ Zpm . Then the row

vector (x)B = (· · ·mv · · · ) is the coordinate vector of x with respect to

the basis B. Let α ∈ AutU . Then (α)B =
( ···

(α(v))B
···

)
v∈B

is the matrix

of α with respect to B. The equation (α(x))B = (x)B(α)B displays the
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connection between automorphisms and their matrices. So (α)B acts
on row vectors by right multiplication. Also (αβ)B = (β)B(α)B.

The group AutU is a proper subgroup of AutU0 and the elementary
matrices whose product is (α) must themselves be the matrices of
representation automorphisms.

We will look at matrices (α)B in terms of the column blocks Ms and
row blocks

(6.1) (α(Bs)) =

 · · ·
(α(v))B

· · ·


v∈Bs

= (· · ·ms · · ·mt · · · ),

where ms and mt are the intersections of the row block (α(Bs)) with
the column blocks Ms,Mt, respectively. The fact that α(Us) ⊆ Us

implies that

mt = 0 if s ̸≤ t,(6.2)

or, equivalently,

mt ̸= 0 implies s ≤ t.

Now suppose that s is minimal in S. It then follows from the
minimality of s and (6.2) that in (α)B there are only zeros above
and below the block ms. Then det(ms) must be a unit and ms

can be transformed into an identity matrix Is by allowed elementary
transformations by the special case considered above. All non-zero
entries mt in the new row block (· · · Is · · ·mt · · · ) must have t ≥ s and
therefore can be made to 0 by allowed column transformations. Thus,
for all minimal s ∈ S, we have crosses 0

0 Is 0
0

 .

Ignoring these rows and columns, we can proceed as before with the
rest of the matrix that is indexed by S less its minimal elements. By
iteration, we arrive at an identity matrix, which means that the original
matrix (α)B is a product of elementary matrices.
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