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ON THE RINGS OF FRICKE CHARACTERS
OF FREE ABELIAN GROUPS

ERI HATAKENAKA AND TAKAO SATOH

ABSTRACT. In this paper, we determine the structure of
the rings XQ(H) of Fricke characters over Q of free abelian
groups H of rank n ≥ 1. In particular, we consider the ideal
J in XQ(H), generated by trx − 2 for any x ∈ H and give a

Q-basis of each of the graded quotients grk(J) := Jk/Jk+1

for k ≥ 1. Then we introduce a weight for each element of
XQ(H). By using the concept of this weight we show that
XQ(H) is an integral domain.

1. Introduction. Let G be a group generated by x1, . . . , xn. We de-
note by R(G) the set Hom (G,SL (2,C)) of all SL (2,C)-representations
of G. Let F(R(G),C) be the set {χ : R(G) → C} of all complex-valued
functions on R(G). Then we can regard F(R(G),C) to be a C-algebra
in a natural way. (See subsection 3.1 for details.) For an element x ∈ G,
trx ∈ F(R(G),C) is defined to satisfy the equation

(trx)(ρ) = tr ρ(x)

for any ρ ∈ R(G). Here “tr” in the right hand side means the trace
of 2 × 2 matrix ρ(x) ∈ SL(2,C). The element trx in F(R(G),C) is
called the Fricke character of x. Let XQ(G) be the Q-vector subspace
in F(R(G),C), which is generated by all trx for x ∈ G. Then XQ(G)
has a ring structure with the multiplication of F(R(G),C). We call
XQ(G) the ring of Fricke characters of G over Q.

Classically, the study of Fricke characters was begun by Fricke for
a free group Fn generated by x1, . . . , xn in connection with certain
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problems in the theory of Riemann surfaces. (See [3].) In the 1970s,
Horowitz investigated algebraic properties of X(G) by using the com-
binatorial group theory in [6, 7]. In particular, he showed in [6] that,
for any x ∈ G, the Fricke character trx can be written as a rational
polynomial in n+

(
n
2

)
+
(
n
3

)
characters trxi1xi2 · · ·xil for 1 ≤ l ≤ 3 and

1 ≤ i1 < i2 < · · · < il ≤ n. Hence, when we put P to be a polynomial
ring

Q[ti1···il | 1 ≤ l ≤ 3, 1 ≤ i1 < i2 < · · · < il ≤ n],

then there exists a surjective homomorphism πG : P → XQ(G) defined
by ti1···il 7→ trxi1xi2 · · ·xil . The study of the ring structure of XQ(G)
is inextricably associated with to that of the ideal Ker (πG). In general,
however, it is quite a difficult problem to find a generating set of
Ker (πG) even in the case that G is a free group. (See also subsection
3.1.)

In the case that G is an abelian group, it is easy to see that any
Fricke character of G is written as a rational polynomial in n +

(
n
2

)
characters trxi for 1 ≤ i ≤ n and trxi1xi2 for 1 ≤ i1 < i2 ≤ n. Hence,
when we put P as a polynomial ring

Q[ti, ti1i2 | 1 ≤ i ≤ n, 1 ≤ i1 < i2 ≤ n],

then there exists the surjective homomorphism πG : P → XQ(G)
defined by ti 7→ trxi and ti1i2 7→ trxi1xi2 . We denote by I the kernel
of πG.

In the present paper, we consider the case where G is a free abelian
group H := H1(Fn,Z) of rank n. First, we introduce a descending
filtration in XQ(H). Set t′i1···il := ti1···il − 2 ∈ P. We also denote by
t′i1···il its coset class in P/I ∼= XQ(H) by abuse of language. Consider
the ideal J0 in P generated by all t′i1···ils. That is,

J0 = (t′i, t
′
i1i2 | 1 ≤ i ≤ n, 1 ≤ i1 < i2 ≤ n) ⊂ P.

Set J := πH(J0). Then, we have a descending filtration

J ⊃ J2 ⊃ J3 ⊃ · · ·

of ideals in P/I. (See subsection 3.1 for details.) Set grk(J) := Jk/Jk+1

for k ≥ 1. Each grk(J) is a Q-vector space of finite dimension on which
AutH naturally acts. In general, to determine the structures of the
graded quotients grk(J) plays an important role on various studies of
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the ring P/I. The first purpose of this paper is to give a basis of grk(J)
for any k ≥ 1. More precisely, we show the following theorem.

Theorem 1.1 (equivalent to Theorems 4.2 and 4.5).

(i) For each k ≥ 1 and 0 ≤ l ≤ k, set

Tl := {t′p1q1 · · · t
′
plql

t′il+1
· · · t′ik ∈ J0

| 1 ≤ p1 < q1 < · · · < pl < ql ≤ n, 1 ≤ il+1 ≤ · · · ≤ ik ≤ n}.

Then

Sk :=

k∪
l=0

πH(Tl)

forms a basis of grk(J).
(ii) ∩

k≥1

Jk = {0}.

The main purpose of this paper is to give an application to our
previous work for the Fricke characters of free groups. Let us explain
it. Needless to say, by an argument similar to the above, we can define
the ideal JFn in the ring XQ(Fn) of Fricke characters of the free group
Fn generated by all t′i1···il := ti1···il − 2 for 1 ≤ l ≤ 3 and 1 ≤ i1 < i2 <

· · · < il ≤ n. Then we have a descending filtration JFn ⊃ J2
Fn

⊃ · · ·
in XQ(Fn) and the graded quotients grk(JFn) := Jk

Fn
/Jk+1

Fn
for each

k ≥ 1. Such graded quotients were originally studied by Magnus [13]
to investigate the behavior of the action of AutF3 on grk(JFn). In

[5], we gave bases of the graded quotients grk(JFn) := Jk
Fn

/Jk+1
Fn

for

k = 1 and 2. In general, however, it seems that no basis of grk(JFn) is
obtained for k ≥ 4. From Theorem 1.1, we can give a lower bound on
a dimension of grk(JFn) since the natural projection Fn → H induces
the surjective homomorphism grk(JFn) → grk(J). More precisely, we
have

Corollary 1.2. For any n ≥ 2,

dimQ(grk(JFn)) ≥ dimQ(grk(J)) =
k∑

l=0

(
n

2l

)(
n+ k − l − 1

k − l

)
.
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For any k ≥ 1, let EFn(k) be the subgroup of AutFn, consisting

of automorphisms which act on JFn/J
k+1
Fn

trivially. Then we have a
descending filtration {EFn(k)}k≥1 of AutFn. This filtration is a Fricke
character analogue of the Andreadakis-Johnson filtration {AFn(k)}k≥1

of AutFn. The Andreadakis-Johnson filtration was originally intro-
duced by Andreadakis [2] in the 1960’s. The name “Johnson” comes
from Dennis Johnson who studied this type of filtration for the mapping
class group of a surface in the 1980’s. It is called the Johnson filtra-
tion of the mapping class group. The Johnson homomorphisms were
originally introduced by Johnson in order to investigate the graded
quotients of the Johnson filtration in a series of his pioneering works
[8, 9, 10, 11]. In [14], Morita began to study the Johnson homo-
morphisms of the mapping class groups and AutFn systematically.
Today, together with the theory of the Johnson homomorphisms, the
Andreadakis-Johnson filtration is one of the powerful tools to study the
group structure of the automorphism group of a group. (For basic mate-
rial for the Andreadakis-Johnson filtration and the Johnson homomor-
phisms of AutFn, see [15, 16], for example.) In our previous paper [5],
we also studied the graded quotients grk(EFn) := EFn(k)/EFn(k+1), by
introducing and using a Johnson homomorphism-like homomorphism

ηk : grk(EFn) −→ HomQ(gr1(JFn), gr
k+1(JFn))

for each k ≥ 1. In general, to determine the image of ηk is quite a
difficult problem. Since ηk vanishes through the homomorphism

HomQ(gr1(JFn), gr
k+1(JFn)) −→ HomQ(gr1(JFn), gr

k+1(J))

induced from the homomorphism grk+1(JFn) → grk+1(J) obtained
from the natural projection Fn → H, we can obtain information about
the cokernel of ηk by Theorem 1.1.

Corollary 1.3. For any n ≥ 3 and k ≥ 2,

dimQ(Coker(ηk)) ≥
(
n+

(
n

2

)
+

(
n

3

)) k+1∑
l=0

(
n

2l

)(
n+ k − l

k + 1− l

)
.

In [5], we also showed that AFn
(2k) ⊂ EFn

(k) for each k ≥ 1. Hence,
the natural inclusion map and ηk define the homomorphism

AFn(2k)/AFn(2k + 2) → grk(EFn)
ηk−→ HomQ(gr1(JFn), gr

k+1(JFn))
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for each k ≥ 1. At the present stage, we do not know whether the above
homomorphism is injective or not. To the best of our knowledge, other
than this, it seems quite difficult to develop the connection of the ring
of Fricke characters to the Lie algebra arising from the Andreadakis-
Johnson filtration.

Now, by using Theorem 1.1, we can obtain the following.

Theorem 1.4 (equivalent to Theorem 4.3). The ideal I is generated
by

t′irt
′
js − t′ist

′
jr − {t′it′r + t′jt

′
s − t′jt

′
r − t′it

′
s}

+ {t′it′jr + t′jt
′
is + t′rt

′
is + t′st

′
jr − t′jt

′
ir − t′it

′
js − t′rt

′
js − t′st

′
ir}

+
1

2
{t′jt′rt′is + t′it

′
st

′
jr − t′it

′
rt

′
js − t′jt

′
st

′
ir}

for any 1 ≤ i, j, r, s ≤ n. Here we remark that, in the above notation,
t′ij should be read {

t′ji if i > j,

(t′i)
2 + 4t′i if i = j.

In particular, I is finitely generated.

Furthermore, from Theorem 1.1, we see that the ideal I is generated
by polynomials of degree greater than one. This fact enables us to
define the concept of a weight for each element of P/I ∼= XQ(H).
Using this, we show

Theorem 1.5 (equivalent to Theorem 5.2). The ring XQ(H) of Fricke
characters is an integral domain. That is, the ideal I is a prime ideal
in P.

Finally, in Section 6, we will give some remarks on the natural action
of AutH on J/Jk+1 for k ≥ 1. Let EH(k) be the kernel of a natural
homomorphism AutH → Aut(J/Jk+1) induced from the action of
AutG. Let ι ∈ AutH be an automorphism of H defined by

xι
i := x−1

i , 1 ≤ i ≤ n.

Then we show the following.
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Proposition 1.6 (equivalent to Proposition 6.1 and Corollary 6.2).
For any k ≥ 1, the group EH(k) is the cyclic group of order 2, generated
by ι.

2. Notation and conventions. Throughout the paper, we use the
following notation and conventions. Let Fn be the free group of rank n
with a basis x1, . . . , xn, and letH be its abelianizationH1(Fn,Z). Then
H is a free abelian group of rank n, and the coset classes of x1, . . . , xn

form a basis of H as a free abelian group. We also use the following
notation.

• Let G be a group. The automorphism group AutG of G acts
on G from the right. For any σ ∈ AutG and x ∈ G, the action
of σ on x is denoted by xσ.

• Let N be a normal subgroup of a group G. For an element
g ∈ G, we also denote the coset class of g by g ∈ G/N if there
is no confusion. Similarly, for a ring R, an element f ∈ R and
an ideal I of R, we also denote by f the coset class of f in R/I
if there is no confusion.

• For elements x and y in G, the commutator bracket [x, y] of x
and y is defined to be xyx−1y−1.

For pairs (i1, i2, . . . , ik) and (j1, j2, . . . , jk) of natural numbers ir, js ∈
N, we denote the lexicographic order among them by (i1, i2, . . . , ik) ≤
(j1, j2, . . . , jk). Namely, this means i1 < j1, i1 = j1 and i2 < j2, or and
so on.

3. A filtration on the ring of Fricke characters of H. In this
section, we briefly review the ring of Fricke characters of a finitely
generated group G.

3.1. The ring XQ(G) of Fricke characters of a finitely generated
group G. Let G be a group generated by x1, . . . , xn. We denote by
R(G) the set Hom (G,SL(2,C)) of all SL (2,C)-representations of G.
Let F(R(G),C) be the set {χ : R(G) → C} of all complex-valued
functions on R(G). Then F(R(G),C) has a C-algebra structure by
the operations defined by

(χ+ χ′)(ρ) := χ(ρ) + χ′(ρ),

(χχ′)(ρ) := χ(ρ)χ′(ρ),
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(λχ)(ρ) := λ(χ(ρ)),

for any χ, χ′ ∈ F(R(G),C), λ ∈ C and ρ ∈ R(G).

The automorphism group AutG of G naturally acts on R(G) and
F(R(G),C) from the right by

ρσ(x) := ρ(xσ−1

), ρ ∈ R(G) and x ∈ G

and

χσ(ρ) := χ(ρσ
−1

), χ ∈ F(R(G),C) and ρ ∈ R(G),

for any σ ∈ AutG.

For any x ∈ G, we define an element trx of F(R(G),C) to be

(trx)(ρ) := tr ρ(x),

for any ρ ∈ R(G). Here, “tr” in the right hand side means the trace
of the 2× 2 matrix ρ(x). The element trx in F(R(G),C) is called the
Fricke character of x ∈ G. The action of an element σ ∈ AutG on trx
is given by trxσ. We have the following well-known formulae:

trx−1 = trx,

(3.1)

trxy = tr yx,
(3.2)

trxy + trxy−1 = (trx)(tr ),

(3.3)

trxyz + tr yxz = (trx)(tr yz) + (tr y)(trxz)

(3.4)

+ (tr z)(trxy)− (trx)(tr y)(tr z),

tr [x, y] = (trx)2 + (tr y)2 + (trxy)2 − (trx)(tr y)(trxy)− 2,

(3.5)

2trxyzw = (trx)(tr yzw) + (tr y)(tr zwx) + (tr z)(trwxy)

(3.6)

+ (trw)(trxyz) + (trxy)(tr zw)− (trxz)(tr yw) + (trxw)(tr yz)

− (trx)(tr y)(tr zw)− (tr y)(tr z)(trxw)− (trx)(trw)(tr yz)

− (tr z)(trw)(trxy) + (trx)(tr y)(tr z)(trw),
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for any x, y, z, w ∈ G. The equations (3.4) and (3.6) are due to Vogt
[17]. (For details, see [12, subsection 3.4], for example.)

Let XQ(G) be the Q-vector subspace of F(R(G),C) generated by
all trx for x ∈ G. The set XQ(G) naturally has a ring structure from
(3.3). We call XQ(G) the ring of Fricke characters of G over Q. Let P
be a rational polynomial ring

Q[ti1···il | 1 ≤ l ≤ 3, 1 ≤ i1 < i2 < · · · < il ≤ n]

of n +
(
n
2

)
+
(
n
3

)
indeterminates. Consider a ring homomorphism

π = πG : P → F(R(G),C) defined by

π(1) :=
1

2
(tr 1G), π(ti1···il) := trxi1 · · ·xil .

We see Im (π) ⊂ XQ(G). By a classical result due to Horowitz, we have

Theorem 3.1 (Horowitz, [6]). For any group G generated by x1, . . . , xn,
the homomorphism π : P → XQ(G) is surjective.

More precisely, Horowitz obtained a generating set of the ring of
Fricke characters of G over Z in [6]. Using this and (3.6), we can
obtain the above theorem. We should remark that, in general, the
structure of an ideal

Ker (πG) = {f ∈ P | f(tr ρ(xi1 · · ·xil)) = 0 for any ρ ∈ R(G)}

is quite difficult. For example, its generating set is not obtained even
in the case where G is a free group Fn in general. Horowitz [6] showed
that Ker (πFn) = (0) for n = 1 and 2, and that Ker (πF3) is a principal
ideal generated by a quadratic polynomial

t2123 − P123(t)t123 +Q123(t),

where

Pabc(t) := tabtc + tactb + tbcta − tatbtc,

Qabc(t) := t2a + t2b + t2c + t2ab + t2ac + t2bc − tatbtab

− tatctac − tbtctbc + tabtbctac − 4.

For n ≥ 4, Whittemore [18] showed that the ideal Ker (πFn) is not
principal. However, very little is known about Ker (πFn) for general
n ≥ 4.
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3.2. The ring XQ(G) for an abelian group G. Now, in the follow-
ing, we always consider the case where G is abelian. In this case, we
see
(3.7)
2trxyz = (trx)(tr yz) + (tr y)(trxz) + (tr z)(trxy)− (trx)(tr y)(tr z),

from (3.4). This shows that, if G is abelian and is generated by
x1, . . . , xn, it turns out that XQ(G) is generated by tr 1G,

trxi for 1 ≤ i ≤ n and trxixj for 1 ≤ i < j ≤ n,

by Theorem 3.1. In other words, consider a polynomial ring

P := Q[ti, ti1i2 | 1 ≤ i ≤ n, 1 ≤ i1 < i2 <≤ n],

and a ring homomorphism π = πG : P → XQ(G) defined by

π(1) :=
1

2
(tr 1G), π(ti1···il) := trxi1 · · ·xil .

Then π : P → XQ(G) is surjective. Set I := Ker (π). In this paper,
we always identify P/I with XQ(G) as a ring under the isomorphism
induced from π and also call each of them the ring of Fricke characters
of G over Q.

Next, set t′i1···il := ti1···il − 2 ∈ P. We also denote by t′i1···il its coset
class in P/I by abuse of language. An element in XQ(G) corresponding
to t′i1···il ∈ P/I is

tr′xi1 · · ·xil : = (trxi1 · · ·xil)− 2

= (trxi1 · · ·xil)− tr 1G ∈ XQ(G).

Consider an ideal

J0 = (t′i, t
′
i1i2 | 1 ≤ i ≤ n, 1 ≤ i1 < i2 ≤ n) ⊂ P

generated by all t′i1···il ’s in P, and

J := π(J0) = (t′i, t
′
i1i2 | 1 ≤ i ≤ n, 1 ≤ i1 < i2 ≤ n) ⊂ P/I.

Then, we have a descending filtration

J ⊃ J2 ⊃ J3 ⊃ · · ·

of ideals of P/I. Set
grk(J) := Jk/Jk+1.
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Then each of grk(J) is a finite dimensional Q-vector space. In the
present paper, for the case where G is a free abelian group H of rank n,
we determine the Q-vector space structures of grk(J) for any k ≥ 1.
More precisely, we give a basis of each of grk(J) in Section 4.

3.3. Basic formulae among tr′ x. In this subsection, we summarize
basic and useful formulae among tr′x for x ∈ G. To begin with, we
confirm the following.

tr′x−1 = tr′x,(3.8)

tr′xy = tr′yx,(3.9)

tr′xy + tr′xy−1 = 2tr′x+ 2tr′y + (tr′x)(tr′y),(3.10)

tr′xyz + tr′yxz = −2{tr′x+ tr′y + tr′z}
(3.11)

+ 2{tr′xy + tr′yz + tr′xz}
+ (tr′x)(tr′yz) + (tr′y)(tr′xz) + (tr′z)(tr′xy),

− 2{(tr′x)(tr′y) + (tr′y)(tr′z) + (tr′z)(tr′x)} − (tr′x)(tr′y)(tr′z),

and

2tr′xyzw = 2(tr′x+ tr′y + tr′z + tr′w)

(3.12)

− 2(tr′xy + tr′xz + tr′xw + tr′yz + tr′yw + tr′zw)

+ 2(tr′xyz + tr′xyw + tr′xzw + tr′yzw)

+ 2{(tr′x)(tr′y) + (tr′x)(tr′w)

+ (tr′y)(tr′z) + (tr′z)(tr′w) + 2(tr′x)(tr′z) + 2(tr′y)(tr′w)}
− 2{(tr′x)(tr′yz) + (tr′x)(tr′zw)

+ (tr′y)(tr′xw) + (tr′y)(tr′zw)

+ (tr′z)(tr′xy) + (tr′z)(tr′xw)

+ (tr′w)(tr′xy) + (tr′w)(tr′yz)}
+ {(tr′x)(tr′yzw) + (tr′y)(tr′xzw)

+ (tr′z)(tr′xyw) + (tr′w)(tr′xyz)}+ {(tr′xy)(tr′zw)
− (tr′xz)(tr′yw) + (tr′xw)(tr′yz)}
− {(tr′x)(tr′y)(tr′zw) + (tr′y)(tr′z)(tr′xw)
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+ (tr′x)(tr′w)(tr′yz) + (tr′z)(tr′w)(tr′xy)}
+ (tr′x)(tr′y)(tr′z)(tr′w)

+ 2{(tr′x)(tr′y)(tr′z) + (tr′x)(tr′y)(tr′w)

+ (tr′x)(tr′z)(tr′w) + (tr′y)(tr′z)(tr′w)}.

These formulae hold for any group G and x, y, z, w ∈ G. For details,
see our previous paper [5, Section 4].

Lemma 3.2. For any x ∈ G and α ∈ Z,

tr′xα ≡ α2tr′x (mod J2).

Proof. It is obvious when α = 0, 1. It suffices to show α > 0. We
show this by induction on α.

Assume α ≥ 2. Then, substituting xα−1 and x to x and y in (3.10),
respectively, we have

tr′xα + tr′xα−2 = 2tr′xα−1 + 2tr′x+ (tr′xα−1)(tr′x),

and, hence, by the inductive hypothesis, we obtain

tr′xα ≡ 2(α− 1)2tr′x− (α− 2)2tr′x+ 2tr′x,≡ α2tr′x (mod J2).

This completes the proof of Lemma 3.2. �

Here, we consider additional relations among tr′x for abelian groupG.

Lemma 3.3. For an abelian group G and any x, y, z, w ∈ G, we have

(tr′xz)(tr′yw) = (tr′xw)(tr′yz)

+ {(tr′x)(tr′z) + (tr′y)(tr′w)− (tr′y)(tr′z)− (tr′x)(tr′w)}
− {(tr′x)(tr′yz)+(tr′y)(tr′xw)+(tr′z)(tr′xw)+(tr′w)(tr′yz)

− (tr′y)(tr′xz)−(tr′x)(tr′yw)−(tr′z)(tr′yw)−(tr′w)(tr′xz)}

− 1

2
{(tr′y)(tr′z)(tr′xw) + (tr′x)(tr′w)(tr′yz)

− (tr′x)(tr′z)(tr′yw)− (tr′y)(tr′w)(tr′xz)}

Proof. In order to obtain the equation above, it suffices to calculate
2tr′xyzw− 2tr′yxzw with equation (3.12). The calculation is straight-
forward. We leave it to the reader for an exercise. �
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As special cases of Lemma 3.3, we see the following corollaries.

Corollary 3.4. For an abelian group G and x, y, z ∈ G, we have

(tr′xy)(tr′xz) = −3(tr′x)(tr′y)− 3(tr′x)(tr′z)− (tr′x)2 − (tr′y)(tr′z)

+ 2(tr′x)(tr′yz) + (tr′x)(tr′xy)

+ (tr′x)(tr′xz) + (tr′y)(tr′xz) + (tr′z)(tr′xy)

+
1

2
(tr′x)2(tr′yz)− (tr′x)2(tr′y)

− (tr′x)2(tr′z)− (tr′y)(tr′xz)

− (tr′x)(tr′yw)− (tr′z)(tr′yw)− (tr′w)(tr′xz)

− 1

2
(tr′x)2(tr′y)(tr′z)− 2(tr′x)(tr′y)(tr′z)

+
1

2
(tr′x)(tr′z)(tr′xy) +

1

2
(tr′x)(tr′y)(tr′xz).

Corollary 3.5. For an abelian group G and x, y ∈ G, we have

(tr′xy)2 = −(tr′x)2 − (tr′y)2

+ 2{(tr′x)(tr′y) + (tr′x)(tr′xy) + (tr′y)(tr′xy)}
+ (tr′x)(tr′y)(tr′xy).

4. The structure of a Q-vector space grk(J) for G = H. The
goal of this section is to give a basis of grk(J) for any k ≥ 1 as a
Q-vector space.

Proposition 4.1. For any k ≥ 1, consider a polynomial

f := t′p1q1 · · · t
′
plql

t′il+1
· · · t′ik ∈ P,

for 0 ≤ l ≤ k, (p1, q1) ≤ · · · ≤ (pl, ql) and 1 ≤ il+1 ≤ · · · ≤ ik ≤ n.
Then, under the modulo I, the monomial f can be written as a sum of
monomials of type

t′p′
1q

′
1
· · · t′p′

mq′m
t′jm+1

· · · t′jk ∈ P,

such that

• 0 ≤ m ≤ k,
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• 1 ≤ p′1 < q′1 < · · · < p′m < q′m ≤ n,
• 1 ≤ jm+1 ≤ · · · ≤ jk ≤ n,
• {p′1, q′1, . . . , p′m, q′m} ⊂ {p1, q1, . . . , pl, ql}.

Proof. We prove this proposition by induction on l ≥ 0. If l = 0 or
1, it is clear. Assume l ≥ 2.

First, assume that some elements in {p1, q1, . . . , pl, ql} are equal. For
simplicity, we consider three cases:

(i) p1 = p2 and q1 ̸= q2,
(ii) p1 = q2 and q1 ̸= p2,
(iii) p1 = p2 and q1 = q2.

For parts (i) and (ii), by using Corollary 3.4, we see that under the
modulo I, the monomial f can be written as a sum of monomials

t′p1q1 · · · t
′
prqr t

′
ir+1

· · · t′ik ,

such that r < l. Hence, by applying the inductive hypothesis to each
of such monomials, we obtain the required result. We can discuss an
argument similar to the above for case (iii) by using Corollary 3.5.
Therefore, we assume that p1, q1, . . . , pl, ql are distinct.

Now, by the assumption (p1, q1) ≤ (p2, q2), we have p1 < p2. If
q1 < p2, then we have the inequalities:

p1 < q1 <p2 < p3 < · · · < pl

< < <

q2 q3 ql.

Hence, if we set f ′ := t′p2q2 · · · t
′
plql

t′il+1
· · · t′ik ∈ P, then we can apply

the inductive hypothesis to f ′ and obtain the required result.

Next, if p2 < q1, we have the inequalities:

p1 <p2 < p3 < · · · < pl

< < <

q1, q2 q3 ql.

Then, by using Lemma 3.3, we can write f as a sum of monomials

t′p1p2
t′q1,q2t

′
p3q3 · · · t

′
plql

t′il+1
· · · t′ik
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and
t′p1q1 · · · t

′
prqr t

′
ir+1

· · · t′ik ,

such that r < l. If we apply the inductive hypothesis to t′q1,q2t
′
p3q3 · · ·

t′plql
t′il+1

· · · t′ik and t′p1q1 · · · t
′
prqr t

′
ir+1

· · · t′ik , we obtain the required
result. This completes the proof of Proposition 4.1. �

Theorem 4.2. For each k ≥ 1 and 0 ≤ l ≤ k, set

Tl := {t′p1q1 · · · t
′
plql

t′il+1
· · · t′ik ∈ J0

| 1 ≤ p1 < q1 < · · · < pl < ql ≤ n, 1 ≤ il+1 ≤ · · · ≤ ik ≤ n}.

Then

Sk :=

k∪
l=0

π(Tl)

forms a basis of grk(J).

Proof. By Proposition 4.1, we see that Sk generates grk(J). In order
to show the linear independence of the elements of Sk, set

f :=

k∑
l=0

∑
p1<q1<···<pl<ql

il+1≤···≤ik

ap1q1,...,plql,il+1,...,ikt
′
p1q1 · · · t

′
plql

t′il+1
· · · t′ik ∈ Jk

0 ,

for ap1q1,...,plql,il+1,...,ik ∈ Q, and assume π(f) ∈ Jk+1.

Consider the interior

D := {z ∈ C | zz < 1}

of the unit disk inC. For any s1, . . . , sn ∈ D, we define a representation
ρ : H → SL(2,C) by

ρ(xi) :=

(
1− si 0

0 (1− si)
−1

)
for any 1 ≤ i ≤ n. If we consider the power series expansion

1

1− si
= 1 + si + s2i + s3i + · · ·
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at the origin on D, we can write each of tr′ρ(xi) and tr′ρ(xixj) as a
convergent power series:

tr′ρ(xi) =
s2i

1− si
= s2i + s3i + s4i + · · · ,

tr′ρ(xixj) = s2i + 2sisj + s2j + (terms of degree ≥ 3).

Then we have

π(f)(ρ) =

k∑
l=0

∑
p1<q1<···<pl<ql

il+1≤···≤ik

{
ap1q1,...,plql,il+1,...,ik(s

2
p1 +2sp1sq1 + s2q1) · · ·

(s2p2 + 2sp2sq2 + s2q2)s
2
il+1

· · · s2k
}

+ (terms of degree ≥ 2k + 2).

Since π(f) ∈ Jk+1, if we regard π(f)(ρ) as a polynomial on sis, its
degree must be greater than or equal to 2k + 2. Hence, all coefficients
of degree 2k are zero.

To begin with, for any 1 ≤ p1 < q2 < · · · < pk < qk ≤ n, by
observing the coefficients of sp1sq1 · · · spk

sqk , we see ap1q1,...,pkqk = 0.
For any 0 ≤ l ≤ k, assume that

ap1q1,...,pmqm,im+1,...,ik = 0

for any l ≤ m. Then, for any 1 ≤ p1 < q2 < · · · < pl−1 < ql−1 ≤ n and
1 ≤ il ≤ · · · ≤ ik ≤ n, we see

ap1q1,...,pl−1ql−1,il,...,ik = 0.

Therefore, by the inductive argument, we verify that all coefficients
of f are equal to zero. This shows that elements in Sk are linearly
independent. This completes the proof of Theorem 4.2. �

By observing the proof of Theorem 4.2, we have the following.

Theorem 4.3. The ideal I is generated by

t′irt
′
js − t′ist

′
jr − {t′it′r + t′jt

′
s − t′jt

′
r − t′it

′
s}

+ {t′it′jr + t′jt
′
is + t′rt

′
is + t′st

′
jr − t′jt

′
ir − t′it

′
js − t′rt

′
js − t′st

′
ir}

+
1

2
{t′jt′rt′is + t′it

′
st

′
jr − t′it

′
rt

′
js − t′jt

′
st

′
ir},

(4.1)



560 ERI HATAKENAKA AND TAKAO SATOH

for any 1 ≤ i, j, r, s ≤ n. Here we remark that, in the above notation,
t′ij should be read {

t′ji if i > j,

(t′i)
2 + 4t′i if i = j.

In particular, I is finitely generated.

Proof. Let I ′ be an ideal of P generated by elements (4.1). From
Lemma 3.3, we have I ′ ⊂ I. For any f ∈ I, observing the proof of
Proposition 4.1, we see that f can be written as

(4.2) f ≡
∑
k≥0

k∑
l=0

∑
p1<q1<···<pl<ql

il+1≤···≤ik

ap1q1,...,plql,il+1,...,ik t
′
p1q1 · · ·

t′plql
t′il+1

· · · t′ik ∈ Jk
0

modulo I ′. Here, in the sum of the right hand side of the equation
above, k runs over finitely many non-negative integers. Hence, by
Theorem 4.2, we see that all coefficients of f are zero and obtain f ∈ I ′.
This shows I = I ′. �

Remark 4.4. We remark that, if n = 1, we have I = (0).

Theorem 4.5. ∩
k≥1

Jk = {0}.

Proof. For any f ∈
∩

k≥1 J
k, we can write f as (4.2). Then,

observing the coset class of f in gr1(J), we see that ap1q1 = ai1 = 0 for
any 1 ≤ p1 < q1 ≤ n and 1 ≤ i1 ≤ n. Next, observing the coset class
of f in gr2(J), we see that all coefficients of f of degree 2 are zero. By
repeating this argument inductively, we obtain f = 0. This completes
the proof of Theorem 4.5. �

5. The primeness of the ideal I. In this section, we show that
the ideal I is a prime ideal of P; in other words, P/I is an integral
domain. In order to show this, we introduce a weight of an element
f ∈ P/I. From Theorem 4.5, for any f ∈ P/I \ {0}, there exists some
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integer k ≥ 0 such that f ∈ Jk \ Jk+1. Then we call k the weight of f ,
and denote it by wt (f).

Proposition 5.1. For any f, g ∈ P/I \ {0}, wt (fg) = wt (f)+wt (g).

Proof. It is obvious if wt (f) = 0 or wt (g) = 0. Hence, we may
assume wt (f),wt (g) ≥ 1. Set k1 := wt (f) and k2 := wt (g). Since it
is clear that wt (fg) ≥ k1 + k2, assume wt (fg) > k1 + k2.

For any integers α1, . . . , αn ∈ Z, consider a group homomorphism
ρ(α1,...,αn) : H → Z = ⟨x1⟩ defined by xi 7→ xαi

1 for any 1 ≤ i ≤ n. Then
ρ(α1,...,αn) induces a ring homomorphism ρ(α1,...,αn) : XQ(H) → XQ(Z)
defined by

tr′x 7−→ tr′ρ(α1,...,αn)(x).

Namely, we have

ρ(α1,...,αn)(tr
′xi) = tr′xαi

1 , ρ(α1,...,αn)(tr
′xixj) = tr′x

αi+αj

1 ,

Now, set

f :=

k1∑
l=0

∑
p1<q1<···<pl<ql

il+1≤···≤ik1

ap1q1,...,plql,il+1,...,ik1
t′p1q1 · · ·

t′plql
t′il+1

· · · t′ik1
+ (terms of degree > k1),

g :=

k2∑
m=0

∑
p′
1<q′1<···<p′

m<q′m
i′m+1≤···≤i′k2

ap′
1q

′
1,...,p

′
mq′m,i′m+1,...,i

′
k2
t′p′

1q
′
1
· · ·

t′p′
mq′m

t′i′m+1
· · · t′i′k2

+ (terms of degree > k2),

and set F := ρ(α1,...,αn)(f) and G := ρ(α1,...,αn)(g). Then wt (FG) >

k1 + k2 in XQ(Z). Hence, the coefficient P (α1, . . . , αn) of FG of
degree k1 + k2 is equal to zero. Here, using Lemma 3.2, we have
P (α1, . . . , αn) = P1P2 for

P1 :=

( k1∑
l=0

∑
p1<q1<···<pl<ql

il+1≤···≤ik1

ap1q1,...,plql,il+1,...,ik1
(αp1 + αq1)

2 · · ·

(αpl + αql)
2α2

il+1
· · ·α2

ik1

)
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P2 :=

( k2∑
m=0

∑
p′1<q′1<···<p′m<q′m

i′m+1≤···≤i′k2

ap′1q
′
1,...,p

′
mq′m,i′m+1,...,i

′
k2
(αp′1

+ αq′1
)2 · · ·

(αp′m + αq′m)2α2
i′m+1

· · ·α2
i′
k2

)
.

Consider P (α1, . . . , αn) as a polynomial in Q[α1, . . . , αn]. Since
P (α1, . . . , αn) = 0 if α1, . . . , αn runs over all integers, we see that
P (α1, . . . , αn) = 0 as a polynomial inQ[α1, . . . , αn]. SinceQ[α1, . . . , αn]
is a domain, we have P1 = 0 or P2 = 0 in Q[α1, . . . , αn].

Assume P1 = 0. Then each coefficient of monomials in α1, . . . , αn

in P1 is equal to zero. First, by observing the coefficient of αp1αq1 · · ·
αpk1

αqk1
, we see

ap1q1,...,pk1
qk1

= 0.

Furthermore, by an argument similar to that in the proof of Theo-
rem 4.2, we obtain that all ap1q1,...,plql,il+1,...,ik1

s are equal to zero.

Hence, f ∈ Jk1+1. This contradicts wt (f) = k1. By the same ar-
gument, if P2 = 0, we have g ∈ Jk2+1, and a contradiction. Thus, we
conclude that wt (fg) = k1 + k2. This completes the proof of Proposi-
tion 5.1. �

As a corollary, we obtain

Theorem 5.2. The quotient ring P/I is an integral domain. That is,
the ideal I is a prime ideal in P.

6. Some remarks. Finally, we give some remarks about an action
of the automorphism group AutH of H on the ring XQ(H). In general,
for any group G, the automorphism group AutG of G naturally acts
on XQ(G) from the right. (See our previous paper [5] for details.) In
particular, for any σ ∈ AutG and x ∈ G, the action of σ ∈ AutG on
tr′x ∈ XQ(G) is given by

(tr′x)σ = tr′xσ.

Clearly, we see that the ideal J generated by all tr′x for x ∈ G is an
AutG-invariant ideal of XQ(G). Hence, AutG naturally acts on grk(J)
for each k ≥ 1.
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Let EG(k) be the kernel of a natural homomorphism AutG →
Aut (J/Jk+1) induced from the action of AutG. Then the groups EG(k)
define a descending filtration

EG(1) ⊃ EG(2) ⊃ · · · ⊃ EG(k) ⊃ · · ·

of AutG. In [5], we have shown that this filtration is central. That is,
[EG(k), EG(l)] ⊂ EG(k + l) for any k, l ≥ 1. This is a Fricke character
analogue of the Andreadakis-Johnson filtration of AutG. (For details
on the Andreadakis-Johnson filtration, see [15, 16], for example.)

Here, we determine EH(1) and show EH(k) = EH(1) for any k ≥ 1.
Let ι ∈ AutH be an automorphism of H defined by

xι
i := x−1

i , 1 ≤ i ≤ n.

Then we have

Proposition 6.1. EH(1) = ⟨ι⟩. Namely, EH(1) is the cyclic group of
order 2, generated by ι.

Proof. Clearly, we see EH(1) ⊃ ⟨ι⟩. For any σ ∈ EH(1), set

xσ
i := x

e1(i)
1 x

e2(i)
2 · · ·xen(i)

n , 1 ≤ i ≤ n.

It suffices to show

• ej(i) = 0 if j ̸= i,
• e1(1) = · · · = en(n) = ±1.

For any 1 ≤ i ≤ n and any si ∈ D, consider a homomorphism
ρi : H → SL (2,C), defined by

ρi(xj) :=


(
1− si 0

0 (1− si)
−1

)
, if j = i,

E2, if j ̸= i.

Then, from

tr′ xi ≡ tr′ xσ
i = tr′ x

e1(i)
1 x

e2(i)
2 · · ·xen(i)

n (mod J2),

by substituting ρi, we see

s2i ≡ ei(i)
2s2i (mod (s3i )),



564 ERI HATAKENAKA AND TAKAO SATOH

and hence ei(i) = ±1. On the other hand, by substituting ρj for j ̸= i,
we see

0 ≡ ej(i)
2s2j (mod (s3j )),

and hence ej(i) = 0.

In order to show e1(1) = · · · = en(n), assume that ei(i) ̸= ej(j) for
some i and j. This means (ei(i), ej(j)) = (±1,∓1). For any si, sj ∈ D,
consider a homomorphism ρij : H → SL (2,C) defined by

ρij(xr) :=

{
ρr(xr), if r = i, j,

E2, if otherwise.

Then, by substituting ρij for equation tr′xixj ≡ tr′(xixj)
σ = tr′x

ei(i)
i

x
ej(j)
j (mod J2), we obtain

s2i + 2sisj + s2j ≡ s2i − 2sisj + s2j (mod (s3i , s
2
i sj , sis

2
j , s

3
j )).

This is a contradiction. Therefore, we obtain the required result. This
completes the proof of Proposition 6.1. �

Corollary 6.2. For any k ≥ 2, EH(k) = EH(1).

Proof. In general, we have EH(k) ⊂ EH(1). On the other hand,
EH(k) ⊃ EH(1) immediately follows from Proposition 6.1. �
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