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STAR OPERATIONS ON PRÜFER
v-MULTIPLICATION DOMAINS

GYU WHAN CHANG

ABSTRACT. Let D be an integrally closed domain, S(D)
the set of star operations on D, w the w-operation, and
Sw(D) = {∗ ∈ S(D) | w ≤ ∗}. Let X be an indeterminate
over D and Nv = {f ∈ D[X] | c(f)v = D}. In this paper,
we show that, if D is a Prüfer v-multiplication domain
(PvMD), then |Sw(D)| = |Sw(D[X])| = |S(D[X]Nv )|. We
prove that D is a PvMD if and only if |{∗ ∈ Sw(D) | ∗
is of finite type}| < ∞. We then use these results to give
a complete characterization of integrally closed domains D
with |Sw(D)| < ∞.

0. Introduction. Let D be an integral domain that is not a field,
and let K be the quotient field of D. Let S(D) be the set of star
operations on D and Sw(D) = {∗ ∈ S(D) | w ≤ ∗}; so Sw(D) ⊆ S(D).
(Definitions related to star operations will be reviewed in Section 1.) It
is easy to see that Sw(D) = S(D) if and only if each maximal ideal of D
is a t-ideal (Proposition 1.6). So, if |S(D)| < ∞, then Sw(D) = S(D)
[16, Proposition 2.1]. But if D[X] is the polynomial ring over a
valuation domain D that is not a field, then |S(D[X])| = ∞ [16,
Corollary 2.3] while |S(D)| = |Sw(D)| = |Sw(D[X])| ≤ 2 (Theorem
2.6). Note that d ≤ ∗ ≤ v for any star operation ∗ on D; so
|S(D)| = 1 ⇔ d = v; |S(D)| = 2 ⇔ d ̸= v and S(D) = {d, v};
|Sw(D)| = 1 ⇔ w = v; and |Sw(D)| = 2 ⇔ w ̸= v and Sw(D) = {w, v}.

In [13], Heinzer studied the integral domains D with |S(D)| = 1;
in particular, he showed that if D is integrally closed, then |S(D)| = 1
if and only if D is an h-local Prüfer domain whose maximal ideals are
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invertible [13, Theorem 5.1]. As the t-operation analog of Heinzer’s
result, in [7], El Baghdadi and Gabelli studied the integral domains
D with |Sw(D)| = 1. Among other things, they showed that, if D is
integrally closed, then |Sw(D)| = 1 if and only if D is an independent
ring of Krull type whose maximal t-ideals are t-invertible [7, Theorem
3.3]. In [16], Houston, Mimouni and Park characterized the integrally
closed domains having two star operations. For example, they proved
that, if D is integrally closed, then |S(D)| = 2 if and only if D is
an h-local Prüfer domain with exactly one nondivisorial maximal ideal
[16, Theorem 3.3]. In [17, Theorem 5.3], they also gave a complete
characterization of an integrally closed domain D with |S(D)| < ∞.

The purpose of this paper is to prove the t-operation analogs of
Houston, Mimouni and Park’s results ([16, Theorems 3.3] and [17,
Theorem 5.3]). That is, we give some characterizations for integrally
closed domains D with |Sw(D)| < ∞. In Section 1, we review
definitions and notations related to star operations. We also recall some
basic results on the (t-)Nagata ring D[X]Nv , Prüfer v-multiplication
domains (PvMD) and e.a.b. star operations, which are essential in
the arguments of Sections 2 and 3. In Section 2, we show that, if
D is a PvMD, then there are bijections from Sw(D) onto S(D[X]Nv )
and Sw(D[X]), respectively, and hence |Sw(D)| = |Sw(D[X])| =
|S(D[X]Nv )|. We then use this result with [16, Theorem 3.1] to show
that if D is an independent ring of Krull type, then |Sw(D)| = 2|U|,
where U is the set of maximal t-ideals of D that are not v-ideals. In
Section 3, we study the integrally closed domains D with |Sw(D)| < ∞.
We show that, if D is integrally closed, then |Sw(D)| = 2 if and
only if D is an independent ring of Krull type with exactly one
nondivisorial maximal t-ideal, if and only if |Sw(D[X])| = 2, if and
only if |S(D[X]Nv )| = 2. We prove that if D is integrally closed, then
|{∗ ∈ Sw(D) | ∗ is of finite type}| < ∞ if and only if D is a PvMD.
We then finally give a complete characterization of integrally closed
domains D with |Sw(D)| < ∞ by using the results of Section 2 and
Houston, Mimouni and Park’s result [17, Theorem 5.3].

1. Star operations and the ring D[X]Nv . Let D be an integral
domain with quotient field K. Let F(D) (respectively, f(D)) be the set
of nonzero fractional (respectively, finitely generated fractional) ideals
of D; so f(D) ⊆ F(D). A mapping I 7→ I∗ of F(D) into F(D) is
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called a star operation (⋆-operation) on D if, for all 0 ̸= a ∈ K and
I, J ∈ F(D), the following conditions are satisfied:

(1) (aD)∗ = aD and (aI)∗ = aI∗,
(2) I ⊆ I∗; I ⊆ J implies I∗ ⊆ J∗, and
(3) (I∗)∗ = I∗.

Given any star operation ∗ on D, two new star operations ∗f and ∗w
can be constructed by setting I∗f =

∪
{J∗ | J ⊆ I and J ∈ f(D)}

and I∗w = {x ∈ K | xJ ⊆ I for some J ∈ f(D) with J∗ = D} for
all I ∈ F(D). A star operation ∗ on D is said to be of finite type if
∗f = ∗. Obviously, (∗f )f = ∗f and (∗w)f = ∗w = (∗f )w, and hence ∗f
and ∗w are of finite type. An I ∈ F(D) is called a ∗-ideal if I∗ = I,
while a ∗-ideal is a maximal ∗-ideal if it is maximal among proper
integral ∗-ideals. Let ∗-Max(D) denote the set of maximal ∗-ideals of
D. Although it is possible that ∗-Max(D) = ∅ even when D is not
a field (e.g., v-Max(V ) = ∅ if V is a rank-one nondiscrete valuation
domain), it is well known that a maximal ∗f -ideal is a prime ideal;
each prime ideal minimal over a ∗f -ideal is a ∗f -ideal; ∗f -Max(D) ̸= ∅
if D is not a field; ∗f -Max(D) = ∗w-Max(D) [1, Theorem 2.16]; and
I∗w =

∩
P∈∗f -Max(D) IDP for all I ∈ F(D) [1, Corollary 2.10]. For two

star operations ∗1 and ∗2 on D, we mean by ∗1 ≤ ∗2 that I∗1 ⊆ I∗2

(equivalently, (I∗1)∗2 = (I∗2)∗1 = I∗2) for all I ∈ F(D). Clearly, if
∗1 ≤ ∗2, then (∗1)f ≤ (∗2)f and (∗1)w ≤ (∗2)w. Also, ∗w ≤ ∗f ≤ ∗
for any star operation ∗ on D. An I ∈ F(D) is said to be ∗-invertible
if (II−1)∗ = D, where I−1 = {x ∈ K | xI ⊆ D}. Clearly, I is ∗f -
invertible if and only if II−1 * P for all P ∈ ∗f -Max(D). Note that
I ∈ F(D) is ∗f -invertible if and only if I is ∗w-invertible, because ∗f -
Max(D) = ∗w-Max(D). Also, if ∗1 ≤ ∗2 are star operations on D, then
∗1-invertible ideals are ∗2-invertible.

The most well-known examples of star operations are the d-, v-,
t- and w-operations. The d-operation is just the identity function on
F(D); so d = df = dw. The v-operation is defined by Iv = (I−1)−1

and the t-operation (respectively, w-operation) is given by t = vf
(respectively, w = vw). In particular, a v-ideal is called a divisorial
ideal. It is known that, if ∗ is a star operation on D, then d ≤ ∗ ≤ v,
and hence d ≤ ∗f ≤ t and d ≤ ∗w ≤ w ≤ t ≤ v.

Let ∗ be a star operation on D. As in [3, page 224], we say that an
overring R of D is ∗-linked over D if I∗ = D implies (IR)v = R for
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all I ∈ f(D). Recall that ∗ is endlich arithmetisch brauchbar (e.a.b.) if
(AB)∗ ⊆ (AC)∗ for all A,B,C ∈ f(D) implies B∗ ⊆ C∗. It is known
that ifD admits an e.a.b. star operation, thenD is integrally closed [11,
Corollary 32.8]. Conversely, if D is integrally closed, then D =

∩
V ,

where V ranges over all valuation overrings of D, and thus the mapping
I 7→ Ib =

∩
IV of F(D) into F(D) is an e.a.b. star operation of finite

type [11, pages 396–398]. More generally, we have

Lemma 1.1. ([4, Lemma 3.1]). Let D be an integrally closed domain
and {Vα} the set of ∗-linked valuation overrings of D. Then the map
∗c : F(D) → F(D), given by I 7→ I∗c =

∩
α IVα, is an e.a.b. star

operation of finite type on D such that ∗w = (∗c)w ≤ ∗c and ∗f -
Max (D) = ∗c-Max (D). In particular, dc = b.

Let X be an indeterminate over D and D[X] the polynomial ring
over D. For any f ∈ D[X], we denote by cD(f) (simply, c(f)) the ideal
of D generated by the coefficients of f . The next lemma will be used
in Section 2 without references.

Lemma 1.2. ([12, Lemma 4.1 and Proposition 4.3]). Let ∗ = v, t or w
and I ∈ F(D). Then (ID[X])−1 = I−1D[X] and (ID[X])∗ = I∗D[X].

Let S = {f ∈ D[X] | c(f) = D}. Then D[X]S , denoted by
D(X), is called the Nagata ring of D [11, Section 33]. For the t-
operation analog, let Nv = {f ∈ D[X] | f ̸= 0 and c(f)v = D}. Then
D[X]Nv , called the (t-)Nagata ring of D, is an overring of D(X), and
D[X]Nv = D(X) if and only if each maximal ideal of D is a t-ideal. The
(t-)Nagata ring D[X]Nv has many interesting ring-theoretic properties
and, in particular, it is very useful when we study the w-operation on
D. For more on Nagata rings, the reader can refer to [3, 9, 20].

We next review some basic properties of D[X]Nv that are very useful
in the arguments of this paper.

Lemma 1.3. Let I be a nonzero fractional ideal of D.

(i) ID[X]Nv ∩K = Iw and IwD[X]Nv = ID[X]Nv .
(ii) (ID[X]Nv )

−1 = I−1D[X]Nv , and so (ID[X]Nv )v = IvD[X]Nv .
(iii) Max (D[X]Nv ) = {PD[X]Nv | P ∈ t-Max (D)}.
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(iv) I is t-invertible if and only if ID[X]Nv is invertible.

Proof. (i) appears in [2, Lemma 2.1] and [9, Proposition 3.4]. For
(ii), (iii) and (iv), see [20, Corollary 2.3 (3), Proposition 2.1, Corollary
2.5]. �

We say that D is a Prüfer ∗-multiplication domain (P∗MD) if each
nonzero finitely generated ideal of D is ∗f -invertible. Hence, PdMDs
are just the Prüfer domains. Obviously, P∗MD ⇔ P∗fMD ⇔ P∗wMD,
because (∗f )f = ∗f , (∗w)f = ∗w, and I ∈ F(D) is ∗f -invertible if and
only if I is ∗w-invertible. Also, if ∗1 ≤ ∗2 are star operations on D,
then P∗1MDs are P∗2MDs; thus, Prüfer domain ⇒ P∗MD ⇒ PvMD
for any star operations ∗ on D.

Theorem 1.4. If D is integrally closed, the following statements are
equivalent.

(i) D is a PvMD.
(ii) vc = w.
(iii) w is an e.a.b. star operation.
(iv) w = t.
(v) D[X] is a PvMD.
(vi) D[X]Nv is a Prüfer domain.
(vii) Each ideal of D[X]Nv is extended from D.
(viii) fD[X]Nv = c(f)D[X]Nv for all 0 ̸= f ∈ D[X].
(ix) DP is a valuation domain for every maximal t-ideal P of D.

Proof. (i) ⇔ (ii) appears in [4, Corollary 3.8].

(i) ⇔ (iii) was proved in [8, Theorem 3.1] (in a more general setting
of semistar operations).

For (i) ⇔ (iv) ⇔ (v) ⇔ (vi) ⇔ (vii) ⇔ (viii) ⇔ (ix), see [20,
Theorems 2.12, 3.1, 3.2, 3.5, 3.7]. �

Remark 1.5. Let M be a maximal t-ideal of a PvMD. It is well known
and easy to show that Mv = M if and only if M is t-invertible. Also,
if M is a maximal ideal of a Prüfer domain, then Mv = M if and only
if M is invertible. In this paper, we use this fact without any further
comments.
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The next simple result shows that Sw(D) = S(D) if each maximal
ideal of D is a t-ideal. Thus, if |S(D)| < ∞, then Sw(D) = S(D)
[16, Proposition 2.1]. This result also provides a characterization of
DW-domains (i.e., integral domains in which the d-operation coincides
with the w-operation) which were introduced and studied by Mimouni
[22] and Picozza-Tartarone [23].

Proposition 1.6. The following statements are equivalent.

(i) Sw(D) = S(D).
(ii) Each maximal ideal of D is a t-ideal.
(iii) d = w on D.

Proof. (i) ⇔ (iii). This follows directly from the fact that d ≤ ∗ for
any star operation ∗ on D.

(ii) ⇔ (iii). Let Max(D) be the set of maximal ideals of D. Clearly,
each maximal ideal of D is a t-ideal if and only if t-Max(D) =
Max(D). Hence, if each maximal ideal of D is a t-ideal, then Id =∩

M∈Max(D) IDM =
∩

M∈t-Max(D) IDM = Iw for all I ∈ F(D). Thus,

d = w. Conversely, if w = d, then t-Max(D) = w-Max(D) = Max(D),
and thus each maximal ideal of D is a t-ideal. �

2. Prüfer v-multiplication domains. Let D be an integral do-
main with quotient field K, S(D) the set of star operations on D and
Sw(D) = {∗ ∈ S(D) | w ≤ ∗}. Let X be an indeterminate over D,
D[X] the polynomial ring over D and Nv = {f ∈ D[X] | c(f)v = D}.

In this section, we show that if D is a PvMD, then |Sw(D)| =
|Sw(D[X])| = |S(D[X]Nv )|. This will be proved by a series of lemmas
(Lemmas 2.1–2.5).

Lemma 2.1. Let ∗ ∈ Sw(D) and J ∈ F(D). If J is w-invertible, then
(JI)∗ = (JI∗)w for all I ∈ F(D).

Proof. Since w ≤ ∗, we have (JI∗)w ⊆ (JI∗)∗ = (JI)∗. For the
reverse containment, note that (JJ−1)∗ = D because J is w-invertible
and w ≤ ∗; so J−1(JI)∗ ⊆ (J−1(JI)∗)∗ = (J−1JI)∗ = ((JJ−1)∗I)∗ =
I∗, and hence, (J−1(JI)∗)w ⊆ (I∗)w = I∗. Thus, (JI)∗ ⊆ (JI∗)w by
the assumption that J is w-invertible and w ≤ ∗. �



STAR OPERATIONS 529

Lemma 2.2. Let D be a PvMD with quotient field K and ∗ ∈ Sw(D).

(i) If A ∈ F(D[X]Nv ), then A = ED[X]Nv for some E ∈ F(D).
Moreover, A ∩K = Ew.

(ii) For each A ∈ F(D[X]Nv ), if we let

A∗Nv = E∗D[X]Nv ,

where E ∈ F(D) with A = ED[X]Nv
as in (i), then ∗Nv

is a star
operation on D[X]Nv such that (ID[X]Nv )

∗Nv ∩ K = I∗ for all
I ∈ F(D).

Proof.

(i) Since A ∈ F(D[X]Nv ), there is an 0 ̸= f ∈ D[X] such that
fA ⊆ D[X]Nv

; so (c(f)D[X]Nv
)A = fA = ID[X]Nv

for some
I ∈ F(D) by Theorem 1.4. Hence, A = c(f)−1ID[X]Nv because
c(f)D[X]Nv

is invertible. Thus, if we set E = c(f)−1I, then E ∈
F(D) and A = ED[X]Nv . Moreover, A∩K = ED[X]Nv∩K = Ew

by Lemma 1.3 (i).
(ii) Clearly, (a) (D[X]Nv )

∗Nv = D[X]Nv , (b) if A,B ∈ F(D[X]Nv ),
then A ⊆ A∗Nv , and A ⊆ B implies A∗Nv ⊆ B∗Nv , and (c)
(A∗Nv )∗Nv = A∗Nv for all A ∈ F(D[X]Nv ). So, to prove that
∗Nv is a star operation, it suffices to show that, if 0 ̸= f, g ∈ D[X]
and A ∈ F(D[X]Nv ), then (f/gA)∗Nv = f/gA∗Nv .

Note that f/gD[X]Nv = (c(f)c(g)−1)D[X]Nv by Theorem 1.4
and A = ED[X]Nv for some E ∈ F(D) by (i); so f/gA =
(c(f)c(g)−1E)D[X]Nv . Also, by Lemma 2.1, (c(f)c(g)−1E)∗ =
((c(f)c(g)−1)E∗)w because c(f)c(g)−1 is w-invertible. Thus,(

f

g
A

)∗Nv

= (c(f)c(g)−1E)∗D[X]Nv

= ((c(f)c(g)−1)E∗)wD[X]Nv

= ((c(f)c(g)−1)E∗)D[X]Nv

= ((c(f)c(g)−1)D[X]Nv )(E
∗D[X]Nv )

=

(
f

g
D[X]Nv

)
(ED[X]Nv )

∗Nv

=
f

g
A∗Nv .
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Moreover, (ID[X]Nv )
∗Nv ∩ K = I∗D[X]Nv ∩ K = (I∗)w = I∗

because w ≤ ∗. �

Lemma 2.3. Let D be a PvMD with quotient field K and ⋆ a star
operation on D[X]Nv . For each I ∈ F(D), if we set

I∗ = (ID[X]Nv )
⋆ ∩K,

then ∗ is a star operation on D such that ∗ ∈ Sw(D) and ∗Nv = ⋆.

Proof. It is routine to check that ∗ is a star operation on D. Also,
note that Ew = ED[X]Nv ∩ K ⊆ (ED[X]Nv )

⋆ ∩ K = E∗ for every
E ∈ F(D). Thus, w ≤ ∗.

Next, to prove the equality ∗Nv = ⋆, let A ∈ F(D[X]Nv ). Then
A = ID[X]Nv and A⋆ = JD[X]Nv for some I, J ∈ F(D) by Lemma
2.2 (i). So I∗ = A⋆ ∩ K = JD[X]Nv ∩ K = Jw, and thus A∗Nv =
(ID[X]Nv )

∗Nv = I∗D[X]Nv = JwD[X]Nv = JD[X]Nv = A⋆. Thus,
∗Nv = ⋆. �

We say that a nonzero prime ideal Q of D[X] is an upper to zero
in D[X] if Q ∩ D = (0). It is known that an upper to zero Q in
D[X] is a maximal t-ideal if and only if Q is t-invertible, if and only
if Q ∩ Nv ̸= ∅ [19, Theorem 1.4]. Also, D is a PvMD if and only if
D is integrally closed and each upper to zero in D[X] is a maximal
t-ideal [19, Proposition 3.2]. We know that, if Q is a maximal t-ideal
of D[X], then either Q ∩D = (0) or Q ∩D ̸= (0), Q ∩D is a maximal
t-ideal of D, and Q = (Q ∩ D)[X] (cf., [19, Proposition 1.1]). So, if
D is a PvMD, then t-Max(D[X]) = {P [X] | P ∈ t-Max(D)} ∪ {Q | Q
is an upper to zero in D[X]}, and hence Aw = AD[X]Nv ∩ AK[X],
AwD[X]Nv = AD[X]Nv , and AwK[X] = AK[X] for all A ∈ F(D[X]).

Lemma 2.4. Let D be a PvMD with quotient field K and ∗ ∈ Sw(D).

(i) If A ∈ F(D[X]), then Aw = (Qk1
1 · · ·Qkn

n (ED[X]))w for some Qi

an upper to zero in D[X], ki a nonzero integer, and E ∈ F(D).
Moreover, this expression is unique up to the w-operation on
D[X].

(ii) For each A ∈ F(D[X]), if we let

A∗D[X] = (Qk1
1 · · ·Qkn

n (E∗D[X]))w,
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where Qi, ki, and E are as in (i), then ∗D[X] ∈ Sw(D[X]) such
that (ID[X])∗D[X] ∩K = I∗ for all I ∈ F(D).

Proof.

(i) Since A ∈ F(D[X]), there is a 0 ̸= f ∈ D[X] such that
fA ⊆ D[X]. Recall that t-Max(D[X]) = {P [X] | P ∈ t-
Max(D)} ∪ {Q | Q is an upper to zero in D[X]} and that fA is
contained in only finitely many uppers to zero in D[X] (because
K[X] is a principal ideal domain (PID)), say, q1, . . . , qk. Note
also that each upper to zero in D[X] is t-invertible; hence, there
are positive integers ei such that, if we let B = qe11 · · · qekk , then
B is t-invertible, fAB−1 ⊆ D[X] and fAB−1 is not contained in
any upper to zero in D[X]. Hence, (fAB−1)w = (fAB−1)Nv ∩
(fAB−1)K[X] = (fAB−1)Nv ∩ K[X] = ID[X]Nv ∩ K[X] =
ID[X]Nv ∩ IK[X] = (ID[X])w for some I ∈ F(D) by Lemma
2.2 (i), and thus (fA)w = (B(ID[X]))w. The same argument
also shows that fD[X] = (pn1

1 · · · pns
s (JD[X]))w for some pi an

upper to zero in D[X], ni a positive integer and J ∈ F(D).
Clearly, J and p

nj

j are t-invertible, and thus Aw = (qe11 · · · qekk ·
p−n1
1 · · · p−ns

s (J−1I)D[X])w.
For uniqueness up to the w-operation on D[X], assume that

(Qk1
1 · · ·Qkn

n (ID[X]))w = (pe11 · · · pemm (JD[X]))w,

where Qi and pj are uppers to zero in D[X], ki and ej are nonzero
integers, and I, J ∈ F(D). Then

(Qk1
1 · · ·Qkn

n )K[X] = (Qk1
1 · · ·Qkn

n (ID[X]))K[X]

= (Qk1
1 · · ·Qkn

n (ID[X]))wK[X]

= (pe11 · · · pemm (JD[X]))wK[X]

= (pe11 · · · pemm )K[X].

Note that K[X] is a PID and both QiK[X] and pjK[X] are prime

ideals of K[X]; so the expression of (Qk1
1 · · ·Qkn

n )K[X] is unique,
and thus n = m, Qi = pi and ei = ki by rearranging the order of
pi, . . . , pm (if necessary). Also,

ID[X]Nv = (Qk1
1 · · ·Qkn

n (ID[X]))D[X]Nv

= (Qk1
1 · · ·Qkn

n (ID[X]))wD[X]Nv
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= (pe11 · · · pemm (JD[X]))wD[X]Nv

= JD[X]Nv .

Thus, Iw = ID[X]Nv
∩K = JD[X]Nv

∩K = Jw.
(ii) For I, J ∈ F(D), if Iw = Jw, then I∗ = (Iw)

∗ = (Jw)
∗ = J∗

because w ≤ ∗. Hence, ∗D[X] is well defined by (i). Also, it is clear
that Aw ⊆ A∗D[X] for all A ∈ F(D[X]) and (ID[X])∗D[X] ∩K =
I∗D[X] ∩ K = I∗ for all I ∈ F(D). So it suffices to show that
∗D[X] is a star operation on D[X].

Let A,B ∈ F(D[X]) and 0 ̸= f, g ∈ D[X]. By (i), Aw =
(A1(E1D[X]))w and Bw = (B1(E2D[X]))w, where both A1 and
B1 are products of uppers to zero in D[X] and Ei ∈ F(D).
Clearly, (D[X])∗D[X] = D[X], A ⊆ A∗D[X] and (A∗D[X])∗D[X] =
A∗D[X] . By (i), fD[X]=(C1(I1D[X]))w and gD[X]=(C2(I2D[X]))w,
where Ci are products of uppers to zero in D[X] and Ii ∈
F(D). Clearly, I1 and I2 are t-invertible. Also, (f/gA)w =
(C1C

−1
2 A1((I1I

−1
2 E1)D[X]))w, where C1C

−1
2 A1 is a product of

uppers to zero in D[X] and I1I
−1
2 E1 ∈ F(D). Thus,(

f

g
A

)∗D[X]

=(C1C
−1
2 A1((I1I

−1
2 E1)

∗D[X]))w

=(C1C
−1
2 A1((I1I

−1
2 (E1)

∗)wD[X]))w

=(C1C
−1
2 A1((I1I

−1
2 (E1)

∗)D[X]))w

=((C1(I1D[X]))(C2(I2D[X]))−1(A1((E1)
∗D[X])))w

=

(
f

g
(A1((E1)

∗D[X]))

)
w

=
f

g
A∗D[X] ,

where the second equality follows from Lemma 2.1. Finally,
assume that A ⊆ B. Then Aw ⊆ Bw, and so (E1D[X])Nv =
(Aw)Nv ⊆ (Bw)Nv = (E2D[X])Nv . Thus, (A1((E1)

∗D[X]))Nv =
((E1)

∗D[X])Nv⊆((E2)
∗D[X])Nv=(B1((E2)

∗D[X]))Nv by Lemma
2.2 (ii). Also,

(A1((E1)
∗D[X]))K[X] = (A1)K[X]

= (A1(E1D[X]))K[X]

= (A1(E1D[X]))wK[X]
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⊆ (B1(E2D[X]))wK[X]

= (B1((E2)
∗D[X]))K[X].

Thus,

A∗D[X] = (A1((E1)
∗D[X]))w

= (A1((E1)
∗)D[X]))Nv ∩ (A1((E1)

∗D[X]))K[X]

⊆ (B1((E2)
∗D[X]))Nv ∩ (B1((E2)

∗D[X]))K[X]

= (B1((E2)
∗D[X]))w

= B∗D[X] . �

Lemma 2.5. Let D be a PvMD with quotient field K and ⋆ ∈
Sw(D[X]). For each E ∈ F(D), if we set

E∗ = (ED[X])⋆ ∩K,

then ∗ ∈ Sw(D) and ∗D[X] = ⋆.

Proof. It is routine to check that ∗ is a star operation on D (or
see [15, Proposition 2.1]). Moreover, since w ≤ ⋆ on D[X], Ew =
EwD[X]∩K = (ED[X])w∩K ⊆ (ED[X])⋆∩K = E∗ for all E ∈ F(D).
Thus, ∗ ∈ Sw(D).

Next, if A ∈ F(D[X]), then Aw = (B(ED[X]))w for some B a
product of uppers to zero in D[X] and E ∈ F(D) by Lemma 2.4 (i), and
so (B−1A)w = (ED[X])w = EwD[X]. By Lemma 2.1, (B−1A⋆)w =
(B−1A)⋆ = (ED[X])⋆ and (B−1A)⋆ ∩K = E∗. Note that (B−1A)⋆ ∈
F(D[X]) and EwD[X] ⊆ (B−1A)⋆ ⊆ EvD[X], and hence (B−1A)⋆ =
(JD[X])w = JwD[X] for some J ∈ F(D) by Lemma 2.4 (i). So
E∗ = (B−1A)⋆∩K = JwD[X]∩K = Jw, and thus (B−1A)⋆ = E∗D[X].
Therefore, A⋆ = (BB−1A⋆)w = (B(B−1A⋆)w)w = (B(B−1A)⋆)w =
(B(E∗D[X]))w = (B(ED[X]))∗D[X] = A∗D[X] . Thus, ⋆ = ∗D[X]. �

The next result is the main result of this paper, which is crucial for
studying integrally closed domains D with |Sw(D)| < ∞. Its proof is
now a straightforward consequence of the previous preliminary lemmas.

Theorem 2.6. Let D be a PvMD.
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(i) The map ∗ 7→ ∗Nv of Sw(D) into S(D[X]Nv ) is bijective and
S(D[X]Nv

) = {∗Nv
| ∗ ∈ Sw(D)}.

(ii) The map ∗ 7→ ∗D[X] of Sw(D) into Sw(D[X]) is bijective and
Sw(D[X]) = {∗D[X] | ∗ ∈ Sw(D)}.

Hence, |Sw(D)| = |Sw(D[X])| = |S(D[X]Nv )|.

Proof.

(i) This follows directly from Lemmas 2.2 and 2.3.
(ii) This is an immediate consequence of Lemmas 2.4 and 2.5. �

Corollary 2.7. If D is a Prüfer domain, then |S(D)| = |S(D(X))|.

Proof. This follows from Theorem 2.6 and Proposition 1.6 because
Prüfer domains are PvMDs in which each maximal ideal is a t-ideal. �

Remark 2.8.

(1) Let ∗ be a star operation on D and, for A ∈ F(D[X]), let

AN∗
=

∩{
z−1

( ∑
f∈zA

c(f)

)∗

[X] | 0 ̸= z ∈ (K[X] : A)

}
.

Then N∗ is a star operation on D[X] such that (E[X])N
∗
= E∗[X]

for all E ∈ F(D), and, moreover, if ∗ ∈ Sw(D), then N∗ ∈
Sw(D[X]) [5, Theorem 2.1 and Corollary 2.4] (or see the proof of
[6, Proposition 3.4]). Clearly, if D is an integral domain such that
t = v on D but t ̸= v on D[X], then Sw(D[X]) ̸= {N∗ | ∗ ∈ Sw(D)}
(see [5, Remark 2.7 (b)]). Hence, in general, Theorem 2.6 does not
hold.

(2) A strong Mori domain (SM domain) is an integral domain that
satisfies the ascending chain condition on integral w-ideals. It was
proved in [6, Theorem 3.2 and Corollary 3.21] that, if D is an
SM domain with |Sw(D[X])| < ∞, then |Sw(D)| = |Sw(D[X])| =
|S(D[X]Nv )|, while there is a one-dimensional local Noetherian
domain D (hence an SM domain on which d = w) such that
|S(D)| � |S(D(X))| = ∞ [6, Example 3.7].
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We say that D is of finite character (respectively, finite t-character)
if each nonzero element of D is contained in only finitely many maximal
ideals (respectively, maximal t-ideals) of D. We say that D is h-local
if D is of finite character and each nonzero prime ideal is contained
in a unique maximal ideal. The D is called an independent ring of
Krull type if D is a PvMD of finite t-character and each nonzero prime
t-ideal is contained in a unique maximal t-ideal. Clearly, an h-local
Prüfer domain is an independent ring of Krull type, and conversely, an
independent ring of Krull type whose maximal ideals are t-ideals is an
h-local Prüfer domain.

Lemma 2.9. The following statements are equivalent.

(i) D is an independent ring of Krull type.
(ii) D[X] is an independent ring of Krull type.
(iii) D[X]Nv is an h-local Prüfer domain.

Proof. This follows directly from Theorem 1.4 and [10, Corollary
2.3]. �

Let D be an h-local Prüfer domain. It is known that, if U is the set
of maximal ideals of D that are not v-ideals, then |S(D)| = 2|U| [16,
Theorem 3.1]. We next give the independent ring of Krull type analog
of this result.

Corollary 2.10. Let D be an independent ring of Krull type. If
U is the set of maximal t-ideals of D that are not v-ideals, then
|Sw(D)| = |Sw(D[X])| = |S(D[X]Nv

)| = 2|U|.

Proof. By Lemma 2.9, D[X]Nv is an h-local Prüfer domain. Note
that each maximal ideal of D[X]Nv is of the form P [X]Nv for some
maximal t-ideal P of D and (P [X]Nv )v = Pv[X]Nv for all nonzero
prime ideals P of D by Lemma 1.3; so P [X]Nv is a v-ideal if and only
if P is a v-ideal. Thus, |Sw(D)| = |Sw(D[X])| = |S(D[X]Nv )| = 2|U|

by [16, Theorem 3.1] and Theorem 2.6. �

Corollary 2.10 shows that, if D is an independent ring of Krull type,
then 2|U| = |Sw(D)|. We next show that 2|U| ≤ |Sw(D)| for any integral
domain D.
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Proposition 2.11. If U is the set of maximal t-ideals of an integral
domain D that are not v-ideals, then 2|U| ≤ |Sw(D)|. Hence, if
|Sw(D)| < ∞, then |U| < ∞.

Proof. For each P ∈ U, if we set

E∗P = (P : (P : E))

for all E ∈ F(D), then ∗P is a star operation [14, Proposition 3.2].
Note that x ∈ (P : E) ⇔ xE ⊆ P ⇒ xEw ⊆ Pw = P ⇔ x ∈ (P : Ew);
so (P : E) ⊆ (P : Ew). Hence, (P : E) = (P : Ew), and thus
E∗P = (Ew)

∗P . Thus, w ≤ ∗P . Note also that, if Q ∈ U with
P ̸= Q, then (P : Q) = P because Pv = Qv = D, and thus
Q∗P = (P : P ) = D ̸= Q = Q∗Q .

Next, for ∅ ̸= ∆ ⊆ U, let E∗∆ =
∩

P∈∆ E∗P for all E ∈ F(D).
Clearly, ∗∆ is a star operation on D with w ≤ ∗∆ by the previous
paragraph. Let ∆1 and ∆2 be two distinct nonempty subsets of U, say,
∆1 * ∆2, and choose P ∈ ∆1 \∆2. Then P ∗∆1 = P ̸= D = P ∗∆2 by
the previous paragraph, and hence ∗∆1 ̸= ∗∆2 . This also shows that
∗∆ ̸= v for every ∅ ≠ ∆ ⊆ U. Thus, 2|U| = |{v} ∪ {∗∆ | ∅ ̸= ∆ ⊆ U}| ≤
|Sw(D)|. �

3. Integrally closed domains D with |Sw(D)| < ∞. Through-
out, D denotes an integral domain with quotient field K, S(D) (re-
spectively, SF (D)) be the set of star operations (respectively, star op-
erations of finite type) on D, Sw(D) = {∗ ∈ S(D) | w ≤ ∗}, and
SFw(D) = Sw(D) ∩ SF (D).

In this section, we study an integrally closed domain D with
|Sw(D)| < ∞. First, in Corollaries 3.1 and 3.2, we give some char-
acterizations of the integrally closed domains D with |Sw(D)| ≤ 2.

Corollary 3.1. If D is integrally closed, the following statements are
equivalent.

(i) |Sw(D)| = 1.
(ii) vc = v.
(iii) D is a PvMD on which t = v.
(iv) D is an independent ring of Krull type whose maximal t-ideals are

t-invertible.
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(v) |Sw(D[X])| = 1.
(vi) D[X] is a PvMD on which t = v.
(vii) |S(D[X]Nv )| = 1.
(viii) D[X]Nv

is an h-local Prüfer domain whose maximal ideals are
invertible.

Proof. (i) ⇒ (ii) is clear because w ≤ vc by Lemma 1.1.

(ii) ⇒ (iii). If vc = v, then t = v and v is an e.a.b. star operation,
and hence each nonzero finitely generated ideal of D is t-invertible [11,
Theorem 34.6]. Thus, D is a PvMD.

(iii) ⇒ (i). If D is a PvMD, then w = t by Theorem 1.4, and thus
w = v.

(iii) ⇔ (iv). [18, Theorem 3.1].

(iii) ⇔ (vi). Note that, if D is integrally closed, then t = v on D
if and only if t = v on D[X] [18, Proposition 4.6]. Thus, the result
follows from Theorem 1.4.

(iv) ⇔ (viii). This is an immediate consequence of Lemmas 1.3 and
2.9.

(v) ⇔ (vi). This follows from the equivalence of (i) and (iii) because
D[X] is integrally closed.

(vii) ⇔ (viii). Clearly, D[X]Nv is integrally closed. Thus, the result
follows directly from Heinzer’s result [13, Theorem 5.1]. �

The following corollary is the t-operation version of [16, Theorem
3.3] that |S(D)| = 2 if and only if D is an h-local Prüfer domain with
exactly one non-invertible maximal ideal.

Corollary 3.2. If D is integrally closed, the following statements are
equivalent.

(i) |Sw(D)| = 2.
(ii) D is an independent ring of Krull type with exactly one nondivi-

sorial maximal t-ideal.
(iii) |Sw(D[X])| = 2.
(iv) D[X] is an independent ring of Krull type with exactly one non-

divisorial maximal t-ideal.
(v) |S(D[X]Nv )| = 2.
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(vi) D[X]Nv is an h-local Prüfer domain with exactly one nondivisorial
maximal ideal.

Proof. (i) ⇒ (v). Note that w, vc, t, v ∈ Sw(D) and w ≤ vc ≤ t ≤ v;
so, if |Sw(D)| = 2, then either w = vc or vc = t = v. But, if vc = v,
then |Sw(D)| = 1 by Corollary 3.1. So w = vc, and hence D is a PvMD
by Theorem 1.4. Thus, |S(D[X]Nv )| = 2 by Theorem 2.6.

(v)⇔ (vi). Clearly,D[X]Nv is integrally closed. Thus, |S(D[X]Nv )| =
2 if and only if D[X]Nv is an h-local Prüfer domain with exactly one
nondivisorial maximal ideal [16, Theorem 3.3].

(vi) ⇔ (ii). This is an immediate consequence of Lemmas 2.9 and
1.3 (ii).

(ii) ⇒ (i). This follows from Corollary 2.10.

(ii) ⇔ (iv). Let Q be a maximal t-ideal of D[X]. If Q ∩ D = (0),
then Q is t-invertible [19, Theorem 1.4], and hence Q is a v-ideal. If
Q∩D ̸= (0), then Q∩D is a maximal t-ideal of D and Q = (Q∩D)[X]
[19, Proposition 1.1]. Also, recall that ((Q ∩D)[X])v = (Q ∩D)v[X];
so Q is a v-ideal if and only if Q ∩ D is a v-ideal. Thus, the result
follows directly from Lemma 2.9.

(iii) ⇔ (iv). This follows from the equivalence of (i) and (ii) because
D[X] is integrally closed. �

Remark 3.3. IfD is an independent ring of Krull type with |Sw(D)| <
∞, then |Sw(D)| = 2n for some integer n ≥ 0 by Corollary 2.10. But,
if we let D = Z2Z∪3Z + XQ[[X]], where Q[[X]] is the ring of a formal
power series over Q, then D is a Prüfer domain with |S(D)| = 4, but D
is not h-local [16, Example 3.7]. Hence, if |Sw(D)| ≥ 3, then D need
not be an independent ring of Krull type even though |Sw(D)| = 2n

for an integer n ≥ 0.

The next result is the PvMD analog of [17, Theorem 3.1] that, if D
is integrally closed, then |SF (D)| = 1 if and only if |SF (D)| < ∞, if
and only if D is a Prüfer domain. The proof is a simple modification
of that of [17, Theorem 3.1].

Proposition 3.4. The following statements are equivalent for an
integrally closed domain D.
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(i) |SFw(D)| = 1.
(ii) |SFw(D)| < ∞.
(iii) D is a PvMD.

Proof. (i) ⇒ (ii). Clear.

(ii) ⇒ (iii). Let P be a maximal t-ideal of D and 0 ̸= α ∈ K. Let
m ≥ n ≥ 1 be integers. If x ∈ (1, αm)−1, then x, xαm ∈ D, and so
(xαn)m = xm−n(xαm)n ∈ D. Since D is integrally closed, xαn ∈ D,
and hence x ∈ (1, αn)−1. Hence, (1, αm)−1 ⊆ (1, αn)−1, and thus,
αn ∈ (1, αn)v ⊆ (1, αm)v = (1, αm)t.

Next, for each integer n ≥ 1, if we set

E∗n = EDP [α
n] ∩ Et

for all E ∈ F(D), then ∗n is a star operation of finite type [16,
Proposition 2.7]. Also, since Ew ⊆ EwDP ∩ Et = EDP ∩ Et ⊆
EDP [α

n]∩Et = E∗n , we have w ≤ ∗n. Hence, by (ii), there are integers
m  n ≥ 1 such that ∗m = ∗n. Note that αn ∈ (1, αm)DP [α

n] ∩
(1, αm)t = (1, αm)∗n . So αn ∈ (1, αm)∗m ⊆ (1, αm)DP [α

m], and thus,
αn = f(αm) + αmg(αm) for some polynomials f, g ∈ DP [X]. So if we
let h(X) = f(Xm) +Xmg(Xm)−Xn, then h ∈ DP [X] \ PDP [X] and
h(α) = 0, and thus α or α−1 is in DP [11, Lemma 19.14]. Hence, DP

is a valuation domain. Therefore, D is a PvMD by Theorem 1.4.

(iii) ⇒ (i). If D is a PvMD, then t = w by Theorem 1.4, and since t
is the largest star operation of finite type, we have |SFw(D)| = 1. �

Corollary 3.5. Let D be integrally closed and U the set of maximal
t-ideals of D that are not v-ideals. If |Sw(D)| < ∞, then D is a PvMD
and 2|U| ≤ |Sw(D)| < ∞.

Proof. This follows directly from Propositions 2.11 and 3.4. �

An integral domain is called a Mori domain if it satisfies the ascend-
ing chain condition on integral v-ideals. Hence, Noetherian domains,
SM domains and Krull domains are Mori domains. Also, a Mori domain
is a Krull domain if and only if it is a PvMD [21, Theorem 3.2].

Corollary 3.6. If D is an integrally closed Mori domain with |Sw(D)| <
∞, then D is a Krull domain, and hence |Sw(D)| = 1.
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Proof. By Proposition 3.4, D is a PvMD, and, since D is a Mori
domain, D is a Krull domain and t = v. Note that w = t on PvMDs.
Thus, w = v. �

We next give a complete characterization of integrally closed do-
mains D with |Sw(D)| < ∞. This result can be proved by using The-
orem 2.6 and Houston, Mimouni and Park’s result [17, Theorem 5.3];
so we first recall their result.

Definition 3.7. ([17, Definition and Notation 3.4]). LetD be a Prüfer
domain that is not a field. Two maximal ideals M,N of D are said to
be dependent if M ∩ N contains a nonzero prime ideal. This defines
an equivalent relation on Max(D), the set of maximal ideals of D.
Let {Aλ}λ∈Λ be the corresponding partition of Max(D); and, for each
λ ∈ Λ, let Pλ be the largest prime ideal of D contained in

∩
M∈Aλ

M ,

and set Sλ =
∩

M∈Aλ
DM .

Theorem 3.8. ([17, Theorem 5.3]). The following statements are
equivalent for an integrally closed domain D that is not a field.

(i) |S(D)| < ∞.
(ii) D is a Prüfer domain satisfying the following conditions:

(a) D is of finite character;
(b) |Aλ| = 1 for almost all λ ∈ Λ;
(c) |Spec (D/Pλ)| < ∞ for all λ ∈ Λ;
(d) D has only finitely many nondivisorial maximal ideals.

Moreover, under the above equivalent conditions,

|S(D)| =
∏
λ∈Λ

|S(Sλ)|.

We next need the PvMD analog of Definition 3.7.

Definition 3.9. Let D be a PvMD that is not a field. For two maximal
t-ideals M,N of D, we mean by M ∼ N that M ∩N contains a nonzero
prime ideal. Clearly, ∼ is an equivalent relation on t-Max(D). Let
{Bα}α∈Θ be the corresponding partition of t-Max(D); and, for each
α ∈ Θ, let Pα be the largest prime ideal of D contained in

∩
M∈Bα

M
and set Tα =

∩
M∈Bα

DM .
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Theorem 3.10. The following statements are equivalent for an inte-
grally closed domain D that is not a field.

(i) |Sw(D)| < ∞.
(ii) D is a PvMD of finite t-character such that

(a) |Bα| = 1 for almost all α ∈ Θ,
(b) the number of prime t-ideals of D containing Pα is finite for

all α ∈ Θ,
(c) D has only finitely many nondivisorial maximal t-ideals.

(iii) |Sw(D[X])| < ∞.
(iv) |S(D[X]Nv )| < ∞.

Moreover, in this case, each Tα is a Prüfer domain with a finite number
of maximal ideals and |Sw(D)| =

∏
α∈Θ |S(Tα)|.

Proof. (i) ⇔ (ii). If |Sw(D)| < ∞, then D is a PvMD by Propo-
sition 3.4, and so we may assume that D is a PvMD, and hence
D[X]Nv is a Prüfer domain with |Sw(D)| = |S(D[X]Nv )| by Theo-
rems 1.4 and 2.6. Thus, the result follows from Theorem 3.8 because
(1) Spec(D[X]Nv ) = {P [X]Nv | P = (0) or P is a t-ideal of D},
(2) Max(D[X]Nv ) = {P [X]Nv | P ∈ t-Max(D)} and (3) (P [X]Nv )v =
Pv[X]Nv .

(i) ⇔ (iii) ⇔ (iv). By Theorem 2.6, it suffices to show that D is
a PvMD. Note that D[X] and D[X]Nv are integrally closed. Thus D
is a PvMD by Proposition 3.4 (respectively, Theorems 3.8 and 1.4) if
|Sw(D)| < ∞ (respectively, |Sw(D[X])| < ∞ or |S(D[X]Nv )| < ∞).

For the “moreover” part, note that |Bα| < ∞ for all α ∈ Θ because
D is of finite t-character. So, if we let Bα = {M1, . . . ,Mk}, then
Tα is a finite intersection of valuation domains DMi . Hence, Tα is a
Prüfer domain with maximal ideals MiDMi ∩ Tα [11, Theorem 22.8],

and so
∩

M∈Bα
(D[X]Nv )M [X]Nv

=
∩k

i=1 D[X]Mi[X] =
∩k

i=1 DMi(X) =
Tα(X). Thus, by Theorems 2.6 and 3.8, |Sw(D)| = |S(D[X]Nv )| =∏

α∈Θ |S(Tα(X))| =
∏

α∈Θ |S(Tα)|. �
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