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A JACOBIAN IDENTITY IN POSITIVE
CHARACTERISTIC

JEFFREY LANG

ABSTRACT. In this note, we present several new results
on derivations in characteristic p ̸= 0, together with a
Jacobian identity that we recently discovered through a
miscalculation. Our main identity states that, if k is a field

of characteristic p and f1, . . . , fn belong to the polynomial
ring k [x1, . . . , xn] and J(f) equals the determinant of the
n× n Jacobian matrix, [∂fi/∂xj ], then

p−1∑
i1=1

· · ·
p−1∑
in=1

f i1
1 · · ·f in

n ∇
(
fp−1−i1
1 · · · fp−1−in

n

)
=(−1)n (J (f))p−1,

where ∇ = ∂n(p−1)/∂xp−1
1 · · · ∂xp−1

n . We conclude with a
brief discussion of nilpotent derivations in characteristic p
in connection with the degree less than p version of the
Jacobian conjecture.

Introduction. The genesis of this short paper was a computational
error. If k is a field of characteristic p ̸= 0 and f1, f2 belong to the
polynomial ring A = k[x1, x2, x3], we can define a derivation D on
A by letting D(h) be the determinant of the 3 × 3 Jacobian matrix
∂(h, f1, f2)/∂(x1, x2, x3) for each h ∈ A. In [2, page 455], we showed
that Dp = αDD, where αD is given by the formula,

αD = −
p−1∑
i=0

p−1∑
j=0

f i
1f

j
2∇

(
fp−1−i
1 fp−1−j

2

)
,

where ∇ = Dp−1
1 Dp−1

2 Dp−1
3 with Di = ∂/∂xi for each i. For a specific

application with p = 3, we needed an explicit formula for αD in terms of
sums of products of mixed partial derivatives of the fi. So we used the
above formula but mistakenly replaced ∇ by the operator Dp−1

1 Dp−1
2 .
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After a very long by hand computation we found to our surprise that

2∑
i=0

2∑
j=0

f i
1f

j
2D

2
1D

2
2

(
f2−i
1 f2−j

2

)
= (det (∂ (f1, f2) /∂ (x1, x2)))

2
.

Based on this discovery, we conjectured that, if the characteristic of k
equals p ̸= 0 and∇ = Dp−1

1 Dp−1
2 , then we have for all f1, f2 ∈ k[x1, x2],

p−1∑
i=0

p−1∑
j=0

f i
1f

j
2∇

(
fp−1−i
1 fp−1−j

2

)
= (det (∂ (f1, f2) /∂ (x1, x2)))

p−1
.

Attempts to verify this combinatorially proved very difficult, but our
discovery of a general identity (Proposition 1.3) involving derivations
in characteristic p made things considerably simpler, leading to the
proof of the above identity and its generalization to higher dimension
(Theorem 1.7). While we have not yet found applications for it, we
hope that it will be useful in the study of logarithmic derivatives of
Jacobian derivations in characteristic p and that it may shed further
light on the Jacobian condition in positive characteristic.

The remainder of the first section has to do with the fact that the
rings A = k[x1, . . . , xn] and B = k[xp

1, . . . , x
p
n, f1, . . . , fn] have the same

quotient fields when the determinant of the n × n Jacobian matrix,
[Difj ], is nonzero. Hence, if J(f) = det [Difj ] and J(f) ̸= 0, then
the two rings will be the same after inversion of some element in B.
In Proposition 1.12, we show that (J(f))p fulfills this role; that is, if
J(f) ̸= 0, then

B

[
1

(J(f))p

]
= A

[
1

J(f)

]
.

In the second section, we discuss attempting the two variable Jaco-
bian conjecture via a reduction to characteristic p. The two variable
Jacobian conjecture is not true in positive characteristic p, but it is
not known if it is true for polynomials of degree less than p. If it is
true in this case, it would imply the two variable Jacobian conjecture
in characteristic 0 [3, page 273]. Yet, if the degree less than p Jaco-
bian conjecture is indeed true in characteristic p and, if a reduction
to this scenario is likely to produce results, then it is our view that
one should be able to recover, without enormous difficulty, in charac-
teristic p for Jacobian pairs of degree less than p already established
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algebraic properties of Jacobian pairs in characteristic 0. Along these
lines, we consider the number of points at infinity of polynomials in
characteristic p of degree less than p that belong to Jacobian pairs, for
we know from Abyankar [1, page 139] that, in characteristic 0, Jacobian
pairs have at most two points at infinity. At first glance, the natural
category of polynomials of degree less than p to consider for recovering
Abhyankar’s theorem are those that define nilpotent Jacobian deriva-
tions, since it includes those that belong to Jacobian pairs and since
they possess the essential property (Lemma 2.1) that in characteristic 0
forces their highest degree forms to have at most two irreducible factors
(Lemma 2.2). Nevertheless, using methods from the first section, we
show that such a polynomial can have as many points at infinity as
its degree (Proposition 2.8), from which we surmise that tackling the
Jacobian problem in characteristic p for the degree less than p case is
probably going to be at least as hard as solving the characteristic 0
case (Conclusion 2.10).

1. A Jacobian identity. In this section, we let k be a field of char-
acteristic p ̸= 0, A = k[x1, . . . , xn] a polynomial ring in n indetermi-
nates over k, and L = k(x1, . . . , xn) the quotient field of A. For each
i = 1, 2, . . . , n, let Di = ∂/∂xi, and let ∇ be the differential operator on

L given by ∇ = Dp−1
1 · · ·Dp−1

n . Given f1, . . . , fn ∈ A, let J(f1, . . . , fn)
be the determinant of the n× n Jacobian matrix,

∂ (f1, . . . , fn) /∂ (x1, . . . , xn) =

 D1 (f1) · · · D1 (fn)
...

...
Dn (f1) · · · Dn (fn)

 .

When B is a commutative ring with unity, we let B∗ denote the
multiplicative groups of units in B.

Definition 1.1. For each pair of nonnegative integers n, k, let Bn,k

denote the Bell polynomial in n− k + 1 variables, which is given by

Bn,k =
∑ n!

j1!j2! · · · jn−k+1!

(
x1

1!

)j1(x2

2!

)j2

· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

where the sum is over all sequences j1, j2, j3 . . . , jn−k+1 of nonnegative
integers such that

∑
ji = k and

∑
iji = n.
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Lemma 1.2. Let R be a ring of characteristic p ̸= 0, and let D be a
derivation on R. Then, for each a ∈ R and positive integer r, we have

Dp−1 (ar) =

p−1∑
k=0

(
r

k

)
k!Bp−1,k

(
Da,D2a, . . . ,Dp−1a

)
� ar−k.

Proof. Let f(x) ∈ R[x] be given by f(x) = xr. By Faà di Bruno’s
formula,

Dp−1 (ar) =

p−1∑
k=0

f [k] (a)Bp−1,k

(
Da,D2a, . . . ,Dp−1a

)
,

which yields the result, since the kth derivative of f(x) is given by
f [k](x) =

(
r
k

)
k!xr−k. �

The Jacobian identity (Theorem 1.7) below is essentially a special
case of this next proposition, which is employed several times in this
article.

Proposition 1.3. Let R be a ring of characteristic p ̸= 0, and let
D : R → R be a derivation on R. Then, for each a ∈ R, we have

p−1∑
r=0

ap−1−rDp−1 (ar) = − (Da)
p−1

.

Proof. Let a ∈ R. It follows from Lemma 1.2 that

p−1∑
r=0

ap−1−rDp−1 (ar)

=

p−1∑
r=0

p−1∑
k=0

(
r

k

)
k!ap−1−kBp−1,k

(
Da,D2a, . . . ,Dp−1a

)
=

p−1∑
k=0

(
p

k + 1

)
k!ap−1−kBp−1,k

(
Da,D2a, . . . ,Dp−1a

)
= (p− 1)!Bp−1,p−1

(
Da,D2a, . . . ,Dp−1a

)
.

Since

Bp−1,p−1 =
(p− 1)!

(p− 1)!
xp−1
1 ,
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we obtain
p−1∑
r=0

ap−1−rDp−1 (ar) = − (Da)
p−1

. �

Corollary 1.4. Let R be a ring of characteristic p ̸= 0, and let
D : R → R be a derivation on R. Assume that either p = 2 or R
has no nonzero nilpotents. If D ̸= 0, then Dp−1 ̸= 0.

Proof. If Dp−1 = 0 on R, then, for each a ∈ R, Da = 0, by
Proposition 1.3. �

Proposition 1.5. Let f1, . . . , fn−1 ∈ L and D be the derivation on L
defined by D(t) = J(t, f1, . . . , fn−1) for all t ∈ L. If D ̸= 0, then there
exists αD ∈ D−1(0) such that Dp = αDD and, for all t ∈ L,

Dp−1(t)−αDt = (−1)
n−1

p−1∑
ij=0

0≤j≤n−1

f i1
1 · · · f in−1

n−1 ∇
(
fp−1−i1
1 · · · fp−1−in−1

n−1 t
)
.

Proof. In [2, Proposition 2.1], we proved Proposition 1.5 for the case
where f1, . . . , fn−1 ∈ A. Specifically, we showed that if f1, . . . , fn−1 ∈
A and D is the derivation on L defined as above with D ̸= 0, then there
exists αD ∈ D−1(0) ∩A such that Dp = αDD and, for all t ∈ L,

Dp−1(t)−αDt = (−1)
n−1

p−1∑
ij=0

0≤j≤n−1

f i1
1 · · · f in−1

n−1 ∇
(
fp−1−i1
1 · · · fp−1−in−1

n−1 t
)
.

The version presented in this proposition follows immediately from this
and the fact that, for each f ∈ L, there exists g, h ∈ A such that
f = g/hp. �

Lemma 1.6. Let f1, . . . , fn−1 ∈ L and D be the derivation on L defined
by D(t) = J(t, f1, . . . , fn−1) for all t ∈ L. Then the following are
equivalent :

(i) D ̸= 0 on L.
(ii) [L(p)(f1, f2, . . . , fn−1) : L

(p)] = pn−1, where L(p) = k(xp
1, . . . , x

p
n).

(iii) The Jacobian matrix ∂(f1, . . . , fn−1)/∂(x1, . . . , xi−1, xi+1, . . . , xn)
has nonzero determinant for some i = 1, 2, . . . , n.
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Proof. The equivalence of the first and third statement follows from
the fact that, for each i, D(xi) equals ± the described determinant.
The equivalence of the first and second statement follows from the fact
that, for f1, . . . , fn ∈ L, J(f1, . . . , fn) ̸= 0 if and only if no fi belongs
to L(p)(f1, . . . , fi−1, fi+1, . . . , fn), and the latter is clearly equivalent to
the statement that L(p)(f1, . . . , fn) = L. �

Theorem 1.7. Let f1, . . . , fn ∈ L = k(x1, . . . , xn). Then,

p−1∑
i1=1

· · ·
p−1∑
in=1

f i1
1 · · · f in

n ∇
(
fp−1−i1
1 · · · fp−1−in

n

)
= (−1)

n
(J (f1, . . . , fn))

p−1
.

Proof. For notational convenience, for each f1, . . . , fn ∈ L, let

T (f1, . . . , fn) =

p−1∑
i1=1

· · ·
p−1∑
in=1

f i1
1 · · · f in

n ∇
(
fp−1−i1
1 · · · fp−1−in

n

)
.

We consider two cases.

Case 1. Assume J(f1, . . . , fn) ̸= 0. Then [L(p)(f2, . . . , fn) : L
(p)] =

pn−1. Let D be the derivation on L defined by D(t) = J(t, f2, . . . , fn)
for all t ∈ L. Then D ̸= 0. Hence, for each r = 0, 1, . . . , p− 1, we have
by Proposition 1.5,

Dp−1
(
fp−1−r
1

)
− αDfp−1−r

1

= (−1)
n−1

p−1∑
ij=0

f i2
2 · · · f in

n ∇
(
fp−1−i2
2 · · · fp−1−in

n fp−1−r
1

)
.

After multiplying both sides by fr
1 , we obtain

fr
1D

p−1
(
fp−1−r
1

)
− αDfp−1

1

= (−1)
n−1

p−1∑
ij=0

fr
1 f

i2
2 · · · f in

n ∇
(
fp−1−r
1 fp−1−i2

2 · · · fp−1−in
n

)
.



A JACOBIAN IDENTITY IN POSITIVE CHARACTERISTIC 399

If we sum both sides of this last equality for r = 0, 1, . . . , p − 1 and
apply Proposition 1.3, we obtain the desired formula.

Case 2. The general case. If some fi ∈ k, then J(f1, . . . , fn) = 0.
We therefore need to show that T (f1, . . . , fn) = 0 in this case. Without
loss of generality, we may assume fn ∈ k. Then, since Di(fn) = 0 for
each i, the summation on the left of the proposed identity becomes

p−1∑
in=0

p−1∑
ij=0

0≤j≤n−1

f i1
1 · · · f in−1

n−1 f
p−1
n ∇

(
fp−1−i1
1 · · · fp−1−in−1

n−1

)
,

which equals 0, since the inner sum in this double summation is
independent of in.

Therefore, we can assume that, for each i = 1, 2, . . . , n, fi has
positive degree ni. For each n-tuple of nonnegative integers, w =
(e1, . . . , en), let xw = xe1

1 · · ·xen
n . For each i = 1, 2, . . . n, let Wi be

the set of all n-tuples of nonnegative integers such that the sum of
their entries is at most ni. Let T = {Ti,w : 1 ≤ i ≤ n,w ∈ Wi} be
a set of indeterminates over k. Let K = k(T) be the field extension
of k generated by the elements of T. For each i = 1, 2, . . . , n, let
Fi =

∑
w∈Wi

Ti,wx
w. Then J(F1, . . . , Fn) ̸= 0, since this is so for a

generic choice of specializations of the Fi, and hence, T (F1, . . . , Fn) =
(−1)n(J(F1, . . . , Fn))

p−1 by the above case. Therefore, the same is
true for any specialization of the F1, . . . , Fn, in particular, for the
specialization that produces f1, . . . , fn. �

Throughout the rest of this section, K will be a field of characteristic
p ̸= 0 and D : K → K a derivation. Let K ′ = D−1(0), and let Fp

denote the prime subfield of K.

The following is from Pierre Samuel’s Tata notes.

Proposition 1.8. If [K : K ′] = p, then there exists a ∈ K ′ such that
Dp = aD [4, page 63].

The next lemma is a more general version of one [4, Lemma 2.3]
that was used to prove some equivalences to the Jacobian condition in
positive characteristic in terms of the ∇ operator.
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Lemma 1.9. If [K : K ′] = p and f ∈ K, then D(f) ∈ F∗
p if and only

if, for each h ∈ K,

h+

p−1∑
i=0

fp−1−iDp−1
(
f ih

)
= 0.

Proof. Assume that D(f) ∈ F∗
p, and let b = D(f).

Note that D(1) = D(12) = 2D(1). Hence, D(1) = 0 and, by the
additivity of D, we have D(b) = 0. Thus, for each pair of nonnegative
integers r and s, we have Dr(fs) = r!

(
s
r

)
fs−rbr.

Let h ∈ K, and let β =
∑p−1

i=0 fp−1−iDp−1(f ih). Then

β =

p−1∑
i=0

fp−1−i

p−1∑
j=0

(
p− 1

j

)
Dj

(
f i
)
Dp−1−j (h)

=

p−1∑
i=0

p−1∑
j=0

(−1)
j

(
i

j

)
(j!) bjfp−1−jDp−1−j (h)

=

p−1∑
j=0

p−1∑
i=0

(−1)
j

(
i

j

)
(j!) bjfp−1−jDp−1−j (h)

=

p−1∑
j=0

(−1)
j
(j!) bjfp−1−jDp−1−j (h)

p−1∑
i=0

(
i

j

)

=

p−1∑
j=0

(−1)
j
(j!) bjfp−1−jDp−1−j (h)

(
p

j + 1

)
.

Since
(

p
j+1

)
= 0 unless j = p−1, β = (−1)p−1(p−1)! bp−1f0D0(h) =

−h.

For the converse, assume that, for all h ∈ K,

h+

p−1∑
i=0

fp−1−iDp−1
(
f ih

)
= 0.
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Then, in particular,

f = −
p−1∑
i=0

fp−1−iDp−1
(
f i+1

)
= −

p−2∑
i=0

fp−1−iDp−1
(
f i+1

)
= −f

p−2∑
i=0

fp−2−iDp−1
(
f i+1

)
= f (Df)

p−1
,

where we obtain the last equality by Proposition 1.3. Hence, (Df)p−1 =
1, which implies Df ∈ F∗

p. �

The following appears in [3]. We include a proof here for the sake
of completeness.

Lemma 1.10. [3, page 276]. Let R be a subring of K such that
D(R) ⊂ R, and let R′ = R ∩K ′. If f ∈ R is such that Df ∈ R∗, then
R = R′[f ].

Proof. Let △ = (Df)−1D. By Proposition 1.8, there exists a ∈ K ′

such that △p = a△. Since △f = 1, a = 0. Thus, △p−1(R) ⊂ R′. It
then follows by Lemma 1.9 that, for each h ∈ R,

h = −
p−1∑
i=0

fp−1−i△p−1
(
f ih

)
∈ R′ [f ] . �

Proposition 1.11. Assume R is as in Lemma 1.10 and f ∈ R. If
Df ̸= 0, then

R′
[
f,

1

(Df)
p

]
= R

[
1

Df

]
.

Proof. Define a derivation △ on K by △ = 1/Df ·D. Then

△
(
R

[
1

Df

])
⊂ R

[
1

Df

]
,
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and we also have

R′
[

1

(Df)
p

]
⊂ K ′ ∩R

[
1

Df

]
.

To show the reverse containment with regard to the latter, let b ∈
K ′ ∩ R[1/Df ]. Then there exists a ∈ R and a nonnegative integer n
such that b = a/(Df)n. Multiplying the numerator and denominator
by an appropriate power of Df , we may assume n is a multiple of
p. Then △b = 0 implies △a = 0, i.e., b ∈ R′[1/(Df)p]. Hence,
R′[1/(Df)p] = K ′ ∩R[1/Df ] and, since △f = 1, we obtain

R′
[
f,

1

(Df)
p

]
= R

[
1

Df

]
by Lemma 1.10. �

Proposition 1.12. Let A = k[x1, . . . , xn] be a polynomial ring in n
variables and f1, . . . , fn ∈ A. Let B = k[xp

1, . . . , x
p
n, f1, . . . , fn]. If

J(f1, . . . , fn) ̸= 0, then

A

[
1

J (f1, . . . , fn)

]
= B

[
1

J (f1, . . . , fn)
p

]
= B

[
1

J (f1, . . . , fn)

]
.

Proof. Let A′ = k[xp
1, . . . , x

p
n, f2, . . . , fn], and let L and L′ denote

the quotient fields of A and A′, respectively. Let D be the derivation
on L defined by D(h) = J(h, f2, . . . , fn) for all h ∈ L. Since D(f1) =
J(f1, . . . , fn) ̸= 0, we have L′ = D−1(0) and [L : L′] = p. By a similar
argument as that used in the proof of Proposition 1.11, we have

A′
[

1

(Df1)
p

]
= L′ ∩A

[
1

Df1

]
.

We then have

B

[
1

(J (f1, . . . , fn))
p

]
=A′

[
f1,

1

(Df1)
p

]
=A

[
1

Df1

]
=A

[
1

J (f1, . . . , fn)

]
,

with the middle equality occurring as a result of Proposition 1.11. Since
(J(f1, . . . , fn))

p−1 ∈ B by Theorem 1.7, we have

B

[
1

J (f1, . . . , fn)

]
= B

[
1

(J (f1, . . . , fn))
p

]
. �
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2. Points at infinity of nilpotent Jacobian derivations. In this
section, we let k be a field and k[x, y] a polynomial ring in two variables.
A pair of polynomials f, g ∈ k[x, y] will be referred to as a Jacobian pair
if J(f, g) = fxgy−fygx ∈ k∗, in which case we also say that f (as well as
g) is part of a Jacobian pair. For each f ∈ k[x, y], we let Df denote the
derivation on k(x, y) defined by Df (h) = J(f, h) for each h ∈ k(x, y).
For f ∈ k[x, y] with f ̸= 0, we let f+ denote the nonzero homogeneous
form of f of highest degree, and we say that f has r points at infinity
if f+ is a product of r mutually coprime factors in k[x, y], where k is
an algebraic closure of k. A pair of polynomials f, g ∈ k[x, y] will be
referred to as an automorphic pair if k[f, g] = k[x, y]. The two variable
Jacobian conjecture states that if the characteristic of k equals 0, then
every Jacobian pair in k[x, y] is an automorphic pair.

It is not hard in positive characteristic to produce examples of
Jacobian pairs that are not automorphic pairs. For example, if k is
a field of characteristic p ̸= 0 and u ∈ k[x, y] has positive degree, then
J(x, y + upx) = 1, but k[x, y] ̸= k[x, y + upx], since y + upx will have
more than one point at infinity [1, page 95]. Also, in characteristic
p ≥ 3, f = x(p−1)/2y(p+1)/2 + y, g = (x + y)x(p−1)/2y(p−1)/2 + y − x
is an example of a Jacobian non-automorphic pair of degree p, since f
has two and g has three points at infinity. However, in characteristic
p ̸= 0, there are no known Jacobian pairs with degrees of the two
polynomials both less than p that are not also automorphic pairs.
Yet, if none such exist, or if the polynomials of such pairs always
have only one point at infinity, or have triangular Newton polygons,
then the two variable Jacobian conjecture is true in characteristic 0
[3, page 273]. For this reason and because we have a fairly good
understanding of Jacobian n-tuples in positive characteristic along with
some analytical tools for determining them [3, pages 274–275], the
study in characteristic p ̸= 0 of polynomials in two variables of degree
less than p that occur as parts of Jacobian pairs would seem to hold
promise. But, after numerous unfruitful attempts over the years along
these lines at the two variable Jacobian conjecture, it occurred to us
to test the overall feasibility of this approach by attempting to recover
in characteristic p for polynomials of degree less than p, an established
fact concerning parts of Jacobian pairs in characteristic 0, specifically,
Abhyankar’s theorem on their number of points at infinity [1, pages
138–139]. For, if such a result in characteristic 0 cannot be obtained in
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characteristic p for polynomials of degree less than p, then we should
probably be doubtful of there being an advantage to a degree less than
p approach to proving the two variable Jacobian conjecture.

Abhyankar’s proof that a polynomial f ∈ k[x, y] that is part of a
Jacobian pair has at most two points at infinity, depends heavily on
the assumption that the characteristic of k is 0 and essentially reduces
to two steps [1, pages 120–136], which we list here as lemmas.

Lemma 2.1. Let k be a field of characteristic 0, and let f ∈ k[x, y]. If
there exists g ∈ k[x, y] such that J(f, g) ̸= 0 and J(f+, (J(f, g))+) = 0,
then there exists a homogeneous H ∈ k[x, y] such that Df+(H) =
J(f+,H) ̸= 0 and D2

f+(H) = J(f+, J(f+,H)) = 0.

Lemma 2.2. Let k be a field of characteristic 0, and let F ∈ k[x, y]
be homogeneous. If there exists a homogeneous H ∈ k[x, y] such that
DF (H) = J(F,H) ̸= 0 and D2

F (H) = J(F, J(F,H)) = 0, then F has
at most two mutually coprime factors.

Certainly, if f, g ∈ k[x, y] and J(f, g) ∈ k∗, then J(f+, (J(f, g))+) =
0, so that by Lemmas 2.1 and 2.2, f+ will have at most two mutually
coprime factors, i.e., f will have at most two points at infinity.

We will see below that, if the characteristic of k is p ̸= 0 and
f ∈ k[x, y], then the existence of an h ∈ k[x, y] such that Df (h) ̸= 0
and D2

f (h) = 0 is equivalent to the condition that Df is nonzero

and nilpotent on k(x, y) (Corollary 2.4). Hence, in particular, if f
is part of a Jacobian pair, then Df is nonzero and nilpotent on k(x, y).
We will also show (Corollary 2.7) that, if f+ /∈ k[xp, yp] and Df is
nilpotent on k(x, y), then there exists a homogeneous H ∈ k[x, y] such
that Df+(H) = J(f+,H) ̸= 0 and D2

f+(H) = J(f+, J(f+,H)) = 0.

Therefore, if deg (f) < p and f is part of a Jacobian pair, then the
conclusion of Lemma 2.1 holds for f . Since obtaining this conclusion
in characteristic 0 is the trickier step in Abhyankar’s proof, this seems
like cause for optimism.

Nevertheless, the question then becomes, is Lemma 2.2 true for
homogeneous F ∈ k[x, y] of degree less than p? In Proposition 2.8,
we use a characterization of nilpotent derivations in terms of the
differential operator ∇ = ∂2(p−1)/∂xp−1∂yp−1 (Proposition 2.6) to



A JACOBIAN IDENTITY IN POSITIVE CHARACTERISTIC 405

show that there are many homogeneous F of degree less than p with
many more than two mutually coprime factors for which there exists
homogeneous H ∈ k[x, y] with DF (H) = J(F,H) ̸= 0 and D2

F (H) =
J(F, (J(F,H))) = 0. Thus, even when deg (F ) < p, Lemma 2.2 above
is not true. This suggests to us that proving that polynomials of degree
less than p that are parts of Jacobian pairs have at most two points at
infinity, provided this is true, will require a completely novel approach
and should be quite challenging (Conclusion 2.10).

For the next two propositions, we assumeK is a field of characteristic
p ̸= 0, D : K → K is a derivation, K ′ = D−1(0) and [K : K ′] = p.

Proposition 2.3. D is nilpotent on K if and only if Dp−1 ̸= 0 and
Dp = 0 on K.

Proof. Assume that D is nilpotent on K. Since [K : K ′] = p,
D ̸= 0. Hence, Dp−1 ̸= 0 by Corollary 1.4. Let n be the minimum
positive integer such that Dn = 0 on K. By Proposition 1.8, there
exists a ∈ K ′ such that Dp = aD. By the division algorithm, there
exist nonnegative integers q and r < p such that n = pq + r. Then
0 = Dn = (Dp)qDr = (aD)qDr = aqDqDr = aqDq+r on K. Hence,
either a = 0, in which case we are done, or Dq+r = 0, which implies
q + r ≥ pq + r, which is only possible if q = 0, which further implies
Dr = 0, which contradicts the fact that Dp−1 ̸= 0.

The converse is obvious. �

Corollary 2.4. Let R be a subring of K such that D(R) ⊂ R. Then D
is nilpotent on K if and only if there exists f ∈ R such that D(f) ̸= 0
and D2(f) = 0.

Proof. If there exists f ∈ R such that D(f) ̸= 0 and D2(f) = 0, then
by Lemma 1.10, Dp = 0. Conversely, if D is nilpotent on K, then by
Proposition 2.3, Dp = 0 and there exists g ∈ K such that Dp−1(g) ̸= 0.
After multiplying g by an element of R(p), we may assume g ∈ R. If
we let f = Dp−2(g), then f ∈ R, D(f) ̸= 0 and D2(f) = 0. �

Remark 2.5. If g ∈ k(x, y), it is easy to see that Dg = 0 on
k(x, y) if and only if g ∈ k(xp, yp). Also, if g /∈ k(xp, yp), then
k(xp, yp, g) = D−1

g (0), and then clearly [k(x, y) : k(xp, yp, g)] = p.
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Hence, if g /∈ k(xp, yp), then by Proposition 1.8, there exists a unique
αg ∈ D−1

g (0) such that Dp
g = αgDg.

Proposition 2.6. Assume g ∈ k[x, y]. Then Dg is nilpotent if
and only if ∇(gi) = 0, for each i = 1, 2, . . . , p − 1, where ∇ =
∂2(p−1)/∂xp−1∂yp−1.

Proof. If g ∈ k[xp, yp], then Dg = 0 by Remark 2.5 and, clearly,
∇(gi) = 0, for i = 1, 2, . . . , p − 1. So we may assume g /∈ k[xp, yp].
Then, by Remark 2.5, we have Dg ̸= 0, and there exists αg ∈
D−1

g (0) such that Dp
g = αgDg. By Proposition 1.5, Dp−1

g (h) − αgh =

−
∑p−1

i=0 gp−1−i∇(gih) for all h ∈ k(x, y). Set h = 1 to get αg =

−
∑p−1

i=0 gp−1−i∇(gi). Since ∇(k[x, y]) = k[xp, yp] and g /∈ k[xp, yp],
αg = 0 if and if ∇(gi) = 0 for i = 1, 2, . . . , p−1, but by Proposition 2.3,
Dg is nilpotent if and only if αg = 0. �

The next result shows that, when Df is nilpotent and f+ /∈ k[xp, yp],
the conclusion of Lemma 2.1 holds for f+. Since, in characteristic p, an
f that is part of a Jacobian pair is such that Df is nilpotent (Corollary
2.4), we might expect, in hopes of recovering Abhyankar’s theorem,
that if Df is nilpotent with deg (f) < p, then f has at most two points
at infinity. Nevertheless, the examples in Proposition 2.8 show that
Lemma 2.2 is not true when deg (f) < p.

Corollary 2.7. Assume f ∈ k[x, y] and f+ /∈ k[xp, yp]. If Df

is nilpotent, then there exists a homogeneous H ∈ k[x, y] such that
Df+(H) ̸= 0 and D2

f+(H) = 0.

Proof. We have Df+ is nonzero and nilpotent on k(x, y) by Re-
mark 2.5, Proposition 2.6 and the fact that, for each positive inte-
ger i, ∇(f i) = 0 implies ∇((f+)i) = 0. By Corollary 2.4, there ex-
ists h ∈ k[x, y] such that Df+(h) ̸= 0 and D2

f+(h) = 0. For each

i = 0, 1, . . . , deg (h), there exists homogenous Hi ∈ k[x, y], with either

Hi = 0 or deg (Hi) = i, such that h =
∑deg(h)

i=0 Hi. Then

Df+ (h) =

deg(h)∑
i=0

Df+ (Hi) ,
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with each Df+(Hi) equal to 0 or homogeneous of degree i+deg (f)− 2
and

D2
f+(h) =

deg (h)∑
i=0

D2
f+ (Hi) ,

with each D2
f+(Hi) equal to 0 or homogeneous of degree i+2deg (f)−4.

Since Df+(h) ̸= 0, it follows that there exists a j such that Df+(Hj) ̸=
0, and, since D2

f+(h) = 0, it follows that D2
f+(Hj) = 0. �

Proposition 2.8. For the following homogeneous polynomials G ∈
k[x, y], we have that G has deg (G) distinct linear factors in k[x, y] and
DG is nilpotent.

(i) any G having distinct linear factors in k[x, y] of degree that divides
p− 2;

(ii) G = x(xp−2 + yp−2), for p > 3;
(iii) G = x(x(p−3)/2 + y(p−3)/2), for p > 7.

Proof. If g ∈ k[x, y], Proposition 2.6 implies that Dg is not nilpotent
if and only if there exists some i = 1, 2, . . . , p− 1, such that ∇(gi) ̸= 0.
On the other hand, ∇(gi) ̸= 0 if and only if gi has a monomial of the
form xrp−1ysp−1 with nonzero coefficient for some positive integers r
and s. In the case where G is homogeneous, the latter equivalence
implies that, if ∇(Gi) ̸= 0, then ideg (G) = −2(mod p), and since
1 ≤ i ≤ p − 1, such an i is unique. Therefore, if G is homogeneous of
degree less than p, DG is nilpotent if and only if ∇(Gi) = 0 for the
unique i = 1, 2, . . . , p− 1, such that ideg (G) = −2(mod p).

In case (i), there exists a positive integer m such that m · deg (G) =
p − 2. Hence, the unique i with 1 ≤ i ≤ p − 1 such that ideg (G) =
−2(mod p) is i = m. Since Gm is homogeneous of degree p−2, Gm has
no monomials of the form xrp−1ysp−1 with nonzero coefficient, i.e., the
degree of Gm is too small. Hence, ∇(Gm) = 0.

In case (ii), with G = x(xp−2 + yp−2), the unique i = 1, 2, . . . , p− 1,
such that ideg (G) = −2(mod p) is i = 2. Then G2 = x2p−2+2xpyp−2+
x2y2p−4, and clearly ∇(G2) = 0.

In case (iii), with G = x(x(p−3)/2 + y(p−3)/2), the unique i =
1, 2, . . . , p − 1, such that ideg (G) = −2(mod p) is i = 4. Then G4 =
x2p−2+4x(3p−1)/2y(p−3)/2+6xp+1yp−3+4x(p+5)/2y(3p−9)/2+x4y2p−6.
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Clearly, if ∇(Gi) ̸= 0, then ∇(x(p+5)/2y(3p−9)/2) ̸= 0, which is the case
only if 5/2 = −1 and −9/2 = −1(mod p), which is the case only if
p = 7. �

From Corollary 2.7, we know that, for each of the homogeneous G
in Proposition 2.8, there exists homogeneous H such that DG(H) ̸= 0
and D2

G(H) = 0, and yet each G is of degree less than p and has more
than two distinct linear factors. However, there is no guarantee from
Corollary 2.4 or Corollary 2.7 that H will also have degree less than p.
Thus, it is natural to ask if both G and H are homogeneous of degree
less than p such that DG(H) ̸= 0 and D2

G(H) = 0, then must G have at
most two distinct linear factors? The next example provides a negative
answer in this case, also.

Proposition 2.9. Let G = xy(x+y) ∈ k[x, y], where the characteristic
of k equals p ̸= 0. If p = 2(mod 3), then DG is nonzero and nilpotent.
In addition, there exists a homogeneous H ∈ k[x, y] with deg (H) < p
such that DG(H) ̸= 0 and D2

G(H) = 0.

Proof. Note that, if 1 ≤ i ≤ p − 1, then deg (Gi) ≤ 3(p − 1).
Then, by the same argument used in the proof of Proposition 2.8,
∇(Gi) ̸= 0 for some i = 1, 2, . . . , p − 1, implies 3i = 2(p − 1), which
implies p = 1(mod 3). Hence, by Proposition 2.6, DG is nilpotent.
By Proposition 2.3, Dp

G = 0. Since DG(x) = Gy ̸= 0, there exists

a positive integer r ≤ p − 1 such that Dr
G(x) ̸= 0 and Dr+1

G (x) = 0.

Hence, if we let H = Dr−1
G (x), then DG(H) ̸= 0 and D2

G(H) = 0. Also,
by induction on i, we have for each i ≤ r, deg (Di

Gx) ≤ 1 + i. Hence,
deg (H) ≤ p− 1. �

Conclusion 2.10. From Abhyankar, we know that in characteristic 0,
a polynomial f ∈ k[x, y] of positive degree has at most two points
at infinity if there exists g ∈ k[x, y] such that J(f, g) ̸= 0 and
J(f+, (J(f, g))+) = 0. Although this is not true in characteristic p ̸= 0,
the conclusion of Lemma 2.1 holds for polynomials of degree less than
p that are parts of Jacobian pairs by virtue of their defining nilpotent
derivations. Since Lemma 2.2 also translates in characteristic p to
a statement about polynomials that define nilpotent derivations, it
is natural to investigate the possible number of points at infinity
of polynomials of degree less than p that define nilpotent Jacobian
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derivations. However, as we have shown, such a polynomial can have
as many points at infinity as its degree, thus proving, if indeed it is the
case, that a polynomial of degree less than p that is part of a Jacobian
pair having at most two points at infinity will require a more holistic
use of the Jacobian pair hypothesis. Yet, unless this can be proved,
there does not seem to be a compelling reason to be optimistic about
a reduction to characteristic p approach to the Jacobian conjecture in
characteristic 0.
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