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COMMUTATIVE RINGS OVER WHICH ALGEBRAS
GENERATED BY IDEMPOTENTS ARE QUOTIENTS

OF GROUP ALGEBRAS

HIDEYASU KAWAI AND NOBUHARU ONODA

ABSTRACT. We study the relationship between algebras
generated by idempotents over a commutative ring R with
identity and algebras that are quotient rings of group
algebras RG for torsion abelian groups G without an element
whose order is a zero-divisor in R. The main purpose is to
seek conditions for R to hold the equality between these two
kinds of algebras.

1. Introduction. In this paper, we fix a commutative ring R with
identity 1R, and we work in the category of commutative R-algebras.
For an abelian group G, we denote by RG the group algebra of G over
R. Let A be an R-algebra and consider the following two conditions.

(i) A is generated by idempotents over R;
(ii) A is a quotient ring of RG for a torsion abelian group G without

an element whose order is a zero-divisor in R.

In [4], it has been shown that, if R is an algebraically closed field,
then the above two conditions are equivalent. However, as remarked in
the paper, this is no longer valid if we drop the assumption that R is
an algebraically closed field; both implications (i) ⇒ (ii) and (ii) ⇒ (i)
have counter-examples even if R is a field. This paper was originally
motivated by seeking conditions for R to hold the equivalence of (i)
and (ii) without any additional assumption on A.

This paper consists of four sections.

In Section 2, we collect some preliminary results that we need in
later sections.
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In Section 3, we are mainly interested in the case where the implica-
tion (ii) ⇒ (i) always holds; namely, the case where every R-algebra A
satisfying (ii) also satisfies (i). Concerning this, we immediately know
that (ii) ⇒ (i) always holds if and only if RG is generated by idem-
potents over R for every torsion abelian group G without an element
whose order is a zero-divisor in R. So, we studied conditions for group
algebras to be generated by idempotents in [6]. We apply the results
obtained in [6] to prove that the following two conditions are equivalent
(Proposition 3.2):

(1) The implication (ii) ⇒ (i) always holds;
(2) n is a unit of R and the nth cyclotomic polynomial ϕn(X) has a

root in R for every positive integer n that is not a zero-divisor in
R.

We then turn to considering the reverse implication and, using
similar arguments in [4, 5] we give a condition for R to hold (i)
⇒ (ii) without any assumption on A (Proposition 3.4). Combining
Proposition 3.2 with Proposition 3.4, we prove that, if there exists a
prime number p that is not a zero-divisor in R, then the above condition
(2) is in fact necessary and sufficient for R to hold the equivalence of
(i) and (ii) (Theorem 3.6).

In studying algebras generated by idempotents, we frequently en-
counter R-algebras A such that Ared is generated by idempotents over
R, but A itself is not, where Ared = A/nil(A), the quotient ring of A
by its nilradical. In view of this, in Section 4 we take up the following
conditions for R-algebras A.

(i’) Ared is generated by idempotents over R;
(ii’) A is a quotient ring of RG for a torsion abelian group G.

We aim at considering a similar problem as in Section 3 and, after
giving some results concerning the implications (i’) ⇒ (ii’) and (ii’) ⇒
(i’), we prove that the equivalence of (i’) and (ii’) holds for R if and
only if the characteristic of R is positive and ϕn(X) has a root in Rred

for every positive integer n (Theorem 4.14).

We denote by U(R) the group of units in R and by R[X] the
polynomial ring in one indeterminate X over R. The characteristic
of R is denoted by ch (R). We write Z, Q, C and Fp for the ring of
integers, the field of rational numbers, the field of complex numbers
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and the prime field of characteristic p > 0, respectively. If R-algebras
A and B are isomorphic as R-algebras, we indicate this by A ∼=R B.
When considering an integer n as an element of R, we assume that n
stands for n ·1R, as usual. For basic results and undefined terminology,
our general references are [2, 3, 8].

As noted above, we often use the following.

Lemma 1.1 ([6], Lemma 3.3). Let n be a positive integer. Then the
following conditions are equivalent :

(1) R[X]/(Xn − 1) is generated by idempotents over R.
(2) n ∈ U(R) and ϕn(X) has a root c in R.

Moreover, if R is indecomposable, then the above conditions are also
equivalent to the following :

(3) n ∈ U(R) and U(R) contains an element c of order n.

Lemma 1.2 ([6], Corollary 3.5). Let n be a positive integer, and
write n = pa1

1 · · · pam
m , where p1, . . . , pm are distinct prime numbers and

a1, . . . , am are positive integers. Let qi = pai
i for each i = 1, . . . ,m.

Then the following conditions are equivalent :

(1) ϕn(X) has a root in R.
(2) ϕqi(X) has a root in R for each i.

Theorem 1.3 ([6], Theorem 4.2). Let G be an abelian group. Then
the following conditions are equivalent :

(1) RG is generated by idempotents over R.
(2) G is a torsion group with suppG ⊆ U(R), and ϕpm(X) has a root

in R for every p ∈ suppG and positive integer m with pm ≤ ep(G).
(3) G is a torsion group with suppG ⊆ U(R), and ϕn(X) has a root

in R for every positive integer n such that n = ord (g) for some
g ∈ G.

Moreover, if R is indecomposable, then the above conditions are also
equivalent to the following :

(4) G is a torsion group with suppG ⊆ U(R), and for every g ∈ G
there exists c ∈ U(R) such that ord (c) = ord (g).
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In the rest of this paper, for an R-algebra A, we denote by ∆(A) the
subalgebra of A generated by the set of all idempotents over R.

2. Some preliminary results. In this section we collect some
preliminary results that we need in later sections.

Lemma 2.1. Let n be a positive integer, and write n = pa1
1 · · · pam

m ,
where p1, . . . , pm are distinct prime numbers and a1, . . . , am are positive
integers. Let a = 0 :R n and ai = 0 :R pai

i for each i. Then the following
conditions are equivalent :

(1) n ∈ U(R/a).
(2) R ∼=R R/a×R/nR.
(3) pi ∈ U(R/ai) for each i.
(4) R ∼=R R/ai ×R/pai

i R for each i.
(5) n ∈ n2R.

Moreover, if ch(R) = 0, then the above conditions are also equivalent
to the following condition:

(6) There is a subring of R isomorphic to Z[n−1] × Z/dZ for some
divisor d of n.

Proof. We set qi = pai
i and ni = n/qi for each i. First of all, we note

that

(2.1) a = ai + (0 :R ni) ⊆ ai + qiR

for each i. In fact, let si and ti be integers such that nisi + qiti = 1.
Then a = nisia + qitia, where nisia ⊆ ai and qitia ⊆ (0 :R ni).
Thus, a ⊆ ai + (0 :R ni). Since the reverse containment is obvious,
we know that the equality in (2.1) holds. Moreover qitia ⊆ qiR, so that
a ⊆ ai + qiR also holds.

(1) ⇔ (2). We have n ∈ U(R/a) if and only if a+ nR = R, so that
(1) is equivalent to (2), because na = 0.

(3) ⇔ (4). This is an immediate consequence of the equivalence (1)
⇔ (2).

(2) ⇒ (4). Since R ∼=R R/a × R/nR, it follows that a + nR = R,
and hence ai + qiR = R by (2.1). Thus, R ∼=R R/ai ×R/qiR, because
qiai = 0.
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(4) ⇒ (2). From (2.1), we have

a = a1 + · · ·+ am

by induction on m. Since ai + qiR = R for each i, it thus follows that

a+ nR ⊇ (a1 + q1R) · · · (am + qmR) = R,

and therefore a+ nR = R. Thus, R ∼=R R/a×R/nR.

(1) ⇔ (5). This is easily verified.

(2) ⇒ (6). Note that a ∩ Z = 0, because ch(R) = 0. Since
n ∈ U(R/a), it follows that Z[n−1] ⊆ R/a. Moreover we have
nR∩Z = dZ for some divisor d of n, so that Z/dZ ⊆ R/nR. Thus, (6)
holds.

(6) ⇒ (2). Let e1 = (n−1, 0) and e2 = (0, 1), which are elements in
Z[n−1]× Z/dZ. Then ne2 = 0, and hence e2 ∈ a. Since ne1 + e2 = 1,
it thus follows that nR+ a = R, which implies (2). �

Lemma 2.2. Let A = RG, where G is a cyclic group of order n. Write
n = pa1

1 · · · pam
m with distinct prime numbers p1, . . . , pm and positive

integers a1, . . . , am. Then the following conditions are equivalent :

(1) Ared = ∆(Ared).
(2) pi ∈ p2iRred and ϕqi(X) has a root in Rred for each i, where

qi = pai
i .

(3) n ∈ n2Rred and ϕn(X) has a root in Rred.

Proof. Set ai = 0 :Rred
pai
i for each i. Noting that ai = 0 :Rred

pi, we
can say that pi ∈ U(Rred/ai) if and only if pi ∈ p2iRred for every
pi by Lemma 2.1. Hence, the equivalence (2) ⇔ (3) follows from
Lemma 2.1 and Lemma 1.2. For (1) ⇔ (2), we note the following
identity: ϕpe(X) = ϕpe−1(Xp) with a prime number p and a positive
integer e. From this, if ϕpe(X) has a root in Rred, then ϕpt(X) has a
root in Rred for every positive integer t ≤ e. Hence, the equivalence (1)
⇔ (2) follows from [7, Theorem 2.12]. �

As shown in [7, Remark 2.14], if ch(R) > 0, then n ∈ n2Rred for
every integer n. Thus, we have
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Corollary 2.3. Let A = RG, where G is a cyclic group of order n, and
suppose that ch(R) > 0. Then the following conditions are equivalent :

(1) Ared = ∆(Ared).
(2) ϕn(X) has a root in Rred.

Lemma 2.4. For a positive integer n, we set

θn(X) = Xn−1 +Xn−2 + · · ·+X + 1.

Suppose that there exist integers n1, . . . , nm and elements c1, . . . , cm ∈
R such that θni(ci) = 0 for each i. Then cni

i = 1 for each i. Moreover,
if the greatest common divisor (g.c.d.) of n1, . . . , nm belongs to U(R),
then R(1− c1) + · · ·+R(1− cm) = R.

Proof. The assertion that cni
i = 1 is obvious, because

1− cni
i = (1− ci)θni(ci) = 0.

Let d be the g.c.d. of n1, . . . , nm, and suppose that d ∈ U(R). Since
d ∈ Zn1 + · · ·+ Znm and

ni = ni − θni(ci) = (1− ci) + · · ·+ (1− cni−1
i ) ∈ R(1− ci)

for each i, it then follows that

d ∈ Rn1 + · · ·+Rnm ⊆ R(1− c1) + · · ·+R(1− cm),

and therefore R(1− c1) + · · ·+R(1− cm) = R, because d ∈ U(R). �

3. Algebras generated by idempotents. In what follows, groups
are assumed to be multiplicative, namely, the operation of a group is
written multiplicatively. The order of an element g of a group is denoted
by ord (g).

Before proceeding further, we recall some notion concerning abelian
groups. Let G be an abelian group. Then, we set

Gt = {g ∈ G | ord (g) < ∞},

which is a subgroup called the torsion part of G. For a prime number
p, we set

ep(G) = sup{ord (g) | g ∈ G and ord (g) = pn for some n ≥ 0},
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so that 1 ≤ ep(G) ≤ ∞. If G is a finite group, then we set

e(G) = max{ord (g) | g ∈ G},

and call e(G) the exponent of G. Finally we set

suppG = {p | ep(G) ̸= 1},

which is called the support of G. Note that suppG = ∅, the empty set,
if and only if Gt is the trivial group.

We say that an integer n is R-regular if n is not a zero-divisor
in R. Let G be a non-trivial torsion abelian group such that RG =
∆(RG). Then it follows from Theorem 1.3 that suppG ⊆ U(R), and
in particular, every p ∈ suppG is R-regular. With this in mind, letting

Γ(R) = {n | n is an R-regular positive integer}

and

Γ0(R) = {p | p is a prime number contained in Γ(R)},

we consider the following two conditions for R-algebras A:

(i) A is generated by idempotents over R;
(ii) A is a quotient ring of RG for a torsion abelian group G satisfying

suppG ⊆ Γ0(R).

As mentioned in the introduction, the original motivation of this
paper is seeking conditions for R to hold the equivalence of (i) and
(ii). As an application of Theorem 1.3, we give a complete answer to
this problem. For a precise description of our results, let Cid(R) be the
class of R-algebras A satisfying condition (i) and Cgr(R) the class of
R-algebras A satisfying condition (ii). We use set-theoretical notation
for these classes; for example, we write A ∈ Cid(R) to mean that A is
an R-algebra generated by idempotents over R. Our purpose is thus to
give a condition for R to hold the equality Cid(R) = Cgr(R).

Remark 3.1.

(1) For an integer n > 1, we have n ∈ Γ(R) if and only if p ∈ Γ0(R) for
every prime divisor p of n. In particular, we have Γ(R) = {1} if and
only if Γ0(R) = ∅, and Γ(R) ⊆ U(R) if and only if Γ0(R) ⊆ U(R).
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(2) Γ0(R) can be the empty set. For example, let p1 = 2, p2 = 3,
p3 = 5, . . . be the sequence of all the prime numbers, and set

R = Z[X1, X2, X3, . . .]/(p1X1, p2X2, p3X3, . . .),

where X1, X2, X3, . . . are indeterminates. Then, clearly, we have
Γ0(R) = ∅. Note that Γ0(R) = ∅ implies ch (R) = 0 because, if
ch (R) = n > 0, then

Γ0(R) = {p | p is a prime number not dividing n},

which is a non-empty subset of U(R).
(3) A torsion abelian group G satisfies suppG ⊆ Γ0(R) if and only if

ord (g) is R-regular for every g ∈ G. In particular, if G is generated
by {gλ | λ ∈ Λ} and, if ord(gλ) is R-regular for every λ ∈ Λ, then
suppG ⊆ Γ0(R).

(4) For an R-algebra A, we have A ∈ Cgr(R) if and only if there exists
a torsion subgroup G of U(A) such that suppG ⊆ Γ0(R) and
A = R[G]. Indeed, suppose that there exists such a subgroup G of
U(A). Then we can define a surjective R-algebra homomorphism
σ : RG → A by σ(g) = g for g ∈ G, and hence A ∈ Cgr(R).
Conversely, suppose that A ∈ Cgr(R), and let σ : RG → A be a
surjective R-algebra homomorphism, where G is a torsion abelian
group with suppG ⊆ Γ0(R). SinceG ⊆ U(RG), it then follows that
σ(G) is a torsion subgroup of U(A) such that suppσ(G) ⊆ Γ0(R)
and A = R[σ(G)].

Using Theorem 1.3, we first give a condition for R to hold Cid(R) ⊇
Cgr(R). Note that RG ∈ Cgr(R) for every torsion abelian group G
satisfying that suppG ⊆ Γ0(R).

Proposition 3.2. The following conditions are equivalent :

(1) Cid(R) ⊇ Cgr(R).
(2) Γ(R) ⊆ U(R) and ϕn(X) has a root in R for every n ∈ Γ(R).
(3) Γ0(R) ⊆ U(R) and ϕpm(X) has a root in R for every p ∈ Γ0(R)

and positive integer m.

Proof. The equivalence of (2) and (3) follows from Lemma 1.2 and
Remark 3.1 (1). Suppose that Γ0(R) = ∅. Then (3) holds, because
there exist no elements in Γ0(R). On the other hand, (1) also holds.
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Indeed, the trivial group is the only torsion abelian group with support
contained in Γ0(R), and therefore it follows that

(3.1) Cgr(R) = {R/I | I is an ideal of R}.

Since R/I ∈ Cid(R) for every ideal I of R, we surely have Cid(R) ⊇
Cgr(R). Hence, the equivalence of (1) and (3) trivially holds in this
case. Thus, we may assume that Γ0(R) ̸= ∅.

(1) ⇒ (3). Let p be an element of Γ0(R), and let m be a positive
integer. Then, letting G be a cyclic group of order pm, we have
suppG = {p} ⊆ Γ0(R), and hence RG ∈ Cgr(R). Since Cid(R) ⊇
Cgr(R), it follows that RG ∈ Cid(R), i.e., RG = ∆(RG). Thus,
p ∈ U(R) and ϕpm(X) has a root in R by virtue of Theorem 1.3.

(3) ⇒ (1). Let A be an R-algebra such that A ∈ Cgr(R), so that
there exists a surjective R-algebra homomorphism RG → A for a
torsion abelian group G satisfying that suppG ⊆ Γ0(R). Since (3)
holds, it then follows from Theorem 1.3 that RG = ∆(RG), which
implies A = ∆(A), i.e., A ∈ Cid(R). Therefore, Cid(R) ⊇ Cgr(R), as
desired. �

Remark 3.3. The proof of the above proposition shows that if Γ0(R) =
∅, then Cid(R) ̸= Cgr(R); indeed, we have R2 ∈ Cid(R), while R2 /∈
Cgr(R) by virtue of (3.1).

We now turn to consideration of the reverse inclusion Cid(R) ⊆
Cgr(R).

Proposition 3.4. The following conditions are equivalent :

(1) Cid(R) ⊆ Cgr(R).
(2) R2 ∈ Cgr(R).
(3) There exist torsion elements c1, . . . , cm in U(R) such that ord (ci) is

an R-regular integer for each i and R(1−c1)+ · · ·+R(1−cm) = R.

Proof. Since the implication (1) ⇒ (2) is obvious, we prove (2) ⇒
(3) and (3) ⇒ (1).

(2) ⇒ (3). Since R2 ∈ Cgr(R), there exists a torsion subgroup G
of U(R2) = U(R) × U(R) such that suppG ⊆ Γ0(R) and R2 = R[G].
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Note that, for f ∈ R[G], we can write f = a1g1 + · · · + amgm, where
a1, . . . , am ∈ R and g1, . . . , gm ∈ G. Hence, we have

(3.2) R2 ∋ (1, 0) = a1(u1, v1) + · · ·+ am(um, vm)

for some a1, . . . , am ∈ R and (u1, v1), . . . , (um, vm) ∈ G. Let bi = aiui

and ci = u−1
i vi for every i. Then each ord (ci) is an R-regular

integer, because suppG ⊆ Γ0(R). Moreover, it follows from (3.2)
that b1 + · · · + bm = 1 and b1c1 + · · · + bmcm = 0, and hence
b1(1−c1)+· · ·+bm(1−cm) = 1. Therefore, R(1−c1)+· · ·+R(1−cm) =
R.

(3)⇒ (1). Let ni = ord (ci) for each i, and let a1, . . . , am be elements
in R such that

a1(1− c1) + · · ·+ am(1− cm) = 1.

We set a = a1 + · · ·+ am and b = a1c1 + · · ·+ amcm, so that a− b = 1.
Now let A be an R-algebra generated by idempotents over R. Then
there exists a set E = {eλ | λ ∈ Λ} of idempotents in A such that
A = R[E]. Let

(3.3) gλ,i = eλ + ci(1− eλ)

for λ ∈ Λ and i = 1, . . . ,m. Then

gλ,i
ni = eλ + cni

i (1− eλ) = 1,

and hence each gλ,i is an element of U(A) such that ord (gλ,i) is
an R-regular integer, because ord (gλ,i) is a divisor of ni and ni is
R-regular. Thus, letting G be the subgroup of U(A) generated by
{gλ,i | λ ∈ Λ, 1 ≤ i ≤ m}, we know that G is a torsion group satisfying
suppG ⊆ Γ0(R). Moreover, for each λ ∈ Λ, we have

a1gλ,1 + · · ·+ amgλ,m − b = aeλ + b(1− eλ)− b = eλ,

which implies A = R[G]. Therefore, A ∈ Cgr(R), i.e., Cid(R) ⊆
Cgr(R). �

Corollary 3.5. Let θn(X) be the polynomial defined in Lemma 2.4. If
there exist R-regular integers n1, . . . , nm such that their g.c.d. belongs
to U(R) and θni(X) has a root in R for each i, then Cid(R) ⊆ Cgr(R).

In particular, if there exists a prime number p such that p ∈ U(R)
and ϕp(X) has a root in R, then Cid(R) ⊆ Cgr(R).
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Proof. For every i, let ci ∈ R be an element such that θni(ci) = 0.
Then cni

i = 1, and hence each ci is a torsion element of U(R) such
that ord (ci) is an R-regular integer. Moreover we have R(1 − c1) +
· · ·+R(1− cm) = R by Lemma 2.4, and therefore Cid(R) ⊆ Cgr(R) by
Proposition 3.4. �

We are now ready to state and prove the following:

Theorem 3.6. The following conditions are equivalent :

(1) Cid(R) = Cgr(R).
(2) Γ(R) ̸= ∅ and Cid(R) ⊇ Cgr(R).
(3) ∅ ̸= Γ(R) ⊆ U(R) and ϕn(X) has a root in R for every n ∈ Γ(R).
(4) ∅ ̸= Γ0(R) ⊆ U(R) and ϕpm(X) has a root in R for every p ∈ Γ0(R)

and positive integer m.

Moreover, if R is indecomposable, then the above conditions are also
equivalent to the following :

(5) ∅ ≠ Γ0(R) ⊆ U(R) and U(R) contains an element of order pm for
every p ∈ Γ0(R) and positive integer m.

Proof. The implication (1) ⇒ (2) is obvious (cf., Remark 3.3), and
the equivalence of (2), (3) and (4) is an immediate consequence of
Proposition 3.2. Suppose that (4) holds. Then Cid(R) ⊆ Cgr(R) by
Corollary 3.5, while Cid ⊇ Cgr(R) because of the implication (4) ⇒ (2).
Thus, Cid(R) = Cgr(R), namely, (1) holds. Finally, the equivalence of
(4) and (5) follows from Lemma 1.1. �

Remark 3.7. Concerning the above theorem, the condition Cid(R) ⊆
Cgr(R) is not equivalent to the condition Cid(R) = Cgr(R) in general.
Indeed, let R = F2[X]/(X2 +X + 1). Then ϕ3(X) has a root in R, so
that Cid(R) ⊆ Cgr(R) by Corollary 3.5. However, let G be a cyclic group
of order 5. Then RG ∈ Cgr(R), while RG /∈ Cid(R) by Theorem 1.3,
because ϕ5(X) does not have a root in R. Thus, Cid(R) ̸= Cgr(R).

4. Algebras whose quotient rings by nilradicals are gen-
erated by idempotents. We continue the consideration of the re-
lationship between algebras generated by idempotents and algebras
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that are quotient rings of group algebras. In studying algebras gener-
ated by idempotents, we frequently encounter R-algebras A such that
Ared = ∆(Ared), but A ̸= ∆(A). It is thus natural to consider the class
of R-algebras A satisfying the following condition (i’), instead of (i):

(i’) Ared is generated by idempotents over R.

Let C′
id(R) be the class of R-algebras A satisfying the condition (i’),

so that Cid(R) ⊆ C′
id(R), and A ∈ C′

id(R) means Ared ∈ Cid(R). Hence,
by the results obtained in the preceding section, we know conditions
for A ∈ C′

id(R) to hold Ared ∈ Cgr(R). However, Ared ∈ Cgr(R) does
not imply A ∈ Cgr(R), in general, as the following example shows.

Example 4.1. Let R = Fp, and let A = R[X]/(Xp − 1). Then
Ared = R, which obviously belongs to Cgr(R). However A /∈ Cgr(R).

Indeed, note that fp ∈ Fp for any f ∈ A, so that fp(p−1) is either 1 or

0. It thus follows that U(A)p(p−1) = 1. Moreover, letting f ∈ U(A) be
an element such that fp−1 = 1, we have f = fp ∈ Fp. Hence, if G is a
torsion abelian group for which there exists a surjection σ : RG → A,
then G must contain an element g such that p = ord (σ(g)). For such g
we have p | ord (g), so that p ∈ suppG. Thus, G does not satisfy that
suppG ⊆ Γ0(R). Note that A ∼=R RCp, where Cp denotes the cyclic
group of order p.

In view of this, corresponding to (i’) we consider the following
condition, which is a generalization of (ii).

(ii’) A is a quotient ring of RG for a torsion abelian group G.

Let C′
gr(R) be the class of R-algebras A satisfying the condition

(ii’). The purpose of this section is to give a condition for R to hold
the equality C′

id(R) = C′
gr(R).

Remark 4.2.

(1) For an R-algebra A, we have A ∈ C′
gr(R) if and only if there exists

a torsion subgroup G of U(A) such that A = R[G] (cf., Remark
3.1 (4)).

(2) Suppose that A ∈ C′
gr(R) and that A is finitely generated over

R. Then A is a quotient ring of RG for some finite abelian group
G. Indeed, since A ∈ C′

gr(R), we have A = R[G′] for a torsion
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subgroup G′ of U(A). Then there exists a finite subset H of G′

such that A = R[H], because A is finitely generated over R. Let
G = ⟨H⟩, where ⟨H⟩ denotes the subgroup of G′ generated by
the elements in H. Note that G is a finite group, because G is a
finitely generated subgroup of the torsion abelian group G′. Since
A = R[G], it follows that A is a quotient ring of RG, which proves
the assertion.

First we consider the case where the implication C′
gr(R) ⊆ C′

id(R)
holds.

Lemma 4.3. The following conditions are equivalent :

(1) C′
gr(R) ⊆ C′

id(R).
(2) (RG)red = ∆((RG)red) for every finite cyclic group G.

Proof. Since RG ∈ C′
gr(R) for every torsion abelian group G, the

implication (1) ⇒ (2) is obvious. For the reverse implication, it suffices
to show that (RG)red = ∆((RG)red) for every torsion abelian group
G. Indeed, if A ∈ C′

gr(R), then A is a surjective image of RG for
a torsion abelian group G, which implies Ared is a surjective image
of (RG)red; thus, Ared = ∆(Ared) if (RG)red = ∆((RG)red). Let
τ : RG → (RG)red be the natural R-algebra homomorphism, and let
G = τ(G). Then (RG)red = R[G]. For g ∈ G, we set g = τ(g). Since
R⟨g⟩red = ∆(R⟨g⟩red), there exists a set Eg of idempotents in R⟨g⟩red
such that R⟨g⟩red = R[Eg]. Note that R⟨g⟩red ⊆ (RG)red, so that Eg

is a subset of (RG)red. We set E = ∪g∈GEg. Since g ∈ R⟨g⟩red, it then
follows that

g ∈ R[Eg] ⊆ R[E],

which implies G ⊆ R[E]. Thus, R[G] ⊆ R[E], and hence (RG)red =
R[E]. Therefore, (RG)red = ∆((RG)red), which completes the proof.

�

Proposition 4.4. Suppose that ch (R) > 0. Then the following
conditions are equivalent :

(1) C′
gr(R) ⊆ C′

id(R).
(2) ϕn(X) has a root in Rred for every positive integer n.
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(3) ϕpm(X) has a root in Rred for every prime number p and positive
integer m.

Proof. The equivalence of (1) and (2) is an immediate consequence
of Lemma 4.3 and Corollary 2.3, while the equivalence of (2) and (3)
follows from Lemma 1.2. �

Proposition 4.5. Suppose that ch(R) = 0. Then the following condi-
tions are equivalent :

(1) C′
gr(R) ⊆ C′

id(R).

(2) n ∈ n2Rred and ϕn(X) has a root in Rred for every positive integer
n.

(3) ϕpm(X) has a root in Rred for every prime number p and positive
integer m, and for every prime number p, either (a) or (b) below
holds:
(a) Z[p−1] ⊆ Rred, i.e., p ∈ U(Rred);
(b) Z[p−1]× Fp ⊆ Rred.

Proof. The equivalence of (1) and (2) follows from Lemmas 4.3 and
2.2, while the equivalence of (2) and (3) follows from Lemmas 2.1 and
1.2. �

Next, we consider the case where C′
id(R) ⊆ C′

gr(R) holds. Let A be an
R-algebra, and let π : A → Ared be the natural R-algebra map. Recall
that π induces a surjective group homomorphism π : U(A) → U(Ared),
namely, U(Ared) ∼= U(A)/(1 + nil(A)). For the torsion parts of U(A)
and U(Ared), we have the following:

Lemma 4.6. If ch (A) > 0, then 1 + nil(A) is a torsion subgroup of
U(A). In particular, U(Ared)t ∼= U(A)t/(1 + nil(A)).

Proof. Let n = ch(A) and write n = pa1
1 · · · pam

m , where p1, . . . , pm
are distinct prime numbers and a1, . . . , am are positive integers. Then

Z/nZ ∼= Z/pa1
1 Z× · · · × Z/pam

m Z,

which implies

A ∼= A⊗Z (Z/nZ) ∼= A1 × · · · ×Am,
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where Ai = A/pai
i A for each i. It thus suffices to show that 1+nil (Ai)

is a torsion subgroup of U(Ai) for each i. Hence, we may assume that
n = pa, a power of a prime number p. Now let u be an element of
nil (A), and take r to satisfy upr

= 0. Note that(
pa+r−1

i

)
≡ 0 (mod pa)

for every i < pr. Thus, letting q = pa+r−1, we have (1 + u)q = 1, and
hence 1 + u is a torsion element of U(A). �

Lemma 4.7. Let A be an R-algebra such that Ared = R[G] for a
subgroup G of U(Ared). Then there exists a subgroup G of U(A) such
that A = R[G]. Suppose, in addition, that G is a torsion group and
ch (R) > 0. Then we can take the group G to be a torsion group.

Proof. Let π : A → Ared be the natural R-algebra homomorphism.
Since U(Ared) ∼= U(A)/(1 + nil (A)), we have G ∼= G/(1 + nil (A)) for
some subgroup G of U(A). Then nil (A) ⊆ R[G], because 1 + nil (A) ⊆
G. Since π(R[G]) = R[G] = Ared = π(A), it thus follows that
A = R[G]. If ch (R) > 0, then G is a torsion group by Lemma 4.6,
which completes the proof. �

Corollary 4.8. Let A be an R-algebra such that Ared ∈ C′
gr(R). If

ch (R) > 0, then A ∈ C′
gr(R).

Lemma 4.9. Let A = R[X]/(X2), so that A ∈ C′
id(R). Then

A ∈ C′
gr(R) if and only if ch (R) > 0.

Proof. Suppose that ch(R) > 0. Since Ared = Rred ∈ C′
gr(R), it then

follows from Corollary 4.8 that A ∈ C′
gr(R). Conversely, suppose that

A ∈ C′
gr(R), namely, A = R[G] for a torsion subgroup G of U(A). We

denote by x the residue class of X in A. Then,

A = R[x] = {a+ bx | a, b ∈ R},

and hence we can write

(4.1) x = c1(a1 + b1x) + · · ·+ cm(am + bmx)
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for some elements a1 + b1x, . . . , am + bmx ∈ G and c1, . . . , cm ∈ R.
Note that, letting a + bx ∈ U(A) be a torsion element of order n, we
have (a+ bx)n = an + nan−1bx = 1, which implies an = 1 and nb = 0.
Hence, there exists a positive integer n such that nbi = 0 for each i. It
then follows from (4.1) that

nx = n(c1a1 + · · ·+ cmam) ∈ R,

and therefore n = 0 in R. This means ch (R) > 0. �

From Lemma 4.9, we know that if C′
id(R) ⊆ C′

gr(R), then ch(R) > 0.

Lemma 4.10. Suppose that ch (R) > 0. Then the following conditions
are equivalent :

(1) Cid(R) ⊆ C′
gr(R).

(2) C′
id(R) ⊆ C′

gr(R).

Proof. Since Cid(R) ⊆ C′
id(R), it suffices to prove (1) ⇒ (2). If

(1) holds, then for A ∈ C′
id(R), we have Ared ∈ Cid(R), so that

Ared ∈ C′
gr(R). It then follows from Corollary 4.8 that A ∈ C′

gr(R),
and hence (2) holds. �

We are thus led to seek conditions for the implication Cid(R) ⊆
C′
gr(R). However, with a slight modification, the proof of Proposi-

tion 3.4 works for this implication; namely, we have the following:

Proposition 4.11. The following conditions are equivalent :

(1) Cid(R) ⊆ C′
gr(R).

(2) R2 ∈ C′
gr(R).

(3) There exist torsion elements c1, . . . , cm in U(R) such that R(1 −
c1) + · · ·+R(1− cm) = R.

Corollary 4.12. Suppose that there exists a maximal ideal M of R
such that ch(R/M) = 2 and F2 is algebraically closed in R/M . Then
Cid(R) ̸⊆ C′

gr(R).

Proof. Let f : R → R/M be the natural surjection, and let c be
a torsion element in U(R). Then f(c) is algebraic over F2, so that
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f(c) = 1 by assumption. Hence, 1−f(c) = 0, which implies 1− c ∈ M .
Therefore, R does not satisfy condition (3) in Proposition 4.11. �

Summarizing the results stated above, we have the following:

Proposition 4.13. The following conditions are equivalent :

(1) C′
id(R) ⊆ C′

gr(R).

(2) ch (R) > 0 and R2 ∈ C′
gr(R).

(3) ch (R) > 0, and there exist torsion elements c1, . . . , cm in U(R)
such that R(1− c1) + · · ·+R(1− cm) = R.

(4) ch(R) > 0, and there exist torsion elements c1, . . . , cm in U(Rred)
such that Rred(1− c1) + · · ·+Rred(1− cm) = Rred.

Proof. The equivalence of (1), (2) and (3) follows from Lemma 4.9,
Lemma 4.10 and Proposition 4.11. The implication (3) ⇒ (4) is clear.
It thus remains to show (4) ⇒ (3). Since the natural group homomor-
phism σ : U(R) → U(Rred) is surjective, there exist c1, . . . , cm ∈ U(R)
such that σ(ci) = ci for each i. Let J = R(1 − c1) + · · · + R(1 − cm).
Then J +nil (R) = R, so that a+ b = 1 for some a ∈ J and b ∈ nil (R).
Then (1−a)n = 0 for a sufficiently large integer n, which implies 1 ∈ J .
Note that each ci is a torsion element of U(R) by virtue of Lemma 4.6.
Thus, (3) holds. �

Now, combining Proposition 4.4 with Proposition 4.13, we can give
conditions for R to hold the equality C′

id(R) = C′
gr(R).

Theorem 4.14. The following conditions are equivalent :

(1) C′
id(R) = C′

gr(R).
(2) ch (R) > 0 and C′

gr(R) ⊆ C′
id(R).

(3) ch (R) > 0 and ϕn(X) has a root in Rred for every positive integer
n.

(4) ch(R) > 0 and ϕpm(X) has a root in Rred for every prime number
p and positive integer m.

Proof. The equivalence of (2), (3) and (4) follows from Proposi-
tion 4.4, and the implication (1) ⇒ (2) follows from Lemma 4.9. For (4)
⇒ (1), it suffices to show C′

id(R) ⊆ C′
gr(R) because of the equivalence of

(4) and (2). Set n = ch (R), and let p be a prime number not dividing
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n, so that p ∈ U(Rred). Then, letting c be a root of ϕp(X) in Rred, we
know from Lemma 2.4 that Rred(1− c) = Rred. Thus, C′

id(R) ⊆ C′
gr(R)

by Proposition 4.13, which completes the proof. �

We conclude this paper with some supplementary results in connec-
tion with [9].

Lemma 4.15. Suppose that R is a zero-dimensional semilocal ring
with maximal ideals M1, . . . ,Mn. Then the following conditions are
equivalent :

(1) C′
id(R) ⊆ C′

gr(R).
(2) ch(R) > 0, and for each i either (a) or (b) below holds:

(a) ch (R/Mi) ̸= 2;
(b) ch (R/Mi) = 2 and F2 is not algebraically closed in R/Mi.

(3) ch (R) > 0, and there exists a torsion element c in U(R) such that
1− c ∈ U(R).

Proof. Since the implications (1) ⇒ (2) and (3) ⇒ (1) are immediate
consequences of Corollary 4.12 and Proposition 4.13, we give a proof
only for (2) ⇒ (3). Since R is zero-dimensional, letting Ki = R/Mi,
we have an R-algebra isomorphism

f : Rred −→ K1 × · · · ×Kn.

For each i, choose ci ∈ Ki as follows: If ch (Ki) ̸= 2, then let ci = −1.
If ch(Ki) = 2, then let ci be an element of Ki \ F2 such that ci is
algebraic over F2; note that ord (ci) is finite because F2(ci) is a finite
field. Let c be the element of Rred such that

f(c) = (c1, . . . , cn) ∈ K1 × · · · ×Kn,

and let c be an element of R such that c = c mod nil (R). Since ord (ci)
is finite for each i, it then follows that cm = 1 for some m > 0, which
implies cm ∈ 1 + nil (R). Therefore, c is a torsion element of U(R) by
Lemma 4.6. Moreover, we have 1− c /∈ Mi for any i, because 1− ci ̸= 0
for any i. This means 1− c ∈ U(R), which completes the proof. �

Corollary 4.16. Let R be a zero-dimensional semilocal ring with
maximal ideals M1, . . . ,Mn, and let A be an R-algebra that is a finite
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R-module. If ch (R) > 0 and R/Mi is algebraically closed for each i,
then A is a quotient ring of RG for a finite abelian group G.

Proof. LettingKi = R/Mi for each i, we have Rred
∼=R K1×· · ·×Kn.

Note that Ared is a finite Rred-module. Thus, we have

Ared
∼=R Kr1

1 × · · · ×Krn
n

for some positive integers r1, . . . , rn, so that Ared = ∆(Ared), i.e.,
A ∈ C′

id(R). Therefore, A is a quotient ring of RG for a finite abelian
group G by Lemma 4.15 and Remark 4.2. �
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