ON FUNCTION COMPOSITIONS THAT ARE POLYNOMIALS

ERHARD AICHINGER

ABSTRACT. For a polynomial map $f: k^n \to k^m$ (k a field), we investigate those polynomials $g \in k[t_1, \ldots, t_n]$ that can be written as a composition $g = h \circ f$, where $h: k^m \to k$ is an arbitrary function. In the case that k is algebraically closed of characteristic 0 and f is surjective, we will show that $g = h \circ f$ implies that h is a polynomial.

1. Introduction. In the present note, we investigate the situation where the value of a polynomial depends only on the value of certain given polynomials. To be precise, let k be a field, $m, n \in \mathbb{N}$, and let $g, f_1, \ldots, f_m \in k[t_1, \ldots, t_n]$. We say that g is determined by $\mathbf{f} = (f_1, \dots, f_m)$ if, for all $\mathbf{a}, \mathbf{b} \in k^n$ with $f_1(\mathbf{a}) = f_1(\mathbf{b}), \dots, f_m(\mathbf{a}) = f_1(\mathbf{b})$ $f_m(\mathbf{b})$, we have $g(\mathbf{a}) = g(\mathbf{b})$. In other words, g is determined by \mathbf{f} if and only if there is a function $h: k^m \to k$ such that

$$g(\mathbf{a}) = h(f_1(\mathbf{a}), \dots, f_m(\mathbf{a}))$$
 for all $\mathbf{a} \in k^n$.

For given $f_1, \ldots, f_m \in k[t_1, \ldots, t_n]$, the set of all elements of $k[t_1, \ldots, t_n]$ that are determined by (f_1, \ldots, f_m) is a k-subalgebra of $k[t_1, \ldots, t_n]$; we will denote this k-subalgebra by $k\langle f_1,\ldots,f_m\rangle$ or $k\langle f\rangle$. As an example, we see that $t_1 \in \mathbb{R}\langle t_1^3 \rangle$; more generally, if $(f_1, \dots, f_m) \in k[t_1, \dots, t_n]^m$ induces an injective map from k^n to k^m , we have $k\langle \mathbf{f} \rangle = k[t_1, \dots, t_n]$. In the present note, we will describe $k\langle \mathbf{f} \rangle$ in the case where k is algebraically closed and f induces a map from k^n to k^m that is surjective, or, in a sense specified later, at least close to being surjective.

The first set that $k\langle f\rangle$ is compared with is the k-subalgebra of $k[t_1, \ldots, t_n]$ generated by $\{f_1, \ldots, f_m\}$, which we will denote by $k[f_1,\ldots,f_m]$ or k[f]; in this algebra, we find exactly those polynomials that can be written as $p(f_1,\ldots,f_m)$ with $p\in k[x_1,\ldots,x_m]$. Clearly,

²⁰¹⁰ AMS Mathematics subject classification. Primary 13B25 (12E05).

Keywords and phrases. Polynomial composition, polynomial maps.

Supported by the Austrian Science Fund (FWF): P24077.

Received by the editors on June 19, 2013.

 $k[f] \subseteq k\langle f \rangle$. The other inclusion need not hold in general: on any field k, let $f_1 = t_1$, $f_2 = t_1t_2$. Then $f_2^2/f_1 = t_1t_2^2$ is (f_1, f_2) -determined, but $t_1t_2^2 \notin k[f_1, f_2]$.

The second set with which we will compare $k\langle \boldsymbol{f} \rangle$ is the set of all polynomials that can be written as rational functions in f_1,\ldots,f_m . We denote the quotient field of $k[t_1,\ldots,t_n]$ by $k(t_1,\ldots,t_n)$. For $r_1,\ldots,r_m\in k(t_1,\ldots,t_n)$, the subfield of $k(t_1,\ldots,t_n)$ that is generated by $k\cup\{r_1,\ldots,r_m\}$ is denoted $k(r_1,\ldots,r_m)$. We first observe that there are polynomials that can be written as rational functions in \boldsymbol{f} , but fail to be \boldsymbol{f} -determined. As an example, we see that $t_2\in k(t_1,t_1t_2)$, but since $(0,0\cdot 0)=(0,0\cdot 1)$ and $0\neq 1$, the polynomial t_2 is not (t_1,t_1t_2) -determined. As for the converse inclusion, we take a field k of positive characteristic χ . Then t_1 is (t_1^{χ}) -determined, but $t_1\notin k(t_1^{\chi})$.

On the positive side, it is known that $k[f_1, \ldots, f_m] = k \langle f_1, \ldots, f_m \rangle$ holds in the following cases (cf., [1, Theorem 3.1]):

- k is algebraically closed, m = n = 1, and the derivative f' of f is not the zero polynomial, and, more generally,
- k is algebraically closed, m=n, and there are univariate polynomials $g_1, \ldots, g_m \in k[t]$ with $g'_1 \neq 0, \ldots, g'_m \neq 0$, $f_1 = g_1(t_1), \ldots, f_m = g_m(t_m)$.

Let us now briefly outline the results obtained in the present note. Let k be an algebraically closed field of characteristic 0, and let $f_1, \ldots, f_m \in k[t_1, \ldots, t_n]$ be algebraically independent over k. Then we have $k\langle \mathbf{f} \rangle \subseteq k(\mathbf{f})$ (Theorem 3.3). The equality $k[\mathbf{f}] = k\langle \mathbf{f} \rangle$ holds if and only if \mathbf{f} induces a map from k^n to k^m that is almost surjective (see Definition 2.1). This equality is stated in Theorem 3.4. Similar results are given for the case of positive characteristic.

The last equality has a consequence on the functional decomposition of polynomials. If f induces a surjective mapping from k^n to k^m , (k an algebraically closed of characteristic 0), and if $h:k^m\to k$ is an arbitrary function such that $h\circ f$ is a polynomial function, then h is a polynomial function. In an algebraically closed field of positive characteristic χ , we will conclude that h is a composition of taking χ th roots and a polynomial function (Corollary 4.2).

2. Preliminaries about polynomials. For the notions from algebraic geometry used in this note, we refer to [2]; deviating from their

definitions, we call the set of solutions of a system of polynomial equations an algebraic set (instead of affine variety). For an algebraically closed field k and $A \subseteq k^m$, we let $I_m(A)$ (or simply I(A)) be the set of polynomials vanishing on every point in A, and for $P \subseteq k[t_1, \ldots, t_m]$, we let $V_m(P)$ (or simply V(P)) be the set of common zeroes of P in k^m . The Zariski-closure V(I(A)) of a set $A \subseteq k^m$ will be abbreviated by A. The dimension of an algebraic set A is the maximal $d \in \{0,\ldots,m\}$ such that there are $i_1 < i_2 < \cdots < i_d \in \{1,\ldots,m\}$ with $I(A) \cap k[x_{i_1}, \dots, x_{i_d}] = \{0\}$. We abbreviate the dimension of Aby $\dim(A)$ and set $\dim(\emptyset) := -1$. For $f_1, \ldots, f_m, g \in k[t_1, \ldots, t_n]$, and $D := \{(f_1(\boldsymbol{a}), \dots, f_m(\boldsymbol{a}), g(\boldsymbol{a})) \mid \boldsymbol{a} \in k^n\}, \text{ its Zariski-closure } \overline{D} \text{ is an}$ irreducible algebraic set, and its dimension is the maximal number of algebraically independent elements in $\{f_1,\ldots,f_m,g\}$. The closure theorem [2, page 258] tells that there exists an algebraic set $W \subseteq k^{m+1}$ with $\dim(W) < \dim(\overline{D})$ such that $\overline{D} = D \cup W$. If $\dim(\overline{D}) = m$, then there exists an irreducible polynomial $p \in k[x_1, \ldots, x_{m+1}]$ such that D = V(p). We will denote this p by Irr(D); Irr(D) is then defined up to a multiplication with a nonzero element from k.

Above this, we recall that a set is *constructible* if and only if it can be generated from algebraic sets by a finite application of the set-theoretic operations of forming the union of two sets, the intersection of two sets, and the complement of a set, and that the range of a polynomial map from k^n to k^m and its complement are constructible. This is of course a consequence of the theorem of Chevalley-Tarski [4, Exercise II.3.19], but since we are only concerned with the image of k^n , it also follows from [2, page 262, Corollary 2].

Definition 2.1. Let k be an algebraically closed field, $m, n \in \mathbb{N}$, and let $\mathbf{f} = (f_1, \ldots, f_m) \in (k[t_1, \ldots, t_n])^m$. By range(\mathbf{f}), we denote the image of the mapping $\hat{\mathbf{f}} : k^n \to k^m$ that is induced by \mathbf{f} . We say that \mathbf{f} is almost surjective on k if the dimension of the Zariski-closure of $k^m \setminus \text{range}(\mathbf{f})$ is at most m-2.

Proposition 2.2. Let k be an algebraically closed field, and let $(f_1, \ldots, f_m) \in k[t_1, \ldots, t_n]^m$ be almost surjective on k. Then the sequence (f_1, \ldots, f_m) is algebraically independent over k.

Proof. Seeking a contradiction, we suppose that there is $u \in$

 $k[x_1,\ldots,x_m]$ with $\underline{u}\neq 0$ and $u(f_1,\ldots,f_m)=0$. Then range $(f)\subseteq V(u)$; hence, $\dim(\operatorname{range}(f))\leq m-1$. Since f is almost surjective, k^m is then the union of two algebraic sets of dimension $\leq m-1$, a contradiction.

We will use the following easy consequence of the description of constructible sets:

Proposition 2.3. Let k be an algebraically closed field, and let B be a constructible subset of k^m with $\dim(\overline{B}) \geq m-1$. Then there exist algebraic sets W, X such that W is irreducible, $\dim(W) = m-1$, $\dim(X) \leq m-2$, and $W \setminus X \subseteq B$.

Proof. Since B is constructible, there are irreducible algebraic sets V_1, \ldots, V_p and algebraic sets W_1, \ldots, W_p with $W_i \subsetneq V_i$ and $B = \bigcup_{i=1}^p (V_i \setminus W_i)$ (cf., [2, page 262]). We assume that the V_i 's are ordered with nonincreasing dimension. If $\dim(V_1) = m$, then $k^m \setminus W_1 \subseteq B$. Let U be an irreducible algebraic set of dimension m-1 with $U \not\subseteq W_1$. Then $U \cap (k^m \setminus W_1) = U \setminus (W_1 \cap U)$. Since $W_1 \cap U \neq U$, setting $W := U, X := W_1 \cap U$ yields the required sets.

If $\dim(V_1) = m - 1$, then $W := V_1$ and $X := W_1$ are the required

The case $\dim(V_1) \leq m-2$ cannot occur because then $\overline{B} \subseteq V_1 \cup \ldots \cup V_p$ has dimension at most m-2.

Let k be a field, and let $p, q, f \in k[t]$ be such that $\deg(f) > 0$. It is known that p(f) divides q(f) if and only if p divides q [3, Lemmas 2.1 and 2.2]. The following Lemma yields a multivariate version of this result.

Lemma 2.4. Let k be an algebraically closed field, $m, n \in \mathbb{N}$, and let $f = (f_1, \ldots, f_m) \in (k[t_1, \ldots, t_n])^m$. Then the following are equivalent:

- (i) f is almost surjective on k.
- (ii) $k(f_1, \ldots, f_m) \cap k[t_1, \ldots, t_n] = k[f_1, \ldots, f_m]$ and (f_1, \ldots, f_m) is algebraically independent over k.
- (iii) For all $p, q \in k[x_1, \ldots, x_m]$ with $p(f_1, \ldots, f_m) \mid q(f_1, \ldots, f_m)$, we have $p \mid q$.

Proof. (i) \Rightarrow (ii). (This proof uses some ideas from the proof of Theorem 4.2.1 in [5, page 82].) Let $g \in k(f_1, \ldots, f_m) \cap k[t_1, \ldots, t_n]$. Then there are $r, s \in k[x_1, \ldots, x_m]$ with $\gcd(r, s) = 1$ and $g = r(f_1, \ldots, f_m)/s(f_1, \ldots, f_m)$, and thus

(2.1)
$$g(t_1, \ldots, t_n) \cdot s(f_1, \ldots, f_m) = r(f_1, \ldots, f_m).$$

Suppose $s \notin k$. Then V(s) has dimension m-1. We have $V(s) = \frac{(V(s) \cap \operatorname{range}(f)) \cup (V(s) \cap (k^m \setminus \operatorname{range}(f)))}{V(s) \cap (k^m \setminus \operatorname{range}(f))}$. Since f is almost surjective, $\overline{V(s) \cap \operatorname{range}(f)}$ is then of dimension m-1. Hence, it contains an irreducible component of dimension m-1, and thus there is an irreducible $p \in k[x_1, \ldots, x_m]$ such that $V(p) \subseteq \overline{V(s) \cap \operatorname{range}(f)}$. Since then $V(p) \subseteq V(s)$, the Nullstellensatz yields $n_1 \in \mathbb{N}$ with $p \mid s^{n_1}$, and thus by the irreducibility of $p, p \mid s$. Now we show that, for all $a \in V(s) \cap \operatorname{range}(f)$, we have r(a) = 0. To this end, let $b \in k^n$ with f(b) = a. Setting $b \in k^n$ in (2.1), we obtain $b \in k^n$ with $b \in k^n$ with $b \in k^n$ with $b \in k^n$ and thus $b \in k^n$ with $b \in k^n$ with $b \in k^n$ and thus $b \in k^n$ in $b \in k^n$ with $b \in k^n$ with $b \in k^n$ with $b \in k^n$ and thus $b \in k^n$ with $b \in k^n$ with $b \in k^n$ and thus $b \in k^n$ with $b \in k^n$ with $b \in k^n$ with $b \in k^n$ and thus $b \in k^n$ with $b \in k^n$

(ii) \Rightarrow (iii). Let $p, q \in k[x_1, \ldots, x_m]$ be such that $p(f_1, \ldots, f_m) \mid q(f_1, \ldots, f_m)$. If $p(f_1, \ldots, f_m) = 0$, then $q(f_1, \ldots, f_m) = 0$, and thus, by the algebraic independence of (f_1, \ldots, f_m) , we have q = 0 and thus $p \mid q$. Now assume $p(f_1, \ldots, f_m) \neq 0$. We have $a(t_1, \ldots, t_n) \in k[t_1, \ldots, t_n]$ such that

(2.2)
$$q(f_1, ..., f_m) = a(t_1, ..., t_n) \cdot p(f_1, ..., f_m),$$

and thus $a(t_1, \ldots, t_n) \in k(f_1, \ldots, f_m) \cap k[t_1, \ldots, t_n]$. Thus, there exists $b \in k[x_1, \ldots, x_m]$ such that $a(t_1, \ldots, t_n) = b(f_1, \ldots, f_m)$. Now (2.2) yields

$$q(f_1,\ldots,f_m)=b(f_1,\ldots,f_m)\cdot p(f_1,\ldots,f_m).$$

Using the algebraic independence of (f_1, \ldots, f_m) , we obtain $q(x_1, \ldots, x_m) = b(x_1, \ldots, x_m) \cdot p(x_1, \ldots, x_m)$, and thus $p \mid q$.

(iii) \Rightarrow (i). Seeking a contradiction, we suppose that f is not almost surjective. Let $B := k^m \setminus \text{range}(f)$. Then $\dim(\overline{B}) \geq m - 1$. Since B is constructible, Proposition 2.3 yields W, X with W irreducible,

 $\dim(W) = m-1$, $\dim(X) \leq m-2$, and $W \setminus X \subseteq B$. Since W is irreducible of dimension m-1, there is $p \in k[x_1, \ldots, x_m]$ such that W = V(p). Since $\dim(W) > \dim(X)$, we have $W \not\subseteq X$; thus, $I(X) \not\subseteq I(W)$, and therefore there is $q \in I(X)$ with $q \notin I(W)$. We have $W \subseteq B \cup X$, and thus $W \cap \operatorname{range}(\mathbf{f}) \subseteq X$. This implies that, for all $\mathbf{a} \in k^n$ with $p(\mathbf{f}(\mathbf{a})) = 0$, we have $q(\mathbf{f}(\mathbf{a})) = 0$: in fact, if $p(\mathbf{f}(\mathbf{a})) = 0$, then $\mathbf{f}(\mathbf{a}) \in V(p) \cap \operatorname{range}(\mathbf{f}) = W \cap \operatorname{range}(\mathbf{f}) \subseteq X$. Hence, $q(\mathbf{f}(\mathbf{a})) = 0$. By the Nullstellensatz, we obtain a $\nu \in \mathbb{N}$ such that $p(f_1, \ldots, f_m) \mid q(f_1, \ldots, f_m)^{\nu}$. Therefore, using (iii), we have $p \mid q^{\nu}$. This implies $V(p) \subseteq V(q)$. Thus, we have $W \subseteq V(q)$, and therefore $q \in I(W)$, contradicting the choice of q. Hence, \mathbf{f} is almost surjective, proving (i).

3. f-determined polynomials. We will first show that often all f-determined polynomials are rational functions of f. Special care, however, is needed in the case of positive characteristic. In an algebraically closed field of characteristic $\chi > 0$, the unary polynomial t_1 is (t_1^{χ}) -determined, but t_1 is neither a polynomial nor a rational function of t_1^{χ} .

Definition 3.1. Let k be a field of characteristic $\chi > 0$, let $n \in \mathbb{N}$, and let P be a subset of $k[t_1, \ldots, t_n]$. We define the set $\operatorname{rad}_{\chi}(P)$ by

$$\operatorname{rad}_{\chi}(P) := \{ f \in k[t_1, \dots, t_n] \mid \text{ there is } \nu \in \mathbb{N}_0 \text{ such that } f^{\chi^{\nu}} \in P \}.$$

Lemma 3.2. Let k be an algebraically closed field, let $m, n \in \mathbb{N}$, let f_1, \ldots, f_m be algebraically independent polynomials in $k[t_1, \ldots, t_n]$, let $g \in k\langle f_1, \ldots, f_m \rangle$, and let $D := \{(f_1(\boldsymbol{a}), \ldots, f_m(\boldsymbol{a}), g(\boldsymbol{a})) \mid \boldsymbol{a} \in k^n\}$. Then $\dim(\overline{D}) = m$.

Proof. By the closure theorem [2, page 258], there is an algebraic set W such that $\overline{D} = D \cup W$ and $\dim(W) < \dim(\overline{D})$. Let $\pi : k^{m+1} \to k^m, (y_1, \ldots, y_{m+1}) \mapsto (y_1, \ldots, y_m)$ be the projection of k^{m+1} onto the first m coordinates, and let $\overline{\pi(W)}$ be the Zariski-closure of $\pi(W)$ in k^m . We will now examine the projection of D. Since (f_1, \ldots, f_m) is algebraically independent, $\pi(D)$ is Zariski-dense in k^m , and hence $\dim(\overline{\pi(D)}) = m$. Since $\dim(V) \geq \dim(\overline{\pi(V)})$ holds for every algebraic set V, we then obtain $\dim(\overline{D}) \geq \dim(\overline{\pi(D)}) \geq \dim(\overline{\pi(D)}) = m$. Seeking a contradiction, we suppose that $\dim(\overline{D}) = m + 1$.

In the case $\dim(\overline{\pi(W)}) = m$, we use $[\mathbf{2}, \text{ page } 193, \text{ Theorem } 3]$, which tells $\overline{\pi(W)} = V_m(I(W) \cap k[x_1, \ldots, x_m])$, and we obtain that $k^m = V_m(I(W) \cap k[x_1, \ldots, x_m])$, and therefore $I(W) \cap k[x_1, \ldots, x_m] = \{0\}$. Hence, $x_1 + I(W), \ldots, x_m + I(W)$ are algebraically independent in $k[x_1, \ldots, x_{m+1}]/I(W)$. Since $\dim(W) \leq m$, we observe that the sequence $(x_1 + I(W), \ldots, x_{m+1} + I(W))$ is algebraically dependent over k, and therefore, there is a polynomial $q(x_1, \ldots, x_{m+1}) \in I(W)$ with $\deg_{x_{m+1}}(q) > 0$. Let r be the leading coefficient of q with respect to x_{m+1} , and let $(y_1, \ldots, y_m) \in k^m$ be such that $r(y_1, \ldots, y_m) \neq 0$. Then there are only finitely many $z \in k$ with $(y_1, \ldots, y_m, z) \in W$. Since $\overline{D} = k^{m+1}$, there are then infinitely many $z \in k$ with $(y_1, \ldots, y_m, z) \in D$, a contradiction to the fact that q is f-determined.

In the case $\dim(\overline{\pi(W)}) \leq m-1$, we take $(y_1,\ldots,y_m) \in k^m \setminus \pi(W)$. For all $z \in k$, we have $(y_1,\ldots,y_m,z) \in \overline{D}$ and $(y_1,\ldots,y_m,z) \notin W$, and therefore all (y_1,\ldots,y_m,z) are elements of D, a contradiction to the fact that q is f-determined.

Hence, we have $\dim(\overline{D}) = m$.

Theorem 3.3. Let k be an algebraically closed field, let χ be its characteristic, let $m, n \in \mathbb{N}$, and let (f_1, \ldots, f_m) be a sequence of polynomials in $k[t_1, \ldots, t_n]$ that is algebraically independent over k. Then we have:

- (i) If $\chi = 0$, then $k\langle f_1, \dots, f_m \rangle \subseteq k(f_1, \dots, f_m) \cap k[t_1, \dots, t_n]$.
- (ii) If $\chi > 0$, then $k\langle f_1, \ldots, f_m \rangle \subseteq \operatorname{rad}_{\chi}(k(f_1, \ldots, f_m) \cap k[t_1, \ldots, t_n])$.

Proof. Let $g \in k\langle f_1, \ldots, f_m \rangle$. We define

$$D := \{ (f_1(\mathbf{a}), \dots, f_m(\mathbf{a}), g(\mathbf{a})) \mid \mathbf{a} \in k^n \},$$

we let \overline{D} be its Zariski-closure in k^{m+1} , and we let W be an algebraic set with $\dim(W) < \dim(\overline{D})$ and $\overline{D} = D \cup W$. By Lemma 3.2, we have $\dim(\overline{D}) = m$. Now, we distinguish cases according to the characteristic of k. Let us first suppose $\chi = 0$. Let $q := \operatorname{Irr}(\overline{D})$ be an irreducible polynomial with $\overline{D} = V(q)$, and let $d := \deg_{x_{m+1}}(q)$. Since f_1, \ldots, f_m are algebraically independent over k, we have $d \geq 1$. We will now prove d = 1. Suppose d > 1. We write $q = \sum_{i=0}^d q_i(x_1, \ldots, x_m) x_{m+1}^i$. We recall that, for a field K, and $f, g \in K[t]$ of positive degree, the resultant $\operatorname{res}_t(f,g)$ is 0 if and only if $\deg(\gcd_{K[t]}(f,g)) \geq 1$ [2,

page 156, Proposition 8]. Let $r := \operatorname{res}_{x_{m+1}}(q, (\partial/\partial x_{m+1})q)$ be the resultant of q and its derivative when seen as elements of the ring $k(x_1,\ldots,x_m)[x_{m+1}]$. If r=0, then q and $(\partial/\partial x_{m+1})q$ have a common divisor in $k(x_1,\ldots,x_m)[x_{m+1}]$ with $1 \leq \deg_{x_{m+1}}(q) \leq d-1$ in $k(x_1,\ldots,x_m)[x_{m+1}]$. Using a standard argument involving Gauss's lemma, we find a divisor a of q in $k[x_1,\ldots,x_{m+1}]$ such that $1 \leq 1$ $\deg_{x_{m+1}}(a) \leq d-1$. This contradicts the irreducibility of q. Hence, $r \neq 0$. Since $\dim(\overline{\pi(W)}) \leq m-1, r \neq 0$, and $q_d \neq 0$, we have $V(r) \cup V(q_d) \cup \pi(W) \neq k^m$. Thus, we can choose $\boldsymbol{a} \in k^m$ such that $r(\boldsymbol{a}) \neq 0, q_d(\boldsymbol{a}) \neq 0, \text{ and } \boldsymbol{a} \notin \pi(W). \text{ Let } \widetilde{q}(t) := q(\boldsymbol{a}, t). \text{ Since }$ $\operatorname{res}_t(\widetilde{q}(t),\widetilde{q}'(t)) = r(\boldsymbol{a}) \neq 0, \ \widetilde{q} \text{ has } d \text{ different roots in } k, \text{ and thus}$ $q(\boldsymbol{a},x)=0$ has d distinct solutions for x, say b_1,\ldots,b_d . We will now show $\{(\boldsymbol{a},b_i) \mid i \in \{1,\ldots,d\}\} \subseteq D$. Let $i \in \{1,\ldots,d\}$, and suppose that $(\boldsymbol{a}, b_i) \notin D$. Then $(\boldsymbol{a}, b_i) \in W$, and thus $\boldsymbol{a} \in \pi(W)$, a contradiction. Thus, all the elements $(\boldsymbol{a}, b_1), \dots, (\boldsymbol{a}, b_d)$ lie in D. Since d > 1, this implies that g is not (f_1, \ldots, f_m) -determined. Therefore, we have d=1. Since (f_1,\ldots,f_m) is algebraically independent, the polynomial q witnesses that g is algebraic of degree 1 over $k(f_1, \ldots, f_m)$, and thus lies in $k(f_1,\ldots,f_m)$. This concludes the case $\chi=0$.

Now we assume $\chi > 0$. It follows from Lemma 3.2 that, for every $h \in k\langle t_1, \ldots, t_n \rangle$, the Zariski-closure of

$$D(h) := \{ (f_1(\mathbf{a}), \dots, f_m(\mathbf{a}), h(\mathbf{a})) \mid \mathbf{a} \in k^n \}$$

is an irreducible variety of dimension \underline{m} in k^{m+1} . This implies that there is an irreducible polynomial $\operatorname{Irr}(\overline{D(h)}) \in k[x_1,\ldots,x_m]$ such that $\overline{D(h)} = V(\operatorname{Irr}(\overline{D(h)}))$. Furthermore, by the closure theorem [2], there is an algebraic set $W(h) \subseteq k^m$ such that $\dim(W(h)) \leq m-1$ and $D(h) \cup W(h) = \overline{D(h)}$. We will now prove the following statement by induction on $\deg_{x_{m+1}}(\operatorname{Irr}(\overline{D(h)}))$.

Every f-determined polynomial $h \in k[t_1, \ldots, t_n]$ is an element of $\operatorname{rad}_{\chi}(k(f_1, \ldots, f_m) \cap k[t_1, \ldots, t_n])$.

Let

$$d := \deg_{x_{m+1}}(\operatorname{Irr}(\overline{D(h)})).$$

If d=0, then f_1, \ldots, f_m are algebraically dependent, a contradiction. If d=1, then since f_1, \ldots, f_m are algebraically independent, h is algebraic of degree 1 over $k(f_1, \ldots, f_m)$ and thus lies in $k(f_1, \ldots, f_m)$ $k[t_1,\ldots,t_n]$. Let us now consider the case d>1. We set

$$e := \deg_{x_{m+1}} \left(\frac{\partial}{\partial x_{m+1}} \operatorname{Irr}(\overline{D(h)}) \right).$$

If $\partial/(\partial x_{m+1})\operatorname{Irr}(\overline{D(h)}) = 0$, then there is a polynomial $p \in k[x_1, \ldots, x_{m+1}]$ such that $\operatorname{Irr}(\overline{D(h)}) = p(x_1, \ldots, x_m, x_{m+1}^{\chi})$. We know that h^{χ} is f-determined; hence, by Lemma 3.2, $\overline{D(h^{\chi})}$ is of dimension m. Since

$$p(f_1,\ldots,f_m,h^{\chi}) = \operatorname{Irr}(\overline{D(h)})(f_1,\ldots,f_m,h) = 0,$$

we have $p \in I(D(h^{\chi}))$. Thus, $\overline{D(h^{\chi})} \subseteq V(p)$. Therefore, the irreducible polynomial $\operatorname{Irr}(\overline{D(h^{\chi})})$ divides p, and thus

$$\deg_{x_{m+1}}(\operatorname{Irr}(\overline{D(h^\chi)})) \leq \deg_{x_{m+1}}(p) < \deg_{x_{m+1}}(\operatorname{Irr}(\overline{D(h)})).$$

By the induction hypothesis, we obtain that h^{χ} is an element of $\operatorname{rad}_{\chi}(k(f_1,\ldots,f_m)\cap k[t_1,\ldots,t_n])$. Therefore, $h\in\operatorname{rad}_{\chi}(k(f_1,\ldots,f_m)\cap k[t_1,\ldots,t_n])$. This concludes the case that $(\partial/\partial x_{m+1})(\operatorname{Irr}(\overline{D(h)}))=0$.

If e = 0, we choose $\boldsymbol{a} = (a_1, \dots, a_m) \in k^m$ such that

$$\frac{\partial}{\partial x_{m+1}} \operatorname{Irr}(\overline{D(h)}) \quad (a_1, \dots, a_m, 0) \neq 0,$$

such that the leading coefficient of $\operatorname{Irr}(\overline{D(h)})$ with respect to x_{m+1} does not vanish at \boldsymbol{a} , and such that $\boldsymbol{a} \notin \pi(W(h))$. Then $\operatorname{Irr}(\overline{D(h)})(\boldsymbol{a},x) = 0$ has d different solutions for x, say b_1, \ldots, b_d . Since $\{(\boldsymbol{a}, b_i) \mid i \in \{1, \ldots, d\}\} \cap W(h) = \emptyset$ because $\boldsymbol{a} \notin \pi(W(h))$, we have $\{(\boldsymbol{a}, b_i) \mid i \in \{1, \ldots, d\}\} \subseteq D(h)$. Since h is \boldsymbol{f} -determined, d = 1, contradicting the case assumption.

If e > 0, then we compute the resultant $r := \operatorname{res}_{x_{m+1}}^{(d,e)}(\operatorname{Irr}(\overline{D(h)}), (\partial/\partial x_{m+1})\operatorname{Irr}(\overline{D(h)}))$, seen as polynomials of degrees d and e over the field $k(x_1,\ldots,x_m)$ in the variable x_{m+1} . As in the case $\chi=0$, the irreducibility of $\operatorname{Irr}(\overline{D(h)})$ yields $r \neq 0$. Now we let $\mathbf{a} \in k^m$ be such that $r(\mathbf{a}) \neq 0$, the leading coefficient $(\operatorname{Irr}(\overline{D(h)}))_d$ of $\operatorname{Irr}(\overline{D(h)})$ with respect to x_{m+1} does not vanish at \mathbf{a} , and $\mathbf{a} \notin \pi(W(h))$. Setting $\widetilde{q}(t) := \operatorname{Irr}(\overline{D(h)})(\mathbf{a}, t)$, we see that $\operatorname{res}_t^{(d,e)}(\widetilde{q}(t), \widetilde{q}'(t)) \neq 0$. Thus, \widetilde{q} has d distinct zeroes b_1, \ldots, b_d , and then $\{(\mathbf{a}, b_i) \mid i \in \{1, \ldots, d\}\} \subseteq D(h)$. Since d > 1, this contradicts the fact that h is \mathbf{f} -determined.

Theorem 3.4. Let k be an algebraically closed field of characteristic 0, let $m, n \in \mathbb{N}$, and let $\mathbf{f} = (f_1, \ldots, f_m)$ be a sequence of algebraically independent polynomials in $k[t_1, \ldots, t_n]$. Then the following are equivalent:

- (i) $k\langle f_1,\ldots,f_m\rangle=k[f_1,\ldots,f_m].$
- (ii) f is almost surjective.

Proof. (i) \Rightarrow (ii). Suppose that f is not almost surjective. Then, by Lemma 2.4, there are $p, q \in k[x_1, \ldots, x_m]$ such that $p(f_1, \ldots, f_m) \mid q(f_1, \ldots, f_m)$ and $p \nmid q$. Let $d := \gcd(p, q), p_1 := p/d, q_1 := q/d$. Let $a(t_1, \ldots, t_n) \in k[t_1, \ldots, t_n]$ be such that

$$(3.1) p_1(f_1, \dots, f_m) \cdot a(t_1, \dots, t_n) = q_1(f_1, \dots, f_m).$$

We claim that $b(t_1, \ldots, t_n) := q_1(f_1, \ldots, f_m) \cdot a(t_1, \ldots, t_n)$ is \mathbf{f} -determined and is not an element of $k[f_1, \ldots, f_m]$. In order to show that b is \mathbf{f} -determined, we let $\mathbf{c}, \mathbf{d} \in k^n$ be such that $\mathbf{f}(\mathbf{c}) = \mathbf{f}(\mathbf{d})$. If $p_1(\mathbf{f}(\mathbf{c})) \neq 0$, we have $b(\mathbf{c}) = q_1(\mathbf{f}(\mathbf{c})) \cdot a(\mathbf{c}) = q_1(\mathbf{f}(\mathbf{c})) \cdot (q_1(\mathbf{f}(\mathbf{c}))/p_1(\mathbf{f}(\mathbf{c}))) = q_1(\mathbf{f}(\mathbf{d})) \cdot (q_1(\mathbf{f}(\mathbf{d}))/p_1(\mathbf{f}(\mathbf{d}))) = q_1(\mathbf{f}(\mathbf{d})) \cdot a(\mathbf{d}) = b(\mathbf{d})$. If $p_1(\mathbf{f}(\mathbf{c})) = 0$, we have $b(\mathbf{c}) = q_1(\mathbf{f}(\mathbf{c})) \cdot a(\mathbf{c})$. By (3.1), we have $q_1(\mathbf{f}(\mathbf{c})) = 0$, and thus $b(\mathbf{c}) = 0$. Similarly, $b(\mathbf{d}) = 0$. This concludes the proof that b is \mathbf{f} -determined.

Let us now show that $b \notin k[f_1, \ldots, f_m]$. We have

$$b(t_1, \dots, t_n) = \frac{q_1(f_1, \dots, f_m)^2}{p_1(f_1, \dots, f_m)}.$$

If $b \in k[f_1, \ldots, f_m]$, there is $r \in k[x_1, \ldots, x_m]$ with $r(f_1, \ldots, f_m) = b(t_1, \ldots, t_n)$. Then $r(f_1, \ldots, f_m) \cdot p_1(f_1, \ldots, f_m) = q_1(f_1, \ldots, f_m)^2$. From the algebraic independence of (f_1, \ldots, f_m) , we obtain $r(x_1, \ldots, x_m) \cdot p_1(x_1, \ldots, x_m) = q_1(x_1, \ldots, x_m)^2$; hence, $p_1(x_1, \ldots, x_m) \mid q_1(x_1, \ldots, x_m)^2$. Since p_1, q_1 are relatively prime, we then have $p_1(x_1, \ldots, x_m) \mid q_1(x_1, \ldots, x_m)$, contradicting the choice of p and q. Hence, p is almost surjective.

(ii) \Rightarrow (i). From Theorem 3.3, we obtain $k\langle \boldsymbol{f} \rangle \subseteq k(\boldsymbol{f}) \cap k[t_1, \dots, t_n]$. Since \boldsymbol{f} is almost surjective, Lemma 2.4 yields $k(\boldsymbol{f}) \cap k[t_1, \dots, t_n] = k[\boldsymbol{f}]$, and thus $k\langle \boldsymbol{f} \rangle \subseteq k[\boldsymbol{f}]$. The other inclusion is obvious.

Theorem 3.5. Let k be an algebraically closed field of characteristic $\chi > 0$, let $m, n \in \mathbb{N}$, and let $\mathbf{f} = (f_1, \ldots, f_m)$ be a sequence of algebraically independent polynomials in $k[t_1, \ldots, t_n]$. Then the following are equivalent:

- (i) $k\langle f_1,\ldots,f_m\rangle = \operatorname{rad}_{\chi}(k[f_1,\ldots,f_m]).$
- (ii) \mathbf{f} is almost surjective.

Proof. (i) \Rightarrow (ii). As in the proof of Theorem 3.4, we produce an \mathbf{f} -determined polynomial b and relatively prime $p_1, q_1 \in k[x_1, \ldots, x_m]$ with $p_1 \nmid q_1$ and

$$b(t_1, \dots, t_n) = \frac{q_1(f_1, \dots, f_m)^2}{p_1(f_1, \dots, f_m)}.$$

Now suppose that there is a $\nu \in \mathbb{N}_0$ with $b^{\chi^{\nu}} \in k[f_1, \ldots, f_m]$. Then $p_1(f_1, \ldots, f_m)^{\chi^{\nu}}$ divides $q_1(f_1, \ldots, f_m)^{2\chi^{\nu}}$ in $k[f_1, \ldots, f_m]$, and thus $p_1(x_1, \ldots, x_m)$ divides $q_1(x_1, \ldots, x_m)^{2\chi^{\nu}}$ in $k[x_1, \ldots, x_m]$. Since p_1 and q_1 are relatively prime, we obtain $p_1 \mid q_1$, contradicting the choice of p_1 and q_1 .

- (i) \Rightarrow (ii). From Theorem 3.3, we obtain $k\langle \mathbf{f} \rangle \subseteq \operatorname{rad}_{\chi}(k(\mathbf{f}) \cap k[t_1,\ldots,t_n])$. Since \mathbf{f} is almost surjective, Lemma 2.4 yields $k(\mathbf{f}) \cap k[t_1,\ldots,t_n] = k[\mathbf{f}]$, and thus $k\langle \mathbf{f} \rangle \subseteq \operatorname{rad}_{\chi}(k[\mathbf{f}])$. The other inclusion follows from the fact that the map $\varphi: k \to k$, $\varphi(y) := y^{\chi}$ is injective.
- **4. Function compositions that are polynomials.** For a field k, let $\mathbf{f} = (f_1, \dots, f_m) \in (k[t_1, \dots, t_n])^m$, and let $h : k^m \to k$ be an arbitrary function. Then we write $h \circ \mathbf{f}$ for the function defined by $(h \circ \mathbf{f})(\mathbf{a}) = h(f_1(\mathbf{a}), \dots, f_m(\mathbf{a}))$ for all $\mathbf{a} \in k^n$. For an algebraically closed field K of characteristic $\chi > 0$, $y \in K$ and $\nu \in \mathbb{N}_0$, we let $s^{(\chi^{\nu})}(y)$ be the element in K with $(s^{(\chi^{\nu})}(y))^{\chi^{\nu}} = y$; so $s^{(\chi^{\nu})}$ takes the χ^{ν} th root.

Theorem 4.1. Let k be a field, let K be its algebraic closure, let $m, n \in \mathbb{N}$, let $g, f_1, \ldots, f_m \in k[t_1, \ldots, t_n]$, and let $h : K^m \to K$ be an arbitrary function. Let $R := \mathbf{f}(K^n)$ be the range of the function from K^n to K^m that $\mathbf{f} = (f_1, \ldots, f_m)$ induces on K. We assume that $\dim(\overline{K^m \setminus R}) \leq m-2$, and that $h \circ \mathbf{f} = g$ on K, which means that

$$h(f(a)) = g(a) \text{ for all } a \in K^n.$$

Then we have:

- (i) If k is of characteristic 0, then there is a $p \in k[x_1, ..., x_m]$ such that $h(\mathbf{b}) = p(\mathbf{b})$ for all $\mathbf{b} \in R$.
- (ii) If k is of characteristic $\chi > 0$, then there are $p \in k[x_1, \dots, x_m]$ and $\nu \in \mathbb{N}_0$ such that $h(\mathbf{b}) = s^{(\chi^{\nu})}(p(\mathbf{b}))$ for all $\mathbf{b} \in R$.

Proof. Let us first assume that k is of characteristic 0. We observe that as a polynomial in $K[t_1, \ldots, t_n]$, g is f-determined. Hence, by Theorem 3.4, there is a $q \in K[x_1, \ldots, x_m]$ such that $q(f_1, \ldots, f_m) = g$. Writing

$$q = \sum_{(i_1, \dots, i_m) \in I} \alpha_{i_1, \dots, i_m} x_1^{i_1} \cdots x_m^{i_m},$$

we obtain $g = \sum_{(i_1,\dots,i_m)\in I} \alpha_{i_1,\dots,i_m} f_1^{i_1} \cdots f_m^{i_m}$. Expanding the right hand side and comparing coefficients, we see that $(\alpha_{i_1,\dots,i_m})_{(i_1,\dots,i_m)\in I}$ is a solution of a linear system with coefficients in k. Since this system has a solution over K, it also has a solution over k. The solution over k provides the coefficients of a polynomial $p \in k[x_1,\dots,x_m]$ such that $p(f_1,\dots,f_m)=g$. From this, we obtain that $p(f_1(\mathbf{a}),\dots,f_m(\mathbf{a}))=g(\mathbf{a})$ for all $\mathbf{a}\in K^n$, and thus $p(\mathbf{b})=h(\mathbf{b})$ for all $\mathbf{b}\in R$. This completes the proof of item (i).

In the case that k is of characteristic $\chi > 0$, Theorem 3.5 yields a polynomial $q \in K[x_1, \ldots, x_m]$ and $\nu \in \mathbb{N}_0$ such that $q(f_1, \ldots, f_m) = g^{\chi^{\nu}}$. As in the previous case, we obtain $p \in k[x_1, \ldots, x_m]$ such that $p(f_1, \ldots, f_m) = g^{\chi^{\nu}}$. Let $\mathbf{b} \in R$, and let \mathbf{a} be such that $\mathbf{f}(\mathbf{a}) = \mathbf{b}$. Then $s^{(\chi^{\nu})}(p(\mathbf{b})) = s^{(\chi^{\nu})}(p(\mathbf{f}(\mathbf{a}))) = g(\mathbf{a}) = h(\mathbf{f}(\mathbf{a})) = h(\mathbf{b})$, which completes the proof of (ii).

We will now state the special case that k is algebraically closed and f is surjective in the following corollary. By a polynomial function, we will simply mean a function induced by a polynomial with all its coefficients in k.

Corollary 4.2. Let k be an algebraically closed field, let $\mathbf{f} = (f_1, \ldots, f_m) \in (k[t_1, \ldots, t_n])^m$, and let $h : k^m \to k$ be an arbitrary function. We assume that \mathbf{f} induces a surjective mapping from k^n to k^m and that $h \circ \mathbf{f}$ is a polynomial function. Then we have:

(i) If k is of characteristic 0, then h is a polynomial function.

(ii) If k is of characteristic $\chi > 0$, then there is a $\nu \in N_0$ such that $h^{\chi^{\nu}}: (y_1, \ldots, y_m) \mapsto h(y_1, \ldots, y_m)^{\chi^{\nu}}$ is a polynomial function.

REFERENCES

- 1. E. Aichinger and S. Steinerberger, A proof of a theorem by Fried and MacRae and applications to the composition of polynomial functions, Arch. Math. 97 (2011), 115–124.
- 2. D. Cox, J. Little and D. O'Shea, *Ideals, varieties, and algorithms*, Third ed., Undergrad. Texts Math., Springer, New York, 2007.
- 3. H.T. Engstrom, *Polynomial substitutions*, Amer. J. Math. **63** (1941), 249–255.
- 4. R. Hartshorne, *Algebraic geometry*, Grad. Texts Math. **52**, Springer-Verlag, New York, 1977.
- 5. A. van den Essen, *Polynomial automorphisms and the Jacobian conjecture*, Progr. Math. **190**, Birkhäuser Verlag, Basel, 2000.

ERHARD AICHINGER, INSTITUT FÜR ALGEBRA, JOHANNES KEPLER UNIVERSITÄT LINZ, 4040 LINZ, AUSTRIA

Email address: erhard@algebra.uni-linz.ac.at