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INTERPOLATION IN AFFINE AND PROJECTIVE
SPACE OVER A FINITE FIELD

MICHAEL HELLUS AND ROLF WALDI

ABSTRACT. Let s(n, q) be the smallest number s such
that any n-fold Fq-valued interpolation problem in Pk

Fq has

a solution of degree s, that is: for any pairwise different
Fq-rational points P1, . . . , Pn, there exists a hypersurface H
of degree s defined over Fq such that P1, . . . , Pn−1 ∈ H and
Pn /∈ H. This function s(n, q) was studied by Kunz and the
second author in [8] and completely determined for q = 2
and q = 3. For q ≥ 4, we improve the results from [8].

The affine analogue to s(n, q) is the smallest number
s = sa(n, q) such that any n-fold Fq-valued interpolation

problem in Ak(Fq), k ∈ N>0 has a polynomial solution of
degree ≤ s. We exactly determine this number.

1. Introduction. Let R = K[X0, . . . , Xk] denote the standard gra-
ded polynomial ring in k + 1 ≥ 1 variables over an arbitrary field K
and Pk(K) ⊆ Pk

K = ProjR the set of all K-rational points.

We start with an arbitrary finite subset X ⊆ Pk(K) consisting of
n =: degX ≥ 1 pairwise different K-rational points. By

IX := ({F ∈ R homogenous |F (P ) = 0 for all P ∈ X}),

we denote its homogenous vanishing ideal. Let S :=
⊕

d≥0 Sd := R/IX
and

HX (d) := dimK(Sd)

(for d ∈ N) the Hilbert function of X . The Castelnuovo-Mumford
regularity of X is the uniquely determined number rX such that

HX (d) = n for d ≥ rX and HX (rX − 1) ≤ n− 1.

It is well known that HX is strictly increasing for 0 ≤ d ≤ rX ; in
particular, rX ≤ n− 1.
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From now on, we assume that K = Fq is the finite field with q
elements, where q is an arbitrary prime power. One would like to know
which Hilbert functions HX respectively, for which regularities rX are
possible. For infinite fields K, the answer to the first (and hence also
to the second) question was given by Geramita, Maroscia and Roberts
([6, Sections 1 and 3]).

rX has the following geometric description:

Remark. rX is the smallest number such that for every P ∈ X , there
exists a hypersurface HP ⊆ Pk

Fq
defined over Fq, of degree rX which

separates P from X , that is HP ∩ X = X \ {P}.
Therefore, the following definition of s(n, q) agrees with the one from

the abstract:

s(n, q) = max{rX | there exist k ≥ 1,X ⊆ Pk(Fq) with degX = n}
= max{rX |X ⊆ Pn−1(Fq), degX = n}

(the latter holds since the embedding dimension of X is at most n−1).

It is known ([8, Lemma 1.2]) that

s(n, q) ≤ s(n+ 1, q) ≤ s(n, q) + 1 for n ∈ N>0.

The function s(n, q) can be extended to a step function s(x, q) on R>0,
its steps (“jump discontinuities”) have height 1 and are precisely at
those x = n ∈ N>1 where s(n, q) = s(n − 1, q) + 1. Trivially, the
function s(x, q) is determined by its initial value s(1, q) = 0 and its
jump discontinuities a1 < a2 < . . . . For q = 2 and q = 3, the function
s(n, q) was completely computed in ([8, Corollary 1.4]). So far, for
q ≥ 4, the following was known (loc. cit.):

a) ai = i+ 1 for i = 1, . . . , q − 1.

b) a(m−1)(q−1)+1 = (qm − 1)/(q − 1) and am(q−1) = qm for every
m ≥ 2.

c) For every m ≥ 2 and for r = 2, . . . , q − 2, the jump discontinuity
a(m−1)(q−1)+r is in the half-open interval Im,r = (r(qm − 1)/(q − 1), (r+

1)qm−1], but its precise position was unknown. For m = 2, we show

Proposition 1.1. For q ≥ 4 and r = 2, . . . , q − 2,

aq−1+r = (r + 1)q
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i.e., the first 2q−1 jump discontinuities are: 2, . . . , q, q+1, 3q, . . . , (q−
1)q, q2, q2 + q+1. Therefore, s(x, q) is known in the interval [1, 2(q2 +
q + 1)].

One may conjecture that the unknown jump discontinuities of s(x, q)
are at the right edges of the intervals Im,r.

In the proof of this proposition we will study, for 1 ≤ k < n ≤
(qk+1 − 1)/(q − 1) (i.e., where it makes sense), the invariants

s(n, k, q) := max{rX | X ⊆ Pk(Fq) nondegenerate and of degree n}

(recall that a set X ⊆ Pk
Fq

is nondegenerate if it spans the whole

space). [7, Cor. 2.2 a)] says that s(n, k, q) is increasing in n. In contrast
to this:

Proposition 1.2. s(n, k, q) is decreasing in k.

Together with [7, Proposition 1.6] we shall see that this already
implies Proposition 1.1. In addition, we are able to show the following
improvement of [7, Proposition 1.4b)]:

Proposition 1.3. For every k ≥ 2 (and every prime power q),

s(2q + k, k, q) = q

(note that the left hand side is well-defined since k < 2q + k ≤
qk + qk−1 + · · ·+ 1).

We shall now define and study the following affine version of the
function s(n, q): Embed Ak(Fq) into Pk(Fq) = {Fq · v|v ∈ Fk+1

q \ {0}}
by (x1, . . . , xk) 7→ ⟨1, x1, . . . , xk⟩ = Fq · (1, x1, . . . , xk). For an arbitrary
set X ⊆ Ak(Fq), by a remark from above, rX is the smallest number r
such that any interpolation problem

φ(P ) = wP (for P ∈ X , wP ∈ Fq)

has a polynomial solution φ of degree ≤ r (rX is the interpolation degree
of X in the sense of [3, section 4A]).
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Definition 1.4. a) We call a subset X ⊆ Pk(Fq) affine if there exists
a hyperplane H ⊆ Pk

Fq
, defined over Fq and disjoint from X .

b) sa(n, q) := max{rX | there exist k ≥ 1,X ⊆ Pk(Fq),X affine,
degX = n}.

By what was just said, this definition agrees with the one from the
abstract. The following proposition describes sa(n, q) completely:

Proposition 1.5. Let r,m, n ∈ N>0 and r ≤ q − 1.

For rqm−1 ≤ n < (r + 1)qm−1,

sa(n, q) = (m− 1)(q − 1) + r − 1.

It turns out (see Section 4) that this is a simple application of the
Cayley-Bacharach conjecture ([4, CB12]). However, with regard to the
function s of our main interest, we have:

Remark 1.6. The functions sa and s are different.

In fact, for any m ≥ 2, by [8, Theorem 1.3],

s

(
qm − 1

q − 1
, q

)
= (m− 1)(q − 1) + 1,

whereas, by Proposition 1.5 with r = 1

sa

(
qm − 1

q − 1
, q

)
= (m− 1)(q − 1).

2. The function s(n,k,q) and proofs of 1.1, 1.2. The invariants
s(n, k, q) are finer than s(n, q): It is easily seen that one always has

s(n, q) = max

{
s(n, k, q)

∣∣∣1 ≤ k < n ≤ qk+1 − 1

q − 1

}
.

s(n, k, q) was studied by Kreuzer and the second author in [7]:

s(n, k, q) is increasing in n ([7, Corollary 2.2a)]) and s(n, k, q) was
completely computed in both cases q = 2 and k = 2 ([7, Proposi-
tion 1.2, respectively, Proposition 1.6]).
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Proof that s(n, k, q) is decreasing in k (Proposition 1.2). Let q = pe be
a prime power, e ≥ 1 and

2 ≤ k < n ≤ qk − 1

q − 1
(=

∣∣Pk−1(Fq)
∣∣).

We have to show that s(n, k, q) ≤ s(n, k − 1, q). It is clear from our
hypothesis that both numbers s(n, k, q) and s(n, k − 1, q) are defined.
Now, let X = {P1, . . . Pn} ⊆ Pk(Fq) be nondegenerate of degree n and
rX = s(n, k, q).

In any case the dimension of the Fq-vector space

(Fq[X0, . . . , Xk]/IX )rX−1

is smaller than n; therefore, according to the remark from the intro-
duction, Fq[X] := Fq[X0, . . . , Xk] contains no homogenous polynomial
p of degree rX − 1 with (if necessary we renumber the points Pi)

P1 /∈ V +(p)

P2, . . . , Pn ∈ V +(p)

where V +(p) denotes the zero set of p in Pk(Fq).

Claim. There exists a line l ⊆ Pk(Fq) with l ∩ X = {P1}.
Proof of claim. For the lines P1 ∨Pi connecting P1 with Pi we have:∣∣∣∣( n∪

i=2

P1 ∨ Pi

)∣∣∣∣ ≤ 1 + (n− 1) · q ≤ 1 +

(
qk − 1

q − 1
− 1

)
· q

=
qk+1 − q2 + q − 1

q − 1
<

qk+1 − 1

q − 1
=

∣∣Pk(Fq)
∣∣ .

So there is at least one point P ∈ Pk(Fq) not on the union of the lines
P1 ∨ Pi; take l to be the line connecting P and P1. �claim

We choose P ∈ l \ {P1} and take the projection with center P :

Pk(Fq) \ {P} π−→ Pk−1(Fq).

l = P1 ∨ P connects P1 with P , and l \ {P} is the fibre over π(P1).
Because of l ∩ X = {P1}, the restriction

π|X : X −→ Pk−1(Fq)
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has only P1 in its fibre over π(P1).

Let Y0, . . . , Yk−1 be the coordinates of Pk−1(Fq). Algebraically, π
corresponds to a homogenous, injective ring homomorphism

ι : Fq[Y ] := Fq[Y0, . . . , Yk−1] −→ Fq[X0, . . . , Xk]

(under which the Yi are mapped to certain linear forms). The ring
Fq[Y ] contains no polynomial p0 of degree rX − 1 with

(2.1)
π(P1) /∈ V +(p0)

π(P2), . . . , π(Pn) ∈ V +(p0),

because otherwise ι(p0) ∈ Fq[X] would be a polynomial of degree rX −1
with P1 /∈ V +(ι(p0)), P2, . . . , Pn ∈ V +(ι(p0)).

By construction, π(P1) is not contained in {π(P2), . . . , π(Pn)}. In
particular, from (2.1) above we conclude

rπ(X ) ≥ rX ,

and furthermore (note that π(X ) ⊆ Pk−1(Fq) is nondegenerate because
IX contains no linear form, a fortiori Iπ(X ) = IX ∩ Fq[Y ] contains no
linear form) by [7, Corollary 2.2a)],

s(n, k − 1, q) ≥ s(|π(X )| , k − 1, q) ≥ rπ(X ) ≥ rX = s(n, k, q). �1.2

Proposition 1.2 implies Proposition 1.1. Note that the first jump
discontinuities a1 = 2, . . . , aq = q + 1 as well as a2q−2 = q2, a2q−1 =
q2 + q + 1 are known by [8, Corollay 1.4]. To determine the jump
discontinuities aq+1, . . . , a2q−3 which are missing in between (at least
for q ≥ 4), we use the following consequence of proposition 1.2:

Corollary 2.1. In the interval ((qm − 1)/(q − 1), (qm+1 − 1)/(q − 1)],
m ≥ 1, one has

s(n, q) = s(n,m, q).

Proof. s(n, k, q) is decreasing in k and we simply take the smallest
possible value for k where s(n, k, q) is defined. �2.1

In particular, for n ∈ {q + 2, . . . , (q3 − 1)/(q − 1) = q2 + q + 1},

s(n, q) = s(n, 2, q),
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and the latter function was concretely computed in [7, Proposition 1.6].
Furthermore, by [8, Theorem 1.3a)], s(n, q) = 2q − 1 for q2 + q + 1 ≤
n ≤ 2(q2 + q + 1). �1.2⇒1.1

Remark 2.2. Let sa(n, k, q) be the largest interpolation degree that
any nondegenerate X ⊆ Ak(Fq) of degree n can achieve. Similar
arguments as above show, that

sa(n, k, q) = sa(n, q), for qk−1 < n ≤ qk,

hence, by Proposition 1.5, sa(n, k, q) is well known in this range.

3. Proof of 1.3. Note that, for every k ≥ 2 and every prime power
q, s(2q + k, k, q) is defined since 2q + k ≤ qk + . . . + q + 1. To prove
Proposition 1.3, we need some preparations:

Let K be a field and k ≥ 2. For a vector a = (a0, . . . , ak) ∈ Kk+1,
we call

supp a := {i|ai ̸= 0} ⊆ {0, . . . , k}

its support and
∥a∥ := |supp a|

its weight. We start with the map

φ̃ : Kk+1 → K(k+1
2 ), (a0, . . . , ak) 7−→ (a0a1, . . . , ak−1ak)

(strictly speaking we once and for all fix an arbitrary order on the set
of all pairs (aiaj) for j > i on the right-hand side).

Lemma 3.1. Let v1, v2, v3 ∈ Kk+1 \ {0}, and write vi = (vij) j=0,...,k
i=1,2,3

.

(i) Assume that v1 and v2 have the same support and weight at least
three. If v1 and v2 are linearly independent, then φ̃(v1) and φ̃(v2)
are likewise linearly independent.

(ii) If v1, v2 and v3 have pairwise different support and ∥vi∥ ≥ 2 for
i = 1, 2, 3, then φ̃(v1), φ̃(v2) and φ̃(v3) are linearly independent.

Proof. (i) Without loss of generality, we assume that {0, 1, 2} ⊆ supp v1
(= supp v2) and that det ( v11 v12

v21 v22 ) ̸= 0. Then
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φ̃(vi) = (vi0vi1, vi0vi2, . . .), i = 1, 2,

with

det

(
v10v11 v10v12
v20v21 v20v22

)
= v10v20 · det

(
v11 v12
v21 v22

)
̸= 0;

in particular φ̃(v1) and φ̃(v2) are linearly independent.

(ii) Without loss of generality, ∥v3∥ ≤ ∥v2∥ ≤ ∥v1∥. The
(
k+1
2

)
-tuples

φ̃(v1), φ̃(v2), φ̃(v3) have pairwise different support (since this property
holds for v1, v2, v3). In particular, whenever i ̸= j, the vectors φ̃(vi)
and φ̃(vj) are linearly independent. We assume to the contrary that
φ̃(v1), φ̃(v2), φ̃(v3) are linearly dependent. Since any two of them are
linearly independent there exist λ, µ ∈ K \ {0} such that

(∗) φ̃(v3) = λφ̃(v1) + µφ̃(v2).

∥v2∥ ≤ ∥v1∥ and supp v1 ̸= supp v2; hence, supp v1 * supp v2. There-
fore, we may assume that supp v1 = {0, . . . , d} with 1 ≤ d ≤ k and
0 /∈ supp v2.

v10v11 ̸= 0, . . . , v10v1d ̸= 0,

v20v21 = · · · = v20v2d = 0

and (∗) implies

v30v31 = λv10v11 ̸= 0, . . . , v30v3d = λv10v1d ̸= 0;

hence, supp v1 = {0, . . . , d} ⊆ supp v3. Because of ∥v3∥ ≤ ∥v1∥, we get
supp v1 = supp v3 which contradicts our hypothesis. �

For any given subset M ⊆ {0, . . . , k}, |M | ≥ 2, set

Pk
M = {⟨v⟩ ∈ Pk(K)|supp v = M}

and

M := supp φ̃(v), if supp v = M

(M does not depend on the choice of v). The map

φ̃ : Pk
M −→ P(

k+1
2 )−1

M
, ⟨v⟩ 7−→ ⟨φ̃(v)⟩

is well defined and Lemma 3.1.i. implies:
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Corollary 3.2. In case |M | ≥ 3, φ̃ : Pk
M → P(

k+1
2 )−1

M
is injective.

Furthermore we need [8, Remark 5.1] in the following form: Let
X = {P1, . . . , Pn} ⊆ Pk(Fq), degX = n. For every i, choose vi ∈ Fk+1

q

with Pi = ⟨vi⟩. Define

evd : Rd → Fn
q , F 7−→ (F (v1), . . . , F (vn))

T ; V (d) := im(evd)

Then ker(evd) = (IX )d, and hence

dimV (d) = dimRd/(IX )d.

By Ad, we denote the coefficient matrix of evd with respect to the basis
B = {Xα||α| = d} of Rd. We have HX (d) = rankAd. The rows of Ad

are the vectors (Xα(vi)|α ∈ Nk+1, |α| = d), for i = 1, . . . , n (assuming
B is suitably ordered).

Proof of Proposition 1.3. By [7, Proposition 1.4b)] one has s(2q + k−
1, k, q) = q and, by using [7, Proposition 2.1e)] twice, it is easy to see
that

q ≤ s(2q + k, k, q) ≤ q + 1.

Therefore, we have to show rX ̸= q + 1 for every X ⊆ Pk(Fq),
nondegenerate and with degX = 2q + k.

Claim. HX (2) ≥ k + 4.

Proof of claim. Without loss of generality, we may assume that
X1 := {⟨e0⟩, . . . , ⟨ek⟩} ⊆ X , where ei is the ith standard basis vector
in Fk+1

q . Let v1, . . . , v2q−1 ∈ Fk+1
q be such that

X = X1 ∪ {⟨v1⟩, . . . , ⟨v2q−1⟩}.

We define

φ : Fk+1
q −→ F(

k+2
2 )

q

a = (a0, . . . , ak) 7−→ (a20, . . . , a
2
k, a0a1, . . . , ak−1ak)

= (Xα(a)| |α| = 2) .
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The rows of A2 are φ(e0), . . . , φ(ek), φ(v1), . . . , φ(v2q−1):

A2 =


1 0

. . .

0 1

0

* Ã

 , where Ã =

 φ̃(v1)
...

φ̃(v2q−1)

 ,

with φ̃ being taken from Lemma 3.1. To prove our claimHX (2) ≥ k+4,

we have to show that rankÃ ≥ 3 (since HX (2) = rankA2 = k + 1 +

rankÃ):

Let M ⊆ {0, . . . , k}, |M | ≥ 2 and XM := X ∩Pk
M (= (X \X1)∩Pk

M ).
Clearly, since every line has exactly q + 1 Fq-rational points,

(3.1) |L ∩ Pk
M | ≤ q − 1 for every line L ⊆ Pk(Fq)

(3.2) If |M | = 2, then
∣∣Pk

M

∣∣ = q − 1.

To finish the proof of our claim, we distinguish between two cases:

(a) If X \ X1 contains three points ⟨w1⟩, ⟨w2⟩ and ⟨w3⟩ with pairwise
different supports, then the vectors φ̃(w1), φ̃(w2) and φ̃(w3) are

linearly independent and rankÃ ≥ 3, by Lemma 3.1.ii.
(b) If there are at most two M with |M | ≥ 2 and XM ̸= ∅, then,

because of |X \ X1| = 2q − 1 = q + q − 1, there exists such an M
with |XM | ≥ q. By equation (3.2), we get |M | ≥ 3 and then, by
Corollary 3.2, |φ̃(XM )| ≥ q. By equation (3.1) it is clear that the set

φ̃(XM ) ⊆ P(
k+1
2 )−1

M
is not contained in a line; therefore, rankÃ ≥ 3.

�claim

HX (2) = k+ 1+ rankÃ ≥ k+ 4. Assume that rX = q+ 1: The first
difference function ∆HX = HX (d)−HX (d− 1) has the form

∆HX : 1, k, h2, h3, . . . , hq+1, 0, 0, . . . with hj ≥ 1 (j = 2, . . . , q + 1).

HX (2) ≥ k + 4 implies

h2 = HX (2)−HX (1) ≥ k + 4− (k + 1) = 3.

Furthermore, we have hj ≥ 2 for j = 3, . . . , q. If hj was equal to 1 for
some j ∈ {3, . . . , q}, then, by [7, Proposition 2.1 c)], also both hq and
hq+1 would be equal to 1; by [7, Proposition 2.1 d)], there would be a



INTERPOLATION IN AFFINE AND PROJECTIVE SPACE 217

line L ⊆ Pk(Fq) with

|X ∩ L| ≥ rX + 1 = q + 2 > q + 1 = |L|,

(in this context, see also [6, Proposition 5.2]), which is absurd.

Hence, we finally get

degX =
∑
d∈N

∆HX (d)

= 1 + k + h2 + (h3 + . . .+ hq) + hq+1

≥ 1 + k + 3 + (q − 2) · 2 + 1

= 2q + k + 1,

which contradicts our assumptions. Therefore, rX ̸= q + 1. �1.3

4. Proof of Proposition 1.5. Similarly to [8, Lemma 1.2], we have

Remark 4.1. For all n ∈ N>0,

sa(n, q) ≤ sa(n+ 1, q) ≤ sa(n, q) + 1.

Proof of Proposition 1.5. From the proof of [8, Proposition 1.6 b)],
we know that there is an affine complete intersection X ⊆ Am(Fq) ⊆
Pm(Fq) of degree rqm−1 and regularity (m− 1)(q − 1) + r − 1; hence,

sa(n, q) ≥ sa(rq
m−1, q) ≥ rX

= (m− 1)(q − 1) + r − 1 for n ≥ rqm−1.

Conversely, let k ≥ 1 and X ⊆ Pk(Fq) be affine with degX <
(r + 1)qm−1. We have to show that rX ≤ (m − 1)(q − 1) + r − 1
and may assume that X does not meet the hyperplane X0 = 0. Then,
for S := R/IX + (X0) = Fq[X1, . . . , Xk]/J ,

{Xq
1 , . . . , X

q
k} ⊆ J and dimFq S = degX < (r + 1)qm−1.

Finally, by the following simple combinatorial lemma, we have Sd = 0
for d = (m− 1)(q − 1) + r, i.e., rX ≤ (m− 1)(q − 1) + r − 1.

Lemma 4.2. Let k, m and q be natural numbers, k ≥ 1 and 1 ≤ r ≤
q − 1. Let α := (α1, . . . , αk) ∈ Nk be of degree |α| := α1 + . . . + αk =
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m(q − 1) + r and such that 0 ≤ αj ≤ q − 1 for j = 1, . . . , k. Then

(α1 + 1) · . . . · (αk + 1) ≥ (r + 1)qm.

This follows from [8, Lemma 2.2 b)] and is easily seen anyway.

Assume Sd ̸= 0 for d = (m − 1)(q − 1) + r. By Macaulay’s
theorem [1, Theorem 4.2.3], there is an order ideal M of monomials
in Fq[X1, . . . , Xk] such that the elements Xα + J , Xα ∈ M form

an Fq-basis of S. Since Sd ̸= 0 and {Xq
1 , . . . , X

q
k} ⊆ J , there is a

monomial Xα ∈ M (0 ≤ αj ≤ q − 1 for j = 1, . . . , k) of degree d.

Hence, by Lemma 4.2, dimFq S = |M| ≥ |{Xβ | Xβ divides Xα}| =
(α1 + 1) · . . . · (αk + 1) ≥ (r + 1)qm−1, a contradiction.

Alternatively, Sd = 0 by the AU-conjecture [5, Conjecture 3.5],
which is known to be true for pure powers (see [2]). �1.5

5. More general considerations. For k ≥ 1, q ≥ 2 (not necessar-
ily a prime power), let I(k, q) ⊆ Z[X0, . . . , Xk] be the ideal generated

by the 2× 2-minors of the matrix
(

Xq
0 ... Xq

k

X0 ... Xk

)
.

For instance, if q is a prime power, then I(k, q) · Fq[X0, . . . Xk] is
the homogenous vanishing ideal of X = Pk(Fq) ⊆ Pk

Fq
. More generally,

let K be the cyclotomic extension of degree q − 1 of Q or of a prime
field Fl with l - (q− 1). Then I(k, q) defines a smooth finite subscheme
Pk
q (K) ⊆ Pk(K) ⊆ Pk

K of degree (qk+1 − 1)/(q − 1) and its ideal is
given by I(k, q) ·R (note that this ideal is saturated).

Questions. What are the Hilbert functions of the subschemes
X ⊆ Pk

q (K)? Does the answer depend on K? A simpler problem
is: which numbers occur as the regularities of such X of a given degree
n? Find a formula for

s(n, q;K) := max{rX | there exist k ≥ 1,X ⊆ Pk
q (K) with degX = n}.

And, again, does s(n, q;K) depend on K?

These considerations were suggested by the referee of the paper [8]
and are motivated by the following results. Analyzing the proof of
Theorem 1.3 in [8], we see that its statements remain true if one allows
q to be an arbitrary integer ≥ 2 and replaces Fq by a cyclotomic field
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K, as above. In particular, if q is a prime power we have

s(n, q;K) = s(n, q)

for all such K and all n for which Theorem 1.3 (loc. cit.) applies.
Moreover, the functions s(n, 2;K) = s(n, 2) and s(n, 3;K) = s(n, 3)
are well known and independent from K.

Acknowledgments. We thank Martin Kreuzer for his valuable
comments to the proof of Proposition 1.4.
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