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INVARIANTS AND ISOMORPHISM THEOREMS FOR
ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS

OF QUOTIENTS

JOHN D. LAGRANGE

ABSTRACT. Given a commutative ring R with 1 ̸= 0,
the zero-divisor graph Γ(R) of R is the graph whose
vertices are the nonzero zero-divisors of R, such that
distinct vertices are adjacent if and only if their product
in R is 0. It is well known that the zero-divisor graph of
any ring is isomorphic to that of its total quotient ring.
This result fails for more general rings of quotients. In
this paper, conditions are given for determining whether
the zero-divisor graph of a ring of quotients of R is
isomorphic to that of R. Examples involving zero-divisor
graphs of rationally ℵ0-complete commutative rings are
studied extensively. Moreover, several graph invariants are
studied and applied in this investigation.

1. Introduction. Let R be a commutative ring with 1 ̸= 0, and let
Z(R) denote the set of zero-divisors of R. The zero-divisor graph Γ(R)
of R is the simple undirected graph with vertices V (Γ(R)) = Z(R)\{0},
such that distinct vertices v, w ∈ V (Γ(R)) are adjacent if and only if
vw = 0. The notion of a zero-divisor graph was first introduced by Beck
in [3]. While he was mainly interested in colorings, we shall investigate
the interplay between ring-theoretic and graph-theoretic properties.
This approach began in a paper by Anderson and Livingston [2], and
has since continued to evolve.

Let Γ1 and Γ2 be simple undirected graphs. Then Γ1 is isomorphic
to Γ2 if there exists an isomorphism φ : V (Γ1) → V (Γ2), that is, a
bijection φ : V (Γ1) → V (Γ2) such that v, w ∈ V (Γ1) are adjacent if
and only if φ(v), φ(w) ∈ V (Γ2) are adjacent. If Γ1 is isomorphic to Γ2,
then we will write Γ1 ≃ Γ2.
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In [1], it is shown that the zero-divisor graph of any ring is iso-
morphic to that of its total quotient ring. Related theorems on more
general rings of quotients are given in [7] and [9]. While the latter in-
vestigations treat rings without nonzero nilpotents, this paper extends
results to arbitrary commutative rings. However, rings without nonzero
nilpotents shall be considered as well.

A ring R is called reduced if it does not have any nonzero nilpotents.
We will say that R is decomposable if R ∼= R1 ⊕ R2 for some nonzero
rings R1 and R2. If R is not decomposable, then R is indecomposable.
A commutative ring R with 1 ̸= 0 is von Neumann regular if, for each
r ∈ R, there exists an s ∈ R such that r = r2s or, equivalently, R is
reduced with Krull dimension zero [6, Theorem 3.1].

Given rings R ⊆ S and a subset A of S, define annR(A) =
{r ∈ R | ra = 0 for all a ∈ A}. If A = {a}, then we will write
annR(A) = annR(a). An equivalence relation on R is given by declaring
elements r, s ∈ R equivalent if and only if annR(r) = annR(s). The
equivalence class of an element r ∈ R will be denoted by [r]R, that is,
[r]R = {s ∈ R | annR(r) = annR(s)}. Suppose that R is von Neumann
regular. If r ∈ R, say r = r2s, then er = rs is the unique idempotent
that satisfies [r]R = [er]R (cf., [7, Remark 2.4] or the discussion prior
to [1, Theorem 4.1]).

In [6], a ring R is said to satisfy (a.c.) (the annihilator condition)
if, given any r, s ∈ R, there exists an x ∈ R such that annR(r, s) =
annR(x). It follows (by induction) that if A ⊆ R is any finite subset,
then there exists an r ∈ R such that annR(A) = annR(r). We extend
this definition and say that a ring R satisfies ℵα-(g.a.c.) (the ℵα-
generalized annihilator condition) if, given any subset A ⊆ R with
|A| < ℵα, there exists an r ∈ R such that annR(A) = annR(r). We
say that R satisfies (g.a.c.) if it satisfies ℵα-(g.a.c.) for every ordinal
α. Note that the definition in [6] coincides with our definition of ℵ0-
(g.a.c.).

A set D ⊆ R is dense in R if annR(D) = {0}. Let d1 and d2 be
dense ideals of R, and suppose that fi ∈ HomR(di, R) (i = 1, 2). Then
d1d2 is a dense ideal of R, and {f1 + f2, f1 ◦ f2} ⊆ HomR(d1d2, R). Let
F = ∪dHomR(d, R), where the union is taken over all dense ideals of R.
Then Q(R) = F/∼ is a commutative ring, where f1 ∼ f2 if and only if
f1|D = f2|D for some dense set D of R. One checks that R is embedded
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in Q(R) by identifying any element r ∈ R with the equivalence class
containing the homomorphism (s 7→ rs) ∈ HomR(R,R). In [11],
Lambek calls Q(R) the complete ring of quotients of R.

A ring extension R ⊆ S is called a ring of quotients of R if
f−1R = {r ∈ R | fr ∈ R} is dense in S for all f ∈ S. For example,
the total quotient ring T (R) of R is a ring of quotients of R. To see
this, observe that sR is dense in T (R) whenever r/s ∈ T (R). Suppose
that S is a ring of quotients of R. Then the correspondence given
by identifying an element f ∈ S with the equivalence class containing
(r 7→ fr) ∈ HomR(f

−1R,R) is an extension of the mapping R→ Q(R)
described above, and embeds S into Q(R). Therefore, every ring of
quotients of R can be regarded as a subring of Q(R). It follows that a
dense set in R is dense in every ring of quotients of R. Also, R has a
unique maximal (with respect to inclusion) ring of quotients, which is
isomorphic to Q(R) [11, Proposition 2.3.6]. In this paper, isomorphic
rings will not be distinguished. In particular, we shall denote the
maximal ring of quotients of R by Q(R). Note that a ring R is reduced
if and only if Q(R) is von Neumann regular [4, 1.11].

Let α be an ordinal. Given any subsets D1 and D2 of R such
that |Di| < ℵα (i = 1, 2), it follows that |{d1d2 | d1 ∈ D1 and d2 ∈
D2}| < ℵα. Therefore, the set Qα(R) = {f ∈ Q(R) | there exists a
D ⊆ f−1R such that annR(D) = {0} and |D| < ℵα} is a commutative
ring. Clearly, Qα(R) is a ring of quotients of R. Also, there exists an
ordinal β such that Qα(R) = Q(R) for all α ≥ β. As in [10], we will
say that R is rationally ℵα-complete if R = Qα(R). If R is rationally
ℵα-complete, then it is easy to see that R is rationally ℵβ-complete for
all β ≤ α. If R is rationally ℵα-complete for all α (i.e., R = Q(R)), then
we will say that R is rationally complete. In [12], Lucas calls Q0(R)
the ring of finite fractions of R. In [5], Hager and Martinez refer to
Qα(R) as the ring of ℵα-quotients of R. Examples and fundamental
properties of rational ℵα-completions of commutative rings are given
in [10].

Let R ⊆ S ⊆ T be rings. Then T is a ring of quotients of R if
and only if T is a ring of quotients of S and S is a ring of quotients
of R [4, 1.4]. It follows that Q(S) = Q(R) whenever R ⊆ S is a ring
of quotients. Moreover, given any ordinal α, it is easy to check that
f−1R ⊆ f−1S for all f ∈ Qα(R). Therefore, if S is a ring of quotients
of R, then Qα(R) ⊆ Qα(S) for every ordinal α.
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The main focus of this paper is on the relationship between the zero-
divisor graphs of R and Qα(R) for a commutative ring R. In particular,
criteria is sought for determining when these graphs are isomorphic.
Using the fact that any ring of quotients of R can be embedded in
Qα(R) for some α, our results extend to all rings of quotients of R.

The ring-theoretic foundation for this study is established in a series
of lemmas given in Section 2. Furthermore, these results motivate a
ring-theoretic characterization of ℵα-complete Boolean algebras (Theo-
rem 2.4). In [8, Lemma 3.1], a graph-theoretic condition (see Theorem
3.3 (4)) is presented for determining when the relation Γ(R) ≃ Γ(Q(R))
holds for a von Neumann regular ring R. However, this condition is
meaningful only when certain graph-theoretic assumptions (known to
be possessed by zero-divisor graphs of von Neumann regular rings) are
met. In particular, this condition cannot be employed in the study of
zero-divisor graphs of arbitrary rings. In Section 3, we expose the un-
derlying mechanics of this condition. It turns out that ℵα-(g.a.c.) is an
appropriate generalizing criterion (Remark 3.8 (1) and Theorem 3.9).
In fact, if R is a von Neumann regular ring, then the key graph-theoretic
condition of [8, Lemma 3.1] is possessed by Γ(R) if and only if R sat-
isfies (g.a.c.) (Theorem 3.3). In an effort to determine the relation
Γ(R) ≃ Γ(Qα(R)) based on characteristics of Γ(R), we investigate the
graph-theoretic implications of the property ℵα-(g.a.c.). Any ring that
satisfies ℵα-(g.a.c.) has a weak central vertex ℵα-complete zero-divisor
graph. If R is a decomposable ring, then R satisfies ℵα-(g.a.c.) if
and only if Γ(R) is a weak central vertex ℵα-complete graph (Theo-
rem 3.14 and Corollary 3.15). On the other hand, if R is any reduced
ring, then R satisfies ℵα-(g.a.c.) if and only if Γ(R) is a central vertex
ℵα-complete graph (Theorem 3.1 and Corollary 3.13). We conclude
Section 3 with a lemma which provides sufficient conditions for the
zero-divisor graphs of direct sums to be isomorphic. In Section 4, the
results in Section 3 are applied to examples involving Γ(Q0(R)), where
R is a total quotient ring such that R ( Q0(R) ( Q(R). In partic-
ular, four of the five possible relations between Γ(R), Γ(Q0(R)) and
Γ(Q(R)) are shown to exist (Theorem 4.2). Furthermore, examples are
constructed to show that ℵα-(g.a.c.) is not a necessary condition for the
relation Γ(R) ≃ Γ(Qα(R)) to hold (Example 4.15 and Example 4.16).
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2. Rings of quotients and the annihilator conditions. In this
section, we study the annihilator ideals of a ring of quotients. In
particular, it is shown that the annihilator of an element in a ring of
quotients of R is the annihilator of an element in R whenever R satisfies
(g.a.c.) (Lemma 2.3). We conclude this section with a theorem which
characterizes ℵα-complete Boolean algebras (Theorem 2.4).

In [8], the inclusion [r]R ⊆ [r]Q(R) is justified for a reduced ring by
noting that the mapping annQ(R)(J) 7→ annR(J ∩ R) (J ⊆ Q(R)) is
a well-defined bijection of {annQ(R)(J) | J ⊆ Q(R)} onto {annR(J) |
J ⊆ R} [11, Proposition 2.4.3]. Elementary proofs are given when
R is von Neumann regular [8, Proposition 2.7]. The following lemma
generalizes this observation with a simpler proof.

Lemma 2.1. Let R be a commutative ring. Suppose that S is a ring
of quotients of R, and let f1, f2 ∈ S. Then annR(f1) = annR(f2) if
and only if annS(f1) = annS(f2).

Proof. Clearly, annS(f1) = annS(f2) implies that annR(f1) =
annR(f2). Suppose that annR(f1) = annR(f2), and let g ∈ annS(f1).
Then g(g−1R) ⊆ annR(f1) = annR(f2), and hence f2g ∈ annS(g

−1R) =
{0}. That is, g ∈ annS(f2). A symmetric argument shows that
annS(f2) ⊆ annS(f1), and therefore the desired equality holds. �

Lemma 2.2. Let R be a commutative ring. Suppose that S is a ring
of quotients of R, and let D be a dense set in R. If f ∈ S, then

annR(f) = ∩d∈D annR(fd) = annR
(
∪d∈D {fd}

)
.

Proof. To prove the first equality, suppose that r ∈ ∩d∈DannR(fd).
Then rfd = 0 for all d ∈ D. That is, rf ∈ annS(D) = {0}, where the
equality holds since D is dense in every ring of quotients of R. Thus,
r ∈ annR(f). This shows that ∩d∈DannR(fd) ⊆ annR(f). The reverse
inclusion is obvious, and therefore the equality holds.

The second equality is clear. �

Lemma 2.3. Let R and S be commutative rings with R ⊆ S ⊆ Qα(R).
Suppose that R satisfies ℵα-(g.a.c.). If f ∈ S, then there exists an r ∈ R
such that [f ]S = [r]S.
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Proof. The inclusion S ⊆ Qα(R) implies there exists a dense set
D ⊆ f−1R such that |D| < ℵα. SinceR satisfies ℵα-(g.a.c.), there exists
an r ∈ R such that annR

(
∪d∈D {fd}

)
= annR(r). But R ⊆ S ⊆ Qα(R)

implies that S is a ring of quotients of R. Then, by Lemma 2.2, it
follows that annR(f) = annR(r). Therefore, Lemma 2.1 implies that
annS(f) = annS(r), i.e., [f ]S = [r]S . �

Given a commutative ring R, let B(R) = {r ∈ R | r2 = r}, that
is, let B(R) denote the set of idempotents of R. Then the relation ≤,
defined by r ≤ s if and only if rs = r, partially orders B(R) and makes
B(R) a Boolean algebra with inf as multiplication in R, the largest
element as 1, the smallest element as 0 and complementation defined
by r′ = 1− r. A Boolean algebra B is called ℵα-complete if inf A exists
in B for all A ⊆ B with |A| ≤ ℵα. If B is ℵα-complete for every ordinal
α, then B is called complete. By the de Morgan Laws, it follows that
B is ℵα-complete if and only if supA exists in B for all A ⊆ B with
|A| ≤ ℵα (e.g., see [13, Section 20]).

Suppose that R is von Neumann regular. Let A ⊆ B(R) ⊆ B(Q(R)).
It is known that B(Q(R)) is a complete Boolean algebra [4, Theorem
11.9]. Thus, inf A ∈ B(Q(R)). If R satisfies (g.a.c.), then Lemma 2.3
implies that there exists an element r ∈ R such that [r]Q(R) =
[inf A]Q(R). But inf A is idempotent, and thus inf A = er ∈ R. Hence,
B(R) is complete whenever R satisfies (g.a.c.). The converse is also
true. The following theorem generalizes these observations (without
the hypothesis “B(Q(R)) is complete”).

Theorem 2.4. Let R be a von Neumann regular ring. Then B(R) is
ℵα-complete if and only if R satisfies ℵα+1-(g.a.c.).

Proof. Suppose that B(R) is ℵα-complete. Let A ⊆ R be such that
|A| < ℵα+1. Since |A| ≤ ℵα, there exists an e ∈ B(R) such that
e = sup{ea | a ∈ A}. In particular, e ≥ ea for all a ∈ A. That is,
ea = eea for all a ∈ A.

Clearly, annR(e) ⊆ annR(ea) = annR(a) for all a ∈ A. Hence,
annR(e) ⊆ annR(A). To show the reverse inclusion, suppose that
r ∈ annR(A). Then ea(1− er) = ea for all a ∈ A. That is, ea ≤ 1− er
for all a ∈ A. Therefore, e ≤ 1− er, i.e., e(1− er) = e. Then eer = 0,
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and therefore r ∈ annR(e). Thus, annR(e) = annR(A), and it follows
that R satisfies ℵα+1-(g.a.c.).

Conversely, suppose that R satisfies ℵα+1-(g.a.c.). Let A ⊆ B(R)
be such that |A| ≤ ℵα. Since |A| < ℵα+1, there exists an r ∈ R
such that annR(r) = annR({1 − a | a ∈ A}). Hence, annR(er) =
annR({1− a | a ∈ A}). In particular, (1− er)(1− a) = 0 for all a ∈ A.
It follows that 1 − er ≤ a for all a ∈ A. Suppose that b ∈ B(R)
with b ≤ a for all a ∈ A. Then b(1 − a) = 0 for all a ∈ A, that
is, b ∈ annR({1 − a | a ∈ A}) = annR(er). Thus, b(1 − er) = b,
i.e., b ≤ 1 − er. Hence, inf A = 1 − er ∈ B(R). Therefore, B(R) is
ℵα-complete. �

Note that Theorem 2.4 gives ring-theoretic conditions which char-
acterize ℵα-complete Boolean algebras. Every Boolean algebra is of
the form B(R) for some Boolean ring R (that is, a ring R such that
r2 = r for all r ∈ R), cf., [11, Proposition 1.1.3]. Therefore, a Boolean
algebra B(R) is ℵα-complete if and only if R satisfies ℵα+1-(g.a.c.). In
Section 3, this ring-theoretic property will be translated into a graph-
theoretic property (Theorem 3.1 and Theorem 3.14).

3. Invariants and isomorphism theorems. Let Γ be a graph,
V (Γ) the set of vertices of Γ and ∅ ̸= A ⊆ V (Γ). As in [8], a vertex
v ∈ V (Γ) will be called a central vertex of A if every element of A is
adjacent to v. Let C(A) ⊆ V (Γ) denote the set of all central vertices of
A. If A = {a}, then we will write C(A) = C(a). Note that, if Γ = Γ(R)
for some ring R, then

C(A) = annR(A) \
(
A ∪ {0}

)
.

A graph Γ is said to be central vertex ℵα-complete, or c.v.-ℵα-
complete, if, for all ∅ ̸= A ⊆ V (Γ) with |A| < ℵα and C(A) ̸= ∅, there
exists a v ∈ V (Γ) such that C(A) = C(v). If Γ is c.v.-ℵα-complete for
every ordinal α, then we will say that Γ is c.v.-complete. The following
theorem translates this definition into ring-theoretic terms.

Theorem 3.1. Let R be a reduced ring. Then Γ(R) is c.v.-ℵα-complete
if and only if R satisfies ℵα-(g.a.c.).
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Proof. Observe that, since R is reduced, C(A) = annR(A) \ {0} for
every ∅ ̸= A ⊆ V (Γ(R)). Therefore, the equality C(A) = C(B) holds
for nonempty sets A,B ⊆ V (Γ(R)) if and only if annR(A) = annR(B).

Suppose that R satisfies ℵα-(g.a.c.). Let ∅ ̸= A ⊆ V (Γ(R)) with
|A| < ℵα and C(A) ̸= ∅. Then C(A) = C(r), where r ∈ R is an element
such that annR(A) = annR(r). Hence, Γ(R) is a c.v.-ℵα-complete.

Suppose that Γ(R) is c.v.-ℵα-complete. Let ∅ ̸= A ⊆ R with
|A| < ℵα. If annR(A) = {0}, then annR(A) = annR(1). Suppose that
annR(A) ̸= {0}. If A = {0}. Then annR(A) = annR(0). Suppose that
A ̸= {0}. Then annR(A) ̸= {0} implies that ∅ ̸= A \ {0} ⊆ V (Γ(R))
and C(A \ {0}) ̸= ∅. Therefore, annR(A) = annR(A \ {0}) = annR(r),
where r is any element which satisfies C(A \ {0}) = C(r). Thus, R
satisfies ℵα-(g.a.c.). �

Note that Theorem 3.1 can fail for rings with nonzero nilpotents.
For example, the zero-divisor graph of Z25 is the complete graph on
four vertices. In particular, Γ(Z25) is not c.v.-ℵ0-complete. However,
Z25 satisfies (g.a.c.) since the annihilator of any set in Z25 is either
{0} = annZ25(1) or Z(R) = annZ25(5).

By Theorem 2.4 and Theorem 3.1, we have

Corollary 3.2. Let R be a von Neumann regular ring. Then B(R) is
ℵα-complete if and only if Γ(R) is c.v.-ℵα+1-complete.

Let Γ be a graph, and suppose that v ∈ V (Γ). As in [1], an element
w ∈ V (Γ) will be called a complement of v if w is adjacent to v, and no
element of V (Γ) is adjacent to both v and w. A graph Γ is complemented
if every element of V (Γ) has a complement. If Γ is a simple graph, then
v is a complement of w if and only if the edge v − w is not an edge of
any triangle in Γ. It is known that any reduced total quotient ring R is
von Neumann regular if and only if Γ(R) is complemented [1, Theorem
3.5].

Note that Corollary 3.2 is a generalization of [8, Lemma 3.1], which
states the following: If R is a von Neumann regular ring, then B(R) is
a complete Boolean algebra if and only if whenever ∅ ≠ A ⊆ V (Γ(R))
is a family of vertices with C(A) ̸= ∅, there exists a v ∈ C(A) such
that every complement of v is adjacent to every element of C(A). In
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fact, the terminology c.v.-complete was first given in [8], where a zero-
divisor graph was said to be c.v.-complete if it satisfied condition (4)
of the following theorem.

Theorem 3.3. The following statements are equivalent for a von
Neumann regular ring R.

(1) For all ∅ ̸= A ⊆ R, there exists a v ∈ annR(A) such that
annR(A) = annR(1− ev).
(2) R satisfies (g.a.c.).
(3) Γ(R) is c.v.-complete.
(4) If ∅ ̸= A ⊆ V (Γ(R)) is a family of vertices with C(A) ̸= ∅,
then there exists a v ∈ C(A) such that every complement of v
is adjacent to every element of C(A).

Proof. Observe that (1) implies (2) by definition, (2) implies (3) by
Theorem 3.1 and (3) implies (4) by Corollary 3.2 together with [8,
Lemma 3.1]. It remains to show that (4) implies (1).

If annR(A) = {0}, then let v = 0. Suppose that annR(A) ̸= {0}.
If A = {0}, then let v = 1. If A ̸= {0}, then we can regard A as a
nonempty subset of V (Γ(R)) since annR(A) = annR(A \ {0}). Also,
annR(A) ̸= {0} implies that C(A) ̸= ∅, and therefore there exists
a v ∈ C(A) such that every complement of v is adjacent to every
element of C(A). But annR(v) = annR(ev) implies that v is adjacent
to 1 − ev ∈ B(R). Moreover, if r ∈ R with rv = 0 = r(1 − ev),
then r = rev = 0. This shows that 1 − ev is a complement of v,
and thus 1 − ev is adjacent to every element of C(A). It follows
that annR(A) ⊆ annR(1 − ev). But if r ∈ annR(1 − ev), then
r = rev ∈ annR(A), where the containment holds since v ∈ C(A)
and annR(v) = annR(ev). Thus, annR(1 − ev) ⊆ annR(A). Hence,
annR(A) = annR(1− ev). �

Suppose that R is a von Neumann regular ring such that 2 /∈ Z(R)
and |R| < ℵω. By [8, Theorem 3.3], Γ(R) ≃ Γ(Q(R)) if and only if
Γ(R) satisfies condition (4) of Theorem 3.3. Then Theorem 3.3 gives
several efficient ways of determining whether the zero-divisor graph of
a von Neumann regular ring R is isomorphic to that of Q(R). For
example, we have:
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Corollary 3.4. Suppose that R is a von Neumann regular ring such
that 2 /∈ Z(R) and |R| < ℵω. Then Γ(R) ≃ Γ(Q(R)) if and only if R
satisfies (g.a.c.).

Given any v ∈ V (Γ), define Vv(Γ) = {w ∈ V (Γ) | C(w) = C(v)}.
If Γ = Γ(R) for some ring R, then we will write Vr(Γ(R)) = Vr(R).
Note that the relation ∼ on V (Γ) defined by v ∼ w if and only if
Vv(Γ) = Vw(Γ) is an equivalence relation. Let Γ∗ be the graph with
vertices {Vv(Γ) | v ∈ V (Γ)}, such that Vv(Γ) and Vw(Γ) are adjacent in
Γ∗ if and only if v and w are adjacent in Γ. The graph Γ∗ was considered
in [1], where it was shown that Γ(R)∗ is the zero-divisor graph of
a Boolean ring whenever R is von Neumann regular [1, Proposition
4.5]. In [9], the minimal representation of a graph Γ was defined as the
graph Γ∗, where the vertex Vv(Γ) was labeled with the cardinal number
|Vv(Γ)|.

If Γ is a simple graph, then every edge of Γ∗ represents a complete
bipartite graph (see Figure 1). In particular, any zero-divisor graph
can be recovered from its minimal representation. Note that, if R is
reduced, then Γ(R)∗ is the graph with vertices {[r]R | r ∈ Z(R) \ {0}},
such that [r]R is adjacent to [s]R if and only if rs = 0. In fact,
[r]R = Vr(R) for all r ∈ Z(R) \ {0}.

(a) Γ

1 1 3 2

(b) Γ∗

Figure 1. A graph Γ and its minimal representation Γ∗

Clearly Γ1 ≃ Γ2 implies that Γ∗
1 ≃ Γ∗

2. Although the converse is
false, there are certain properties of Γ which are preserved by Γ∗. For
example, if n > 2 is an integer, then the diameter of Γ is n if and only if
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the diameter of Γ∗ is n (indeed, no two vertices of a minimal path in Γ
having length n > 2 can belong to the same vertex in Γ∗). Also, a vertex
w is a complement of v in Γ if and only if Vw(Γ) is a complement of
Vv(Γ) in Γ∗. Furthermore, it is a routine exercise to show that a graph
Γ is c.v.-ℵα-complete if and only if Γ∗ is c.v.-ℵα-complete.

On the other hand, the following proposition gives necessary and
sufficient conditions for Γ1 ≃ Γ2. Although it was not formally stated,
the idea behind Proposition 3.5 was utilized in [1, Theorem 2.2],
showing that Γ(R) ≃ Γ(T (R)) for any commutative ring R. Moreover,
[1, Theorem 4.1] is a special case of this proposition.

Proposition 3.5. Let Γ1 and Γ2 be simple undirected graphs. Then
Γ1 ≃ Γ2 if and only if there exists an isomorphism φ : V (Γ∗

1) → V (Γ∗
2)

such that |v∗| = |φ(v∗)| for all v∗ ∈ V (Γ∗
1).

Proof. If ψ : V (Γ1) → V (Γ2) is an isomorphism, then it is easy to
check that the mapping φ : V (Γ∗

1) → V (Γ∗
2) given by φ

(
Vv(Γ1)

)
=

Vψ(v)(Γ2) has the desired properties. Conversely, suppose that φ :
V (Γ∗

1) → V (Γ∗
2) is an isomorphism such that |v∗| = |φ(v∗)| for all

v∗ ∈ V (Γ∗
1). For every v∗ ∈ V (Γ∗

1), let ψv∗ : v∗ → φ(v∗) be a
bijection. Then one checks that the mapping ψ : V (Γ1) → V (Γ2),
given by ψ(v) = ψv∗(v) if and only if v ∈ v∗, is an isomorphism. �

It is evident from Proposition 3.5 that the cardinality of Vr(R) is
valuable in determining whether two zero-divisor graphs are isomor-
phic. If the index of nilpotency of a ring-element r ∈ R is 2, then
the cardinality of Vr(R) is necessarily equal to 1. This claim is made
precise in the following theorem.

Theorem 3.6. Let R be a commutative ring. Suppose that 0 ̸= r ∈ R
with r2 = 0. Then Vr(R) = {r}.

Proof. Suppose that x ∈ Vr(R) \ {r}. Then annR(x) \ {x} =
annR(r) \ {r}. In particular, xr ̸= 0. Thus, r(1 + x) ̸= r. Since
r2 = 0, it follows that r(1 + x) ∈ annR(r) \ {r} = annR(x) \ {x}. If
1+x is not a zero-divisor, then the equality xr(1+x) = 0 implies that
xr = 0, a contradiction. Hence, 1+ x is a zero-divisor. In particular, x
is not a nilpotent element. Thus, annR(r) \ {r} = annR(x).
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Suppose that rx ̸= r. Then rx ∈ annR(r) \ {r} = annR(x) implies
that x2 ∈ annR(r). But x2 ̸= r since x is not a nilpotent. Thus,
x2 ∈ annR(r) \ {r} = annR(x), contradicting that x is not a nilpotent.
Therefore, it must be the case that rx = r.

If 1 − x = r, then 1 = x + r = x + rx = x(1 + r). This
contradicts that x is a zero-divisor. Therefore, 1 − x ̸= r. Then
rx = r implies that 1 − x ∈ annR(r) \ {r} = annR(x). That is,
x2 = x. Hence, 1 + r − x ∈ annR(r) and x(1 + r − x) = r ̸= 0.
Since annR(r) \ {r} = annR(x), it follows that 1 + r − x = r. But
then 1 − x = 0, and hence x = 1. This contradicts that x is a zero-
divisor, and we have exhausted all possibilities. Therefore, no such
element x exists. Thus, Vr(R) \ {r} = ∅. Clearly, r ∈ Vr(R), and hence
Vr(R) = {r}. �

Corollary 3.7. Let R ⊆ S be commutative rings. If the mapping
φ : V (Γ(R)∗) → V (Γ(S)∗) defined by φ(Vr(R)) = Vr(S) is an isomor-
phism, then {r ∈ R | r2 = 0} = {f ∈ S | f2 = 0}.

Proof. Suppose that 0 ̸= f ∈ S with f2 = 0. Since φ is surjective,
there exists an r ∈ R such that Vr(S) = Vf (S). But Theorem 3.6 shows
that Vf (S) = {f}, and it follows that f = r ∈ R. �

For a von Neumann regular ring R, condition (4) of Theorem 3.3 is
necessary and sufficient to conclude that the mapping φ : V (Γ(R)∗) →
V (Γ(Q(R))∗) defined by φ(Vr(R)) = Vr(Q(R)) is an isomorphism ([1,
Proposition 4.5], [4, Theorem 11.9] and [8, Lemma 3.1]). When trying
to generalize this result to arbitrary rings, one is forced to seek other
criteria. For example, any application of Theorem 3.3 (4) is contingent
upon the assumption that elements of V (Γ(R)) have complements.
Remark 3.8(1) and Theorem 3.9 provide generalizations by considering
condition (2) of Theorem 3.3.

Remark 3.8. (1) Let R ⊆ S be commutative rings. Suppose that
the correspondence {[r]R | 0 ̸= r ∈ Z(R)} → {[f ]S | 0 ̸= f ∈ Z(S)}
given by [r]R 7→ [r]S is a bijection, and that |[r]R| = |[r]S | for all
0 ̸= r ∈ Z(R). Then a proof similar to that of the converse statement
in Proposition 3.5 shows that Γ(R) ≃ Γ(S) (this is precisely the method
of proof used in [1, Theorem 2.2]). In particular, suppose that R ⊆
S ⊆ Qα(R) and that R satisfies ℵα-(g.a.c.). Then the correspondence
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{[r]R | 0 ̸= r ∈ Z(R)} → {[f ]S | 0 ̸= f ∈ Z(S)} described above is
a well-defined bijection by Lemma 2.1 and Lemma 2.3. Therefore, if
|[r]R| = |[r]S | for all 0 ̸= r ∈ Z(R), then Γ(R) ≃ Γ(S).

(2) Suppose that the mapping φ given in Corollary 3.7 is an iso-
morphism. Using Corollary 3.7, it is easy to see that [f ]S ⊆ R
for all 0 ̸= f ∈ S with f2 = 0. Also, Vf (S) = [f ]S whenever
0 ̸= f ∈ Z(S) with f2 ̸= 0. Therefore, if φ is an isomorphism and
|Vr(R)| = |Vr(S)| for all 0 ̸= r ∈ Z(R), then the correspondence
{[r]R | 0 ̸= r ∈ Z(R)} → {[f ]S | 0 ̸= f ∈ Z(S)} described above
induces an isomorphism from V (Γ(R)) onto V (Γ(S)). The converse
is false (e.g., by the proof of [1, Theorem 2.2] and Corollary 3.7, the
converse fails for the rings R = Z4[X] and S = T (R)). In this sense,
the isomorphisms induced by φ are stronger than the isomorphisms in-
duced by the mapping {[r]R | 0 ̸= r ∈ Z(R)} → {[f ]S | 0 ̸= f ∈ Z(S)}
described above.

Theorem 3.9. Let α be an ordinal, and suppose that R and S are
commutative rings such that R ⊆ S ⊆ Qα(R). Suppose that R satisfies
ℵα-(g.a.c.). Then the mapping φ : V (Γ(R)∗) → V (Γ(S)∗) defined by
φ(Vr(R)) = Vr(S) is an isomorphism if and only if {r ∈ R | r2 = 0} =
{f ∈ S | f2 = 0}.

Proof. If φ is an isomorphism, then the desired equality holds by
Corollary 3.7. Conversely, suppose that {r ∈ R | r2 = 0} = {f ∈
S | f2 = 0}. To show that φ is well defined, suppose that r, x ∈ R
with Vr(R) = Vx(R). That is, annR(r) \ {r} = annR(x) \ {x}. Let
f ∈ annS(r) \ {r}. If f ∈ R, then f ∈ annR(x) \ {x} ⊆ annS(x) \ {x}.
Therefore, assume that f ∈ S \R.

By Lemma 2.3, there exists an element t ∈ R such that annS(t) =
annS(f). If t = r, then f2 = 0 since fr = 0 and annS(r) = annS(f).
But this contradicts that f ∈ S \ R since {r ∈ R | r2 = 0} =
{f ∈ S | f2 = 0}. Hence, t ̸= r. Since fr = 0, it follows that
t ∈ annR(r). Then t ∈ annR(r) \ {r} = annR(x) \ {x}. Thus, tx = 0,
and therefore f ∈ annS(x). Then the containments f ∈ S \ R and
x ∈ R imply that f ∈ annS(x) \ {x}. This shows that annS(r) \ {r} ⊆
annS(x)\{x}. A symmetric argument proves the reverse inclusion, and
thus annS(r)\{r} = annS(x)\{x}. That is, Vr(S) = Vx(S). Therefore,
φ is well-defined.
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Clearly, the equality annS(r) \ {r} = annS(x) \ {x} implies that
annR(r) \ {r} = annR(x) \ {x}. Thus, φ is injective. Also, it
is straightforward to verify that φ preserves and reflects adjacency
relations. It only remains to verify that φ is surjective.

Let Vf (S) ∈ V (Γ(S)∗). By Lemma 2.3, there exists an element t ∈ R
such that annS(t) = annS(f). If f2 = 0, then f ∈ R. Thus, Vf (S) is
the image of Vf (R). Suppose that f2 ̸= 0. Then t2 ̸= 0. Therefore,

annS(t) \ {t} = annS(t) = annS(f) = annS(f) \ {f}.

Thus, Vf (S) is the image of Vt(R). Hence, φ is surjective. �

Remark 3.10. Note that the proof of the converse statement in
Theorem 3.9 does not assume the fact that Vr(R) = {r} for any
0 ̸= r ∈ Z(R) with r2 = 0. Of course, this fact is guaranteed
by Theorem 3.6. Therefore, the mapping φ given in Theorem 3.9
can be shown to be a well-defined bijection by applying Lemma 2.1
and Lemma 2.3 to elements Vr(R) with r2 ̸= 0, and then applying
Theorem 3.6 to such elements with r2 = 0.

If R is reduced, then Q(R) satisfies (g.a.c.) by Theorem 2.4 and
[4, Theorem 11.9]. However, this observation does not generalize.
For example, there exists a reduced ring R such that Q0(R) does not
satisfy ℵ0-(g.a.c.) (see Example 4.16). Moreover, there exists a ring
R containing nonzero nilpotents such that Q(R) does not satisfy ℵ0-
(g.a.c.) (see Example 4.15). In particular, the hypothesis ℵα-(g.a.c.)
is not a necessary condition for the conclusion of Theorem 3.9.

The following corollary is an immediate consequence of Proposi-
tion 3.5, Corollary 3.7 and Theorem 3.9.

Corollary 3.11. Let α be an ordinal, and suppose that R and S
are commutative rings such that R ⊆ S ⊆ Qα(R). Suppose that R
satisfies ℵα-(g.a.c.) and {r ∈ R | r2 = 0} = {f ∈ S | f2 = 0}. If
|Vr(R)| = |Vr(S)| for all r ∈ Z(R) with r2 ̸= 0, then Γ(R) ≃ Γ(S).

If R is reduced, then the hypotheses of Theorem 3.9 are reflected by
Γ(R). This is made evident in the following corollary.
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Corollary 3.12. Let α be an ordinal, and suppose that R and S are
reduced commutative rings such that R ⊆ S ⊆ Qα(R). If Γ(R) is c.v.-
ℵα-complete, then the mapping φ : V (Γ(R)∗) → V (Γ(S)∗) defined by
φ([r]R) = [r]S is an isomorphism.

Proof. Observe that {r ∈ R | r2 = 0} = ∅ = {f ∈ S | f2 = 0}
since R and S are reduced. Moreover, [r]R = Vr(R) and [r]S = Vr(S)
for all 0 ̸= r ∈ Z(R). The result now follows from Theorem 3.1 and
Theorem 3.9. �

Note that Example 4.16 shows that the converse to Corollary 3.12
is false. The following corollary is an immediate consequence of
Corollary 3.12 and Proposition 3.5.

Corollary 3.13. Let α be an ordinal, and suppose that R and S
are reduced commutative rings such that R ⊆ S ⊆ Qα(R). If Γ(R)
is c.v.-ℵα-complete and |[r]R| = |[r]S | for all r ∈ Z(R) \ {0}, then
Γ(R) ≃ Γ(S).

Let Γ be a graph. We will say that Γ is weakly central vertex ℵα-
complete, or w.c.v.-ℵα-complete, if for all ∅ ̸= A ⊆ V (Γ) with |A| < ℵα,
either C(A) = ∅ or there exists a v ∈ V (Γ) such that

C(v) \A = C(A) \ {v}.

A graph Γ will be called w.c.v.-complete if it is w.c.v.-ℵα-complete
for every ordinal α. Note that every simple c.v.-ℵα-complete graph is
w.c.v.-ℵα-complete. In particular, every c.v.-ℵα-complete zero-divisor
graph is w.c.v.-ℵα-complete. The converse is false. For example, if Γ is
a complete graph on at least three vertices, then Γ is w.c.v.-complete,
but not c.v.-complete.

If Γ = Γ(R) for some ring R, then Γ is w.c.v.-ℵα-complete if and
only if for all ∅ ≠ A ⊆ R with |A| < ℵα, there exists a v ∈ R such that

annR(v) \
(
A ∪ {v}

)
= annR(A) \

(
A ∪ {v}

)
.

Therefore, if R satisfies ℵα-(g.a.c.), then Γ(R) is w.c.v.-ℵα-complete.
The following theorem shows that the converse holds whenever R is
decomposable.
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Theorem 3.14. Let α be an ordinal, and suppose that R is a decom-
posable commutative ring. Let R1 and R2 be nonzero rings such that
R ∼= R1 ⊕R2. Then the following statements are equivalent.

(1) R1 and R2 satisfy ℵα-(g.a.c.).
(2) R satisfies ℵα-(g.a.c.).
(3) Γ(R) is w.c.v.-ℵα-complete.

In particular, if Γ(R) is a w.c.v.-ℵα-complete graph, then every direct
summand of R has a w.c.v.-ℵα-complete zero-divisor graph.

Proof. Without loss of generality, assume that R = R1 ⊕R2.

To prove (1) implies (2). Suppose that R1 and R2 satisfy ℵα-(g.a.c.).
Let ∅ ≠ A ⊆ R be such that |A| < ℵα. Note that |πi(A)| < ℵα, where
πi is the usual projection mapping (i = 1, 2). Let ri ∈ Ri be an
element such that annRi(ri) = annRi(πi(A)). It is routine to check
that annR((r1, r2)) = annR(A). Thus, R satisfies ℵα-(g.a.c.).

Note that (2) implies (3) by the above comments.

To show (3) implies (1), suppose that Γ(R) is w.c.v.-ℵα-complete.
Let ∅ ≠ A ⊆ R1 with |A| < ℵα. We need to show that there exists an
element r ∈ R1 such that annR1(r) = annR1(A). Then R2 will satisfy
ℵα-(g.a.c.) by symmetry.

If A = {0}, then let r = 0. Suppose that A ̸= {0}. Then
annR1(A) = annR1(A \ {0}), and hence we can assume that 0 /∈ A.

If annR1(A) = {0}, then let r = 1. Suppose that annR1(A) ̸= {0}.
Then A × {1} ⊆ V (Γ(R1 ⊕ R2)). Also, (x, 0) ∈ C(A × {1}) for all
0 ̸= x ∈ annR1(A). Since Γ(R) is w.c.v.-ℵα-complete, there exists an
element (r1, r2) ∈ R such that

C((r1, r2)) \ (A× {1}) = C(A× {1}) \ {(r1, r2)}.

Suppose that 0 ̸= x ∈ annR1(A). Then (x, 0) ∈ annR(A × {1}). If
(x, 0) = (r1, r2), then 0 /∈ A implies (0, 1) ∈ C((r1, r2))\(A×{1}). But,
clearly (0, 1) /∈ C(A×{1}), contradicting the choice of (r1, r2). Hence,
(x, 0) ̸= (r1, r2), and therefore (x, 0) ∈ C(A × {1}) \ {(r1, r2)}. Thus,
(x, 0) ∈ C((r1, r2)). In particular, x ∈ annR1(r1). Since 0 ∈ annR1(r1),
this shows that annR1(A) ⊆ annR1(r1).

If 0 ̸= x ∈ annR1(r1), then (x, 0) ∈ C((r1, r2)) \ (A × {1}). Thus,
(x, 0) ∈ C(A × {1}). Hence, x ∈ annR1(A). Since 0 ∈ annR1(A),
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this verifies the inclusion annR1(r1) ⊆ annR1(A), and it follows that
annR1

(r1) = annR1
(A). Therefore, R1 satisfies ℵα-(g.a.c.).

To prove the “in particular” statement, suppose that Γ(R) is w.c.v.-
ℵα-complete. Then the result follows from the above argument since
every ring satisfying ℵα-(g.a.c.) has a w.c.v.-ℵα-complete zero-divisor
graph. �

Note that “decomposable” cannot be omitted from the hypothe-
sis in the previous theorem. Specifically, Γ(R) may be w.c.v.-ℵα-
complete while R does not satisfy ℵα-(g.a.c.). For example, let R =
Z4[X]/(X2). Then Γ(R) is w.c.v.-complete (see Figure 2). Moreover,
annR({2, 2 +X}) = {0, 2X}. Suppose that annR(f) = {0, 2X} for
some f ∈ R. Then f ∈ {0, 2X} since f2 = 0 for all f ∈ Z(R). But
then 2 ∈ annR(f), a contradiction. Therefore, no such f exists. Thus,
R does not satisfy ℵ0-(g.a.c.). Incidentally, we have proved that R
is an indecomposable ring. Moreover, any ring having R as a direct
summand does not have a w.c.v.-ℵα-complete zero-divisor graph.

Figure 2. Γ(Z4[X]/(X2))

Corollary 3.15. Let α be an ordinal, and suppose that R and S are
commutative rings such that R ⊆ S ⊆ Qα(R). Suppose that R is
decomposable and {r ∈ R | r2 = 0} = {f ∈ S | f2 = 0}. If Γ(R) is
w.c.v.-ℵα-complete and |Vr(R)| = |Vr(S)| for all r ∈ Z(R) with r2 ̸= 0,
then Γ(R) ≃ Γ(S).

Proof. This result is a restatement of Corollary 3.11, where the
ℵα-(g.a.c.) hypothesis has been translated into its graph-theoretic
counterpart. �
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In Section 4, there are several examples that are constructed by
passing to direct sums. We conclude this section with a lemma which
will be useful in such constructions.

Lemma 3.16. Let φ1 : V (Γ(R1)) → V (Γ(R′
1)) and φ2 : V (Γ(R2)) →

V (Γ(R′
2)) be isomorphisms. If |Ri \ V (Γ(Ri))| = |R′

i \ V (Γ(R′
i))| for

each i ∈ {1, 2}, then Γ(R1 ⊕R2) ≃ Γ(R′
1 ⊕R′

2).

Proof. Let ψi : Ri \ V (Γ(Ri)) → R′
i \ V (Γ(R′

i)) be bijections with
ψi(0Ri) = 0R′

i
(i = 1, 2). Let Φi : Ri → R′

i be defined by

Φi(r) =
{ φi(r), r ∈ V (Γ(Ri))
ψi(r), otherwise.

Finally, let Ψ : R1 ⊕R2 → R′
1 ⊕R′

2 be defined by the rule:

Ψ(r1, r2) = (Φ1(r1),Φ2(r2)).

Then it is straightforward to show that

Ψ|V (Γ(R1⊕R2)) : V
(
Γ(R1 ⊕R2)

)
−→ V

(
Γ(R′

1 ⊕R′
2)
)

is an isomorphism. �

4. The zero-divisor graph of Q0(R). Let R be a commutative
ring. The zero-divisor graph of Q(R) was studied in [7], where the
relations Γ(R) ≃ Γ(Q(R)) and Γ(R) ̸≃ Γ(Q(R)) were shown to be
realizable by von Neumann regular rings satisfying R ( Q(R). With
the results of Section 3, we are now equipped to identify relations
between more general rings of quotients. In this section, we consider the
zero-divisor graphs of R, Q0(R) and Q(R). In particular, we examine
the following hypotheses.

Hypothesis 4.1. The following scenarios will be considered for a
commutative ring R.

(1) Γ(R) ̸≃ Γ(Q0(R)) ̸≃ Γ(Q(R)), and Γ(R) ̸≃ Γ(Q(R)).
(2) Γ(R) ≃ Γ(Q0(R)) ̸≃ Γ(Q(R)).
(3) Γ(R) ̸≃ Γ(Q0(R)) ≃ Γ(Q(R)).
(4) Γ(R) ≃ Γ(Q0(R)) ≃ Γ(Q(R)).
(5) Γ(R) ≃ Γ(Q(R)) ̸≃ Γ(Q0(R)).
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Note that the existence of rings which satisfy (2), (3) or (4) of
Hypothesis 4.1 can easily be verified. Any ring R such that R = Q0(R)
and Γ(R) ̸≃ Γ(Q(R)) will satisfy relation (2) (e.g., [7, Example 3.7]).
Any ring R such that Γ(R) ̸≃ Γ(Q0(R)) and Q0(R) = Q(R) will satisfy
(3) (see Example 4.10). Any rationally complete ring will satisfy (4)
(e.g., any finite ring). Furthermore, if T (R) is the total quotient ring
of R, then Γ(R) ≃ Γ(T (R)) by [1, Theorem 2.2]. Therefore, it is
easy to construct examples which satisfy R ( T (R) = Q0(R) and
Γ(R) ≃ Γ(Q0(R)) (e.g., let R =

∏
N Z). We shall avoid such trivialities

and consider total quotient rings which satisfy R ( Q0(R) ( Q(R).

If α is any ordinal, then Q0(Qα(R)) = Qα(R) by [10, Corollary
3.2]. Therefore, if T (Qα(R)) is the total quotient ring of Qα(R), then
Qα(R) ⊆ T (Qα(R)) ⊆ Q0(Qα(R)) = Qα(R). Thus, T (Qα(R)) =
Qα(R). That is, Qα(R) is a total quotient ring for every ordinal α.

The results of this section prove the following theorem.

Theorem 4.2. Let n ∈ {1, 2, 3, 4}. Then Relation 4.1 (n) can be
realized by a total quotient ring R such that R ( Q0(R) ( Q(R).

The following examples involve versions of “A + B rings” and
“idealizations,” as described in Sections 25 and 26 of [6]. All of
the graph-isomorphisms of this section are “strong” in the sense of
Remark 3.8 (2). Let F be an infinite field. Set D1 = F [X,Y, Z] and
D2 = F [{XZn, Y Zn | n ≥ 0}], where X, Y and Z are algebraically
independent indeterminates. Throughout, P will be a set of prime
ideals of D1 containing infinitely many principal ideals. Let I be an
indexing set for P. Set I = I ×N. If α = (i, n) ∈ I, then set Pα = Pi,
and let Kα denote the quotient field of D1/Pα.

Let Ωk = {f ∈ Dk | f /∈ ∪α∈IPα} (k = 1, 2), and define
φ : (D1)Ω1 →

∏
α∈I Kα to be the canonical homomorphism. Note that

∩α∈IPα = {0} sinceD1 is a unique factorization domain and P contains
infinitely many principal ideals. In particular, φ is an embedding. Let
R1 = φ

(
(D1)Ω1

)
+

⊕
α∈I Kα and R2 = φ

(
(D2)Ω2

)
+

⊕
α∈I Kα. Then

R2 ⊆ R1 ⊆
∏
α∈I Kα.

Suppose that φ(f/g) + b ∈ Rk \ Z(Rk) (f ∈ Dk, g ∈ Ωk, b ∈⊕
α∈I Kα, k = 1, 2). Then (φ(f/g) + b)(α) ̸= 0 for all α ∈ I. Since

b(α) = 0 for all but finitely many α, it follows that φ(f/g)(α) ̸= 0 for
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almost all α. Thus, f /∈ P for all P ∈ P. That is, f ∈ Ωk. Hence,
(φ(f/g) + b)−1 = φ(g/f) + b′ ∈ Rk, where

b′(α) =

{
−φ(g/f)(α) +

(
(φ(f/g) + b)(α)

)−1
, b(α) ̸= 0

0, otherwise.

Therefore, R1 and R2 are total quotient rings. In fact, it will be shown
that R1 = Q0(R1) (Proposition 4.7).

Let J be a subset of (Dk)Ωk
(k = 1, 2). If an element of Rk with a

nonzero α-coordinate annihilates φ(J), then J ⊆ (Pα)Ωk
. Conversely,

if J ⊆ (Pα)Ωk
, then the element of Rk having a 1 in the α-coordinate

and 0 elsewhere annihilates φ(J). Therefore, φ(J) is dense in Rk if and
only if J \ PΩk

̸= ∅ for all P ∈ P.

The dense set E ⊆ R2 of elements having a 1 in precisely one
coordinate and 0 elsewhere satisfies E ⊆ r−1R2 for all r ∈

∏
α∈I Kα.

Thus,
∏
α∈I Kα ⊆ Q(R2). As a direct product of fields,

∏
α∈I Kα is

rationally complete. Hence, Q(R2) =
∏
α∈I Kα. Similarly, Q(R1) =∏

α∈I Kα.

The results of this section numbered 4.3–4.7 are derived from proofs
found in [6] and [12]. The reader may wish to pass straight to Exam-
ple 4.8. The following proposition shows that R1 satisfies ℵ0-(g.a.c.)
whenever P consists entirely of principal ideals (cf., [6, Example 2]).

Proposition 4.3. Let D be a subring of D1, and suppose that P ⊆
{fD1 | f ∈ D}. Set Ω = {f ∈ D | f /∈ P for all P ∈ P}. Then
φ(DΩ)+

⊕
α∈I Kα satisfies ℵ0-(g.a.c.). In particular, the isomorphism

Γ
(
φ(DΩ) +

⊕
α∈I Kα

)∗ ≃ Γ
(
Q0(φ(DΩ) +

⊕
α∈I Kα)

)∗
holds.

Proof. Let T = φ(DΩ)+
⊕

α∈I Kα, and suppose that t1, t2 ∈ T ; say
tk = φ(fk/gk) + bk (fk ∈ D, gk ∈ Ω, bk ∈

⊕
α∈I Kα, k = 1, 2). Note

that the set I ′ = {α ∈ I | either b1(α) ̸= 0 or b2(α) ̸= 0} is finite. Let
I ′′ = {α ∈ I ′ | t1(α) = t2(α) = 0}. If f1/g1 = f2/g2 = 0, then let
f = 0; otherwise, by hypothesis, there exists a (finite) set J ⊆ D such
that {P ∈ P | {f1, f2} ⊆ P} = {pD1 | p ∈ J}. If J = ∅, then let f = 1.
Otherwise, let f = Πp∈Jp ∈ D. Define b ∈

∏
α∈I Kα to be the element
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such that

b(α) =

{ −φ(f)(α), α ∈ I ′′

1− φ(f)(α), α ∈ I ′ \ I ′′

0, otherwise.

Note that b ∈
⊕

α∈I Kα since I ′ is finite. In particular, φ(f) + b ∈ T .

If α ∈ I ′′, then t1(α) = t2(α) = (φ(f) + b)(α) = 0. If α ∈ I ′ \ I ′′, then
(φ(f) + b)(α) = 1, and either t1(α) ̸= 0 or t2(α) ̸= 0. Suppose that
α ̸∈ I ′. Then b1(α) = b2(α) = b(α) = 0. But, clearly,

{P ∈ P | {f1, f2} ⊆ P} = {pD1 | p ∈ J} = {P ∈ P | f ∈ P}.

It follows that φ(f)(α) = 0 if and only if φ(f1/g1)(α) = φ(f2/g2)(α) =
0 (α ∈ I). Therefore, (φ(f)+b)(α) = 0 if and only if t1(α) = t2(α) = 0.
Thus, annT (t1, t2) = annT (φ(f)+ b), and it follows that T satisfies ℵ0-
(g.a.c.).

Clearly T is reduced, and hence the “in particular” statement follows
from Theorem 3.9. �

Proposition 4.4. Suppose that P is an infinite set of principal prime
ideals of D1 such that ZD1 ∈ P. Then R2 does not satisfy ℵ0-(g.a.c.).

Proof. If R2 satisfies ℵ0-(g.a.c.), then there exists a t ∈ R2 that
satisfies the equality annR2(φ(XZ), φ(Y Z)) = annR2(t). If f/g ∈
(D2)Ω2 and P ∈ P, then f/g ∈ PΩ2 if and only if f ∈ P . It follows
that t can be chosen such that t = φ(f) + b for some f ∈ D2 and
b ∈

⊕
α∈I Kα. Suppose that there exists a Pα ∈ P such that either

{XZ, Y Z} ⊆ Pα or f ∈ Pα, but not both. Say α = (i0, n). Choose an
N ∈ N such that b(i0, N) = 0. Then the element of R2 having a 1 in the
(i0, N)-coordinate and 0 elsewhere annihilates either {φ(XZ), φ(Y Z)}
or t, but not both. This is a contradiction. Therefore, {XZ, Y Z} ⊆ P
if and only if f ∈ P (P ∈ P). But {XZ, Y Z} ⊆ P ∈ P if and
only if P = ZD1. Thus, f = uZn for some 0 ̸= u ∈ F and n ≥ 1.
This contradicts the containment f ∈ D2. Therefore, no such f exists.
Hence, R2 does not satisfy ℵ0-(g.a.c.). �

For any subset J ⊆ (D1)Ω1 , let J
−1 denote the set of elements in the

quotient field of (D1)Ω1 that map J into (D1)Ω1 under multiplication.
Note that the proofs of Lemma 4.5 and Proposition 4.7 are valid for
any set P of prime ideals of D1 which intersect in {0}.
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Lemma 4.5. Let J ⊆ (D1)Ω1 be a set such that J \ PΩ1 ̸= ∅ for all
P ∈ P. Then J−1 = (D1)Ω1

.

Proof. Let a/b ∈ J−1. We can assume that a, b ∈ D1 such that a
greatest common divisor of a and b is 1. Suppose that a/b /∈ (D1)Ω1 .
Then there exists a P ∈ P with b ∈ P . Let r/q ∈ J \PΩ1 . In particular,
r /∈ P . But (ar)/(bq) ∈ (D1)Ω1 ⊆ (D1)P implies that ars = bqt for
some s, t ∈ D1 with s ̸∈ P . Since D1 is a unique factorization domain
and gcd (a, b) = 1, it follows that b divides rs. This contradicts that
rs /∈ P . Therefore, a/b ∈ (D1)Ω1 . This verifies that J−1 ⊆ (D1)Ω1 .
The reverse inclusion is obvious. �

Lemma 4.6. Suppose that P is an infinite set of principal prime ideals.
Then Q0(R1) = Q0(R2).

Proof. There is no principal prime ideal containing both X and Y .
Also, every element of D1 maps the set {X,Y } into D2 under multipli-
cation. Therefore, {φ(aX), φ(bY )} is dense in R2 for all a, b ∈ Ω1. Let
s ∈ R1; say s = φ(f/g)+b for some f ∈ D1, g ∈ Ω1, and b ∈

⊕
α∈I Kα.

Then {φ(gX), φ(gY )} ⊆ φ(f/g)−1R2. Clearly, {φ(gX), φ(gY )} ⊆
b−1R2 (indeed, b ∈ R2), and thus {φ(gX), φ(gY )} ⊆ s−1R2. Hence,
s ∈ Q0(R2). This shows that R1 ⊆ Q0(R2). Moreover, the inclusions
R2 ⊆ R1 ⊆ Q0(R2) ⊆ Q(R2) imply that

Q0(R2) ⊆ Q0(R1) ⊆ Q0(Q0(R2)) = Q0(R2),

where the equality holds by [10, Corollary 3.2]. Therefore, Q0(R1) =
Q0(R2). �

The ring Q0(R) is calculated in [12, Theorem 11], where R is
a ring constructed using the principle of idealization. The proof of
the following proposition is a close mimicry of the one given for [12,
Theorem 11(d)].

Proposition 4.7. Let R1 and R2 be defined as above. Then Q0(R1) =
R1. If P consists entirely of principal ideals, then Q0(R2) = R1.

Proof. By Lemma 4.6, it suffices to show that Q0(R1) = R1.
Suppose that s ∈ Q0(R1). There exists a finite set J = {j1, . . . , jn} ⊆
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(D1)Ω1 \ {0}, and elements bk ∈
⊕

α∈I Kα (k = 1, . . . , n), such that
the set

{φ(j1) + b1, ..., φ(jn) + bn}

is dense and contained in s−1R1. It follows that φ(J) is dense. If
not, then J ⊆ (Pβ)Ω1

for some β = (i0,m) ∈ I. But the set
{α ∈ I | bk(α) ̸= 0 for some k ∈ {1, . . . , n}} is finite. Hence, there
exists an integer N such that bk

(
(i0, N)

)
= 0 for all k ∈ {1, . . . , n}.

Then the nonzero element of R1 having a 1 in the (i0, N)-coordinate
and 0 elsewhere annihilates {φ(j1)+b1, . . . , φ(jn)+bn}, a contradiction.
Therefore, J \ PΩ1 ̸= ∅ for all P ∈ P. Thus, φ(J) is dense.

Clearly, sbk ∈
⊕

α∈I Kα ⊆ R1 for each k ∈ {1, . . . , n}. Hence,
sφ(jk) = s(φ(jk) + bk)− sbk ∈ R1 for all k ∈ {1, . . . , n}; say

sφ(jk) = φ(fk/gk) + ek

for some fk ∈ D1, gk ∈ Ω1, and ek ∈
⊕

α∈I Kα (k = 1, . . . , n).

Consider the mapping ψ :
∑n
k=1 φ

(
jk(D1)Ω1

)
→ φ

(
(D1)Ω1

)
defined

by

ψ

( n∑
k=1

φ(jkrk/qk)

)
=

n∑
k=1

φ
(
(fk/gk)(rk/qk)

)
, rk ∈ D1, qk ∈ Ω1.

Note that ψ is well-defined since
∑n
k=1 φ(jkrk/qk) = (0) implies

n∑
k=1

φ
(
(fk/gk)(rk/qk)

)
+

n∑
k=1

ekφ(rk/qk) = s
n∑
k=1

φ(jkrk/qk) = (0),

and thus
n∑
k=1

φ
(
(fk/gk)(rk/qk)

)
∈ φ

(
(D1)Ω1

)
∩
⊕
α∈I

Kα = (0).

Hence ψ
(
(0)

)
= (0). Then, clearly,

ψ ∈ Hom
φ
(
(D1)Ω1

)( n∑
k=1

φ
(
jk(D1)Ω1

)
, φ

(
(D1)Ω1

))
.

Choose an element j ∈ J . Then s1 = ψ(φ(j))/φ(j) belongs to the
quotient field of φ

(
(D1)Ω1

)
, and

s1φ(jk) = ψ(φ(jk)) = φ(fk/gk) ∈ φ
(
(D1)Ω1

)
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for all k ∈ {1, . . . , n}. Also, J−1 = (D1)Ω1 by Lemma 4.5, and it follows
that s1 ∈ φ

(
(D1)Ω1

)
.

Consider the mapping ρ :
∑n
k=1 φ

(
jk(D1)Ω1

)
→

⊕
α∈I Kα defined

by

ρ

( n∑
k=1

φ(jkrk/qk)

)
=

n∑
k=1

ekφ(rk/qk), rk ∈ D1, qk ∈ Ω1.

Note that ρ is well defined since the above computations show that the
equality

∑n
k=1 ekφ(rk/qk) = (0) holds whenever

∑n
k=1 φ(jkrk/qk) =

(0). Hence,

ρ ∈ Hom
φ
(
(D1)Ω1

)( n∑
k=1

φ
(
jk(D1)Ω1

)
,
⊕
α∈I

Kα

)
.

For each α ∈ I, choose an element tα ∈ φ
(
J \ (Pα)Ω1

)
. Let jk ∈ J .

Then
tα(α)

(
ρ(φ(jk))(α)

)
=

(
φ(jk)(α)

)(
ρ(tα)(α)

)
.

This shows that ρ(φ(jk)) = s2φ(jk) for all jk ∈ J , where s2 ∈
∏
α∈I Kα

is the element such that s2(α) = tα(α)
−1

(
ρ(tα)(α)

)
for all α ∈ I. That

is,

s2φ(jk) = ek ∈
⊕
α∈I

Kα

for each k ∈ {1, . . . , n}.
Since J \ PΩ1 ̸= ∅ for all P ∈ P, it follows that

{α ∈ I | s2(α) ̸= 0} = ∪nk=1{α ∈ I |
(
s2φ(jk)

)
(α) ̸= 0}.

But s2φ(jk) ∈
⊕

α∈I Kα for all k ∈ {1, . . . , n}, and therefore {α ∈ I |
s2(α) ̸= 0} is a finite union of finite sets. Thus, {α ∈ I | s2(α) ̸= 0} is
finite. Hence, s2 ∈

⊕
α∈I Kα.

By the above arguments, it follows that s and s1 + s2 are elements
of

∏
α∈I Kα = Q(R1) which agree on the dense set φ(J). Thus,

s = s1 + s2. But the above arguments also show that s1 + s2 ∈
φ
(
(D1)Ω1

)
+

⊕
α∈I Kα = R1. Hence, s ∈ R1, and it follows that

Q0(R1) ⊆ R1. The reverse inclusion is clear, and therefore Q0(R1) =
R1. �
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Example 4.8. Suppose that P is the set of all principal prime ideals
of D1. Then R2 is a total quotient ring which satisfies R2 ( Q0(R2) (
Q(R2) and Relation 4.1(1).

Proof. The discussion prior to Proposition 4.3 shows that R2 is a
total quotient ring. The proper inclusions will follow immediately upon
establishing the validity of Relation 4.1 (1). Note that Q0(R2) = R1 by
Proposition 4.7. That Γ(R2) ̸≃ Γ(Q0(R2)) follows from Theorem 3.1,
Proposition 4.3 and Proposition 4.4. Also, [1, Theorem 3.5] shows
that a reduced total quotient ring is von Neumann regular if and only
if its zero-divisor graph is complemented. In particular, Γ(Q(R2)) is
complemented. On the other hand, R2 is a total quotient ring which is
not von Neumann regular (e.g., the prime ideal φ({0}) +

⊕
α∈I Kα is

not maximal), and hence Γ(R2) is not complemented. Thus, Γ(R2) ̸≃
Γ(Q(R2)). Similarly, Γ(Q0(R2)) ̸≃ Γ(Q(R2)). �

Example 4.9. Let P be the family of principal prime ideals belonging
to the set {fD1 | f ∈ D2}. Then R2 is a total quotient ring which
satisfies R2 ( Q0(R2) ( Q(R2) and Relation 4.1 (2).

Proof. The discussion prior to Proposition 4.3 shows that R2 is
a total quotient ring. The containment R2 ( Q0(R2) holds since
Proposition 4.7 shows that φ(Z) ∈ Q0(R2) \ R2. That Γ(Q0(R2)) ̸≃
Γ(Q(R2)) follows as in Example 4.8. This also verifies that Q0(R2) (
Q(R2). Note that Γ(R2) is c.v.-ℵ0-complete by Theorem 3.1 and
Proposition 4.3. By Corollary 3.13, it only remains to show that
|[r]R2 | = |[r]Q0(R2)| for all r ∈ Z(R2) \ {0}.

Let r ∈ Z(R2) \ {0}. Observe that |F | ≤ |[r]R2 | since φ(u)r ∈ [r]R2

for all u ∈ F . Also, the inequality |[r]R2 | ≤ |[r]Q0(R2)| follows from
Lemma 2.1. Furthermore, P consists entirely of principal ideals,
and hence |I| ≤ |D1| = |F |. Since Q0(R2) = R1, it follows that
|Q0(R2)| = |F |. Therefore,

|F | ≤ |[r]R2 | ≤ |[r]Q0(R2)| ≤ |Q0(R2)| = |F |.

Thus, |[r]R2 | = |[r]Q0(R2)| for all r ∈ Z(R2) \ {0}. �

Let R be a commutative ring and M an (unitary) R-module. The
idealization R(+)M of M is the commutative ring (with unity) R×M ,
where addition is defined componentwise and multiplication is defined
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by the rule (r1,m1)(r2,m2) = (r1r2, r1m2 + r2m1). Note that (1, 0) is
the multiplicative identity in R(+)M .

Define S1 = (D1)Ω1(+)
⊕

α∈I Kα and S2 = (D2)Ω2(+)
⊕

α∈I Kα.
Making the appropriate modifications to Proposition 4.7 will show
that S1 = Q0(S1). Alternatively, this is an immediate consequence
of Lemma 4.5 taken together with [12, Theorem 11(f)]. If P consists
entirely of principal ideals, then Q0(S2) = S1. To see this, note that the
set {

(
X, (0)

)
,
(
Y, (0)

)
} is dense and contained in s−1S2 for all s ∈ S1.

Therefore,
S1 ⊆ Q0(S2) ⊆ Q0(S1) = S1.

Hence Q0(S2) = S1.

If (r,m) ∈ S2, then

annS2

(
(r,m)

)
=

{
(s, n) ∈ S2 | rs = 0 and {rn, sm} ⊆ {(0)}

}
,

where the inclusion {rn, sm} ⊆ {(0)} holds since rs = 0 forces either
r = 0 or s = 0. Then it is straightforward to check that the non-zero-
divisors of S2 are precisely those elements of the form (f/g, a), where
f, g ∈ Ω2. Any such element is a unit in S2 with (f/g, a)−1 = (g/f, b),
where b(α) = −(g/f)2a(α) for all α ∈ I. Thus, S2 is a total quotient
ring.

Example 4.10. Let P be the set of all principal prime ideals of D1.
Then S2 is a total quotient ring which satisfies Γ(S2) ̸≃ Γ(Q0(S2)) =
Γ(Q(S2)).

Proof. The above comments show that S2 is a total quotient ring.
Let D ⊆ S2. Suppose that there exists a P ∈ P such that f ∈ P
for all (f, a) ∈ D. Then (0, b) ∈ annS2

(D), where b is any element
which satisfies b(α) = 0 for all α ∈ I with Pα ̸= P . Conversely, if
no such P exists, then for all (0) ̸= b ∈

⊕
α∈I Kα, there exists an

element (f, a) ∈ D such that fb ̸= (0). It follows that a set D ⊆ S2

is dense if and only if it has the property that, for all P ∈ P, there
exist elements f ∈ D2 \ P and a ∈

⊕
α∈I Kα such that (f, a) ∈ D.

But any element of D2 is contained in only finitely many members of
P. Therefore, D ⊆ S2 is dense if and only if it contains a finite set
{(fi, ai)}ni=1 such that, for all P ∈ P, there exists a j ∈ {1, . . . , n} with
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fj /∈ P . In particular, every dense set in S2 contains a finite dense set.
Thus, Q0(S2) = Q(S2), and hence Γ(Q0(S2)) = Γ(Q(S2)).

Note that Γ(Q0(S2)) is w.c.v.-ℵ0-complete. To see this, let {(f, a),
(g, b)} ⊆ Q0(S2). If either f ̸= 0 or g ̸= 0, then let h be a greatest
common divisor of f and g in D1. If f = g = 0, then let h = 0. Suppose
that c ∈

⊕
α∈I Kα is the element defined by

c(α) =

{
0, a(α) = b(α) = 0
1, otherwise.

Since P is a set of principal ideals, it follows that {f, g} ⊆ P if and
only if h ∈ P (P ∈ P). Using this fact, it is straightforward to check
that

annQ0(S2)

(
(h, c)

)
= annQ0(S2)

(
(f, a), (g, b)

)
.

It follows that Q0(S2) satisfies ℵ0-(g.a.c.). Hence, Γ(Q0(S2)) is w.c.v.-
ℵ0-complete by the comments prior to Theorem 3.14.

It remains to show that Γ(S2) is not w.c.v.-ℵ0-complete. Consider
the set A = {(XZ, (0)), (Y Z, (0))} ⊆ V (Γ(S2)). Note that

annS2(A) = {(0, a) ∈ S2 | a(α) = 0 whenever Pα ̸= ZD1}.

Therefore, if
C(A) \ {(f, b)} = C((f, b)) \A

for some (f, b) ∈ S2, then

{P ∈ P | f ∈ P} = {ZD1}.

But then f = uZn for some u ∈ F and n ≥ 1. This contradicts that
f ∈ D2, and hence no such element exists. Thus, Γ(S2) is not w.c.v.-
ℵ0-complete. �

Let R be a von Neumann regular ring. Then R does not prop-
erly contain any finitely generated dense ideals. To see this, let
{r1, . . . , rn} ⊆ R be dense. For each i ∈ {1, . . . , n}, there exists an
si ∈ R such that ri = r2i si. Then:

(1− r1s1) · · · (1− rnsn) ∈ annR(r1, . . . , rn) = {0}.
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Thus, 1 = f(r1, . . . , rn) ∈ r1R + · · · + rnR for some f(X1, . . . , Xn) ∈
R[X1, . . . , Xn]. It follows that Q0(R) = R whenever R is von Neumann
regular.

Let α be an ordinal. Then Qα(R ⊕ S) = Qα(R) ⊕ Qα(S) for any
rings R and S [10, Corollary 3.4]. This property will be used freely in
the following examples.

Example 4.11. Suppose that P is the set of all principal prime ideals
of D1. Let R be any von Neumann regular ring such that R ̸= Q(R),
the isomorphism Γ(R) ≃ Γ(Q(R)) holds, and |R \ V (Γ(R))| = |Q(R) \
V (Γ(Q(R))|. Define W = S2 ⊕ R. Then W is a total quotient ring
which satisfies W ( Q0(W ) ( Q(W ) and Relation 4.1 (3).

Proof. Note that there exists a ring R possessing the properties given
in the hypothesis (e.g., [7, Example 3.5]). As the direct sum of total
quotient rings, W is a total quotient ring. Also, the above comments
show that Q0(W ) = Q0(S2)⊕Q0(R) = Q0(S2)⊕R ( Q(S2)⊕Q(R) =
Q(W ). The proper inclusion W ( Q0(W ) will follow upon establishing
Relation 4.1 (3).

The isomorphism Γ(Q0(S2)⊕ R) ≃ Γ(Q0(S2)⊕Q(R)) follows from
Lemma 3.16. Also, Example 4.10 shows that Q0(S2) = Q(S2). Thus,

Γ(Q0(W )) = Γ(Q0(S2)⊕Q0(R)) = Γ(Q0(S2)⊕R)

≃ Γ(Q0(S2)⊕Q(R)) = Γ(Q(S2)⊕Q(R)))

= Γ(Q(W )).

Note that B(Q(R)) is a complete Boolean algebra by [4, Theorem
11.9]. Thus Q(R) satisfies (g.a.c.) by Theorem 2.4. Since Γ(Q0(R)) =
Γ(R) ≃ Γ(Q(R)), Theorem 3.3 implies that Q0(R) satisfies (g.a.c.).
In particular, Q0(R) satisfies ℵ0-(g.a.c.). The proof of Example 4.10
shows that Q0(S2) satisfies ℵ0-(g.a.c.). Therefore, Γ(Q0(W )) is w.c.v.-
ℵ0-complete by Theorem 3.14. However, the proof of Example 4.10
also shows that Γ(S2) is not w.c.v.-ℵ0-complete. Hence, Theorem 3.14
implies that Γ(W ) is not w.c.v.-ℵ0-complete. Thus Γ(W ) ̸≃ Γ(Q0(W )).

�
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Example 4.12. Suppose that P is the family of principal prime ideals
belonging to the set {fD1 | f ∈ D2}. Then S2 is a total quotient ring
which satisfies Γ(S2) ≃ Γ(Q0(S2)) = Γ(Q(S2)).

Proof. The comments prior to Example 4.10 show that S2 is a
total quotient ring. The equality Γ(Q0(S2)) = Γ(Q(S2)) holds as in
Example 4.10. Suppose that {(f1/g1, b1), (f2/g2, b2)} ⊆ S2 (fk ∈ D2,
gk ∈ Ω2, bk ∈

⊕
α∈I Kα, k = 1, 2). If f1/g1 = f2/g2 = 0, then let

h = 0. If either f1/g1 ̸= 0 or f2/g2 ̸= 0, then there exists a (finite)
set J ⊆ D2 such that {P ∈ P | {f1, f2} ⊆ P} = {pD1 | p ∈ J}. If
J = ∅, then let h = 1. If J ̸= ∅, then let h = Πp∈Jp ∈ D2. Clearly
{f1, f2} ⊆ P if and only if h ∈ P (P ∈ P). Thus S2 satisfies ℵ0-(g.a.c.)
by the same argument used for the ring Q0(S2) in Example 4.10. Also,
{t ∈ S2 | t2 = 0} = {(0, a) | a ∈

⊕
α∈I Kα} = {f ∈ Q0(S2) | f2 = 0}.

An argument similar to the one given in Example 4.9 shows that:

|F | ≤ |Vt(S2)| ≤ |Vt(Q0(S2))| ≤ |Q0(S2)| = |F |

for all t = (f/g, a) ∈ Z(S2) with f/g ̸= 0. Therefore, Corollary 3.11
implies that Γ(S2) ≃ Γ(Q0(S2)). �

Example 4.13. Suppose that P is the family of principal prime ideals
belonging to the set {fD1 | f ∈ D2}. Let R be any von Neumann
regular ring such that R ̸= Q(R), the isomorphism Γ(R) ≃ Γ(Q(R))
holds, and |R \ V (Γ(R))| = |Q(R) \ V (Γ(Q(R))|. Define W = S2 ⊕ R.
Then W is a total quotient ring which satisfies W ( Q0(W ) ( Q(W )
and Relation 4.1 (4).

Proof. There exists a ring R possessing the properties given in the
hypothesis (e.g., [7, Example 3.5]). As the direct sum of total quotient
rings, W is a total quotient ring. Observe that (Z, (0)) ∈ Q0(S2) \ S2,
and hence W ( Q0(S2) ⊕ Q0(R) = Q0(W ). The inclusion Q0(W ) (
Q(W ) holds as in Example 4.11. It remains to verify Relation 4.1(4).

Observe that Sk \V (Γ(Sk)) = {(f/g, a) ∈ Sk | f, g ∈ Ωk}∪{
(
0, (0)

)
}

for each k ∈ {0, 1} (cf., the comments prior to Example 4.10). But
F ⊆ Ωk ⊆ D1 and |F | = |D1|. Hence, |Ω1| = |Ω2|. It is now
easy to check that |S1 \ V (Γ(S1))| = |S2 \ V (Γ(S2))|. That is,
|Q0(S2) \ V (Γ(Q0(S2)))| = |S2 \ V (Γ(S2))|. By Lemma 3.16 and
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Example 4.12, it follows that Γ(S2 ⊕R) ≃ Γ(Q0(S2)⊕R). Thus:

Γ(W ) ≃ Γ(Q0(S2)⊕R) = Γ(Q0(W )),

where the equality holds since Q0(R) = R. Finally, note that the
isomorphism Γ(Q0(W )) ≃ Γ(Q(W )) holds as in Example 4.11. �

It has been shown that (1), (2), (3) and (4) of Relation 4.1 can be
met, in fact, by total quotient rings R which satisfy R ( Q0(R) (
Q(R). However, we do not know the answer to the following question.

Question 4.14. Does there exist a ring R which satisfies Rela-
tion 4.1 (5)?

The remaining two examples show that an ℵα-rationally complete
ring may have a zero-divisor graph whose vertices do not satisfy any of
the completeness criteria introduced in this paper. Using the fact that
finite rings are rationally complete (indeed, finite rings do not properly
contain any dense ideals), the comments prior to Corollary 3.15 show
that it is easy to construct a rationally complete ring whose zero-
divisor graph is not w.c.v.-ℵ0-complete. A less trivial example is
provided in Example 4.15. Every reduced rationally complete ring
has a c.v.-complete zero-divisor graph (cf., the comments prior to
Corollary 3.11). However, Example 4.16 shows that a reduced ℵα-
rationally complete ring need not have a w.c.v.-ℵα-complete zero-
divisor graph. In particular, the zero-divisor graph of such a ring need
not be c.v.-ℵα-complete. Since a graph Γ is c.v.-ℵα-complete if and
only if Γ∗ is c.v.-ℵα-complete, the converse to Corollary 3.12 is false.
Moreover, Example 4.15 shows that the conclusion of Corollary 3.15
can hold without the w.c.v.-ℵα-complete hypothesis.

Example 4.15. Let P ′ be the set of all principal prime ideals of D1,
and let P = P ′ ∪ {Y D1 + ZD1}. Then S1 = Q(S1), but Γ(S1) is not
w.c.v.-ℵ0-complete. In particular, Q(S1) does not satisfy ℵ0-(g.a.c.).

Proof. The equality S1 = Q0(S1) holds by Lemma 4.5 together with
[12, Theorem 11(f)], and Q0(S1) = Q(S1) holds as in Example 4.10.
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Note that XD1 is the only principal prime ideal containing the set
{XY,XZ}. Therefore, if f ∈ D1 and a ∈

⊕
α∈I Kα such that

annS1

(
(f, a)

)
= annS1

(
(XY, (0)), (XZ, (0))

)
,

then f = uXn for some u ∈ F and n ≥ 1. But then f /∈ Y D1+ZD1, a
contradiction. Thus, no such f exists. This proves the “in particular”
statement. Since D1 is an integral domain, it immediately follows that
Γ(S1) is not w.c.v.-ℵ0-complete. �

Example 4.16. Let P ′ be the set of all principal prime ideals of D1,
and let P = P ′ ∪ {Y D1 +ZD1}. Then R1 = Q0(R1), but Γ(R1) is not
w.c.v.-ℵ0-complete. In particular, Q0(R1) does not satisfy ℵ0-(g.a.c.).

Proof. Note that R1 = Q0(R1) by Proposition 4.7. Replacing S1,
(f, a), (XY, (0)) and (XZ, (0)) by R1, φ(f) + a, φ(XY ) and φ(XZ),
respectively, the desired results follow from the proof of Example 4.15.

�
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