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THE STRONG LEFSCHETZ PROPERTY IN
CODIMENSION TWO

DAVID COOK II

ABSTRACT. Every artinian quotient of K[x, y] has the
strong Lefschetz property if K is a field of characteristic zero
or is an infinite field whose characteristic is greater than the
regularity of the quotient. We improve this bound in the
case of monomial ideals. Using this we classify when both
bounds are sharp. Moreover, we prove that the artinian
quotient of a monomial ideal in K[x, y] always has the
strong Lefschetz property, regardless of the characteristic
of the field, exactly when the ideal is lexsegment. As a
consequence, we describe a family of non-monomial complete
intersections that always have the strong Lefschetz property.

1. Introduction. Let K be an infinite field of arbitrary character-
istic, and let I be a homogeneous artinian ideal in S = K[x1, . . . , xn].
The quotient S/I has the strong Lefschetz property if there exists a
linear form ℓ ∈ [S/I]1 such that, for all integers d ≥ 0 and t ≥ 1, the
map ×ℓt : [S/I]d → [S/I]d+t has maximal rank. In this case, ℓ is a
strong Lefschetz element of S/I. If the maps have maximal rank for
t = 1 for all d ≥ 0, then S/I has the weak Lefschetz property, and ℓ is
a weak Lefschetz element of S/I.

The Lefschetz properties have been studied extensively; see the
recent survey by Migliore and Nagel [17] and the references contained
therein. The interest in these properties largely stems from constraints
on the Hilbert functions of quotients that have the weak or strong
Lefschetz property (see, e.g., [2, 9, 18]).

Until recently, most results have focused on characteristic zero or on
at least three variables. For artinian quotients of K[x, y], this is not
without reason: the weak Lefschetz property always holds, regardless
of characteristic. This was explicitly proven for characteristic zero by
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Harima, et al. in [9, Proposition 4.4] (see the note following the next
theorem for more on the characteristic zero case). It was proven for
arbitrary characteristic by Migliore and Zanello in [18, Corollary 7],
though it was not specifically stated therein as noted by Li and Zanello
in [12, Remark 2.6] (see also [7]).

Theorem 1.1. [18, Corollary 7]. Every artinian ideal in K[x, y] has
the weak Lefschetz property, regardless of the characteristic of K.

Further still, the strong Lefschetz property is known to hold when
the characteristic is zero or greater than the regularity of the quotient.

Theorem 1.2. Let I be a homogeneous artinian ideal in R = K[x, y],
where K is a field of characteristic p ≥ 0. The quotient R/I has the
strong Lefschetz property if p = 0 or p > regR/I.

This result has a varied history. The characteristic zero part was
first explicitly given by Harima, et al. [9, Proposition 4.4]. Their
proof relies on the generic initial ideal being strongly-stable. Recall
that the generic initial ideal is strongly-stable in characteristic zero but
also in characteristics larger than the largest exponent of a minimal
generator of the ideal (see, e.g., [10, Proposition 4.2.4(b)]). Hence,
the proof of [9, Proposition 4.4] extends to the positive characteristic
restriction given above. Using a different approach, Basili and Iarrobino
proved a much stronger result [1, Theorem 2.16] which reduces to the
theorem as stated above. Further still, Iarrobino has pointed out to us
that the characteristic zero part follows from a much earlier result of
Briançon [3] and the positive characteristic part follows from an earlier
result of his own [11, Theorem 2.9].

In this paper, we consider the presence of the strong Lefschetz
property for homogeneous artinian quotients of R = K[x, y], where
the characteristic of K is positive. In Section 2 we recall some needed
definitions and introduce the width function of a monomial ideal. The
possible width functions are classified in Proposition 2.6, which is
analogous to Macaulay’s theorem for Hilbert functions. In Section 3,
we derive conditions to determine when the multiplication map ×ℓt :
[R/I]d → [R/I]d+t has maximal rank for monomial quotients of R.
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Section 4 contains the main results of this paper. In particular,
Theorem 4.3 bounds the characteristics in which the strong Lefschetz
property can be absent from monomial quotients by means of the width
function. From this, we recover Theorem 1.2 using different techniques
than used in [1, 9]. Furthermore, we classify when the bounds in
Theorems 4.3 and 1.2 are sharp in Corollaries 4.7 and 4.8, respectively.
In Theorem 4.11, we show that a monomial quotient always has the
strong Lefschetz property if and only if it is an artinian quotient of a
lexsegment ideal. Further, we provide an infinite family of examples of
non-monomial complete intersections that also satisfy this property in
Example 4.12.

Throughout the remainder of this paper R = K[x, y], where K is an
infinite field of characteristic p ≥ 0.

2. The width function. Let I be a homogeneous ideal of S =
K[x1, . . . , xn]. Recall that each component [S/I]d is a finite-dimensional
K-vector space, and the Hilbert function of S/I is the function hS/I :
N0 → N0, where h(d) := hS/I(d) := dimK [S/I]d. If there is an integer
r such that h(i) > 0 if and only if 0 ≤ i ≤ r, then S/I is artinian; in
this case, r is the regularity of S/I and is denoted regS/I. If S/I is ar-
tinian and r = regS/I, then we call the finite sequence (h(0), . . . , h(r)),
where h = hS/I , the h-vector of S/I. Further still, the initial degree
of I is the smallest degree of a minimal generator of I and is denoted
indeg I. Thus, [S/I]i ∼= [S]i for 0 ≤ i < indeg I.

2.1. Lexsegment ideals and Macaulay’s theorem. Suppose x1 >
· · · > xn in S. The degree lexicographic order on the monomi-
als in S is given by xa1

1 · · ·xan
n > xb1

1 · · ·xbn
n if either

∑n
i=1 ai >∑n

i=1 bi or
∑n

i=1 ai =
∑n

i=1 bi and the leftmost nonzero component
of the vector (b1, . . . , bn) − (a1, . . . , an) is negative. On the other
hand, the degree reverse lexicographic order on the monomials in S
is given by xa1

1 · · ·xan
n > xb1

1 · · ·xbn
n if either

∑n
i=1 ai >

∑n
i=1 bi or∑n

i=1 ai =
∑n

i=1 bi and the rightmost nonzero component of the vector
(b1, . . . , bn) − (a1, . . . , an) is positive. Notice that in the case of two
variables (n = 2), these two orders are the same.

A monomial ideal I in S is lexsegment in degree d if, for any two
monomials u, v ∈ [I]d and any monomial m ∈ [S]d such that u ≤ m ≤ v
in the degree lexicographic order, then m ∈ I. If I is lexsegment in
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every degree, then I is a (completely) lexsegment ideal. Further, a
lexsegment ideal I is an initial lexsegment ideal if xd

1 ∈ I for every
degree d such that [I]d ̸= 0.

In order to state Macaulay’s theorem (see, e.g., [10, Theorem 6.3.8]),
we must first define some notation. Let a and d be positive integers.
The Macaulay expansion of a with respect to d is the unique expansion
a =

(
ad

d

)
+ · · ·+

(
ak

k

)
, where ad > · · · > ak ≥ k ≥ 1. Further, we define

a⟨d⟩ =
(
ad+1
d+1

)
+ · · ·+

(
ak+1
k+1

)
, and we set 0⟨d⟩ = 0 for all positive integers

d.

Theorem 2.1 (Macaulay’s theorem). Let h : N0 → N0 be a function.
The following statements are equivalent :

(i) h is the Hilbert function of a standard graded K-algebra,
(ii) h is the Hilbert function of an initial lexsegment quotient in

h(1) variables, and
(iii) h(0) = 1 and h(d+ 1) ≤ h(d)⟨d⟩ for all d ≥ 1.

This allows us to immediately classify the Hilbert functions of ideals
in two variables.

Proposition 2.2. Let h : N0 → N0 be a function. The function
h is the Hilbert function of some (proper) homogeneous quotient in
R = K[x, y] if and only if there exists a nonnegative integer d so that
h(j) = j + 1 for 0 ≤ j ≤ d and h(j) ≥ h(j + 1) ≥ 0 for all j ≥ d.

Proof. The Macaulay expansion of j+1 with respect to j is j+1 =(
j+1
j

)
, and so (j + 1)⟨j⟩ =

(
j+2
j+1

)
= j + 2. Thus, the Hilbert function

of any (proper) homogeneous quotient in R must strictly increase
exclusively up to indeg I, and further hR/I(indeg I) ≤ indeg I.

If a and j are positive integers so that a ≤ j, then the Macaulay
expansion of a is a =

(
j
j

)
+ · · · +

(
j−a+1
j−a+1

)
, and so a⟨j⟩ =

(
j+1
j+1

)
+ · · · +(

j−a+2
j−a+2

)
= a. Thus, once hR/I is not strictly increasing, it must weakly

decrease. �

Moreover, we classify the Hilbert functions that force a monomial
ideal to be lexsegment.
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Lemma 2.3. Suppose h : N0 → N0 is the Hilbert function of some
quotient of R = K[x, y]. Every monomial quotient R/I with hR/I = h
is a lexsegment quotient if and only if, for every nonnegative integer d
such that h(d) > h(d+ 1), we have h(d+ 1) = h(d+ 2).

Proof. We prove the negation of the desired statement in two parts.
Moreover, all comparisons of monomials in R = K[x, y] are in the
degree lexicographic order with x > y, and all ordered sets are presented
in ascending order.

Suppose that there exists a nonnegative integer d such that h(d) >
h(d + 1) and h(d + 1) ̸= h(d + 2). By Proposition 2.2, once a
Hilbert function is weakly decreasing, then it must remain so; hence,
h(d+ 1) > h(d+ 2). Let I be the initial lexsegment ideal with Hilbert
function h, as guaranteed by Macaulay’s theorem (see Theorem 2.1).
By construction, [I]d is spanned by a = d + 1 − h(d) monomials of
degree d, in particular, by the set A = {xd−a+1ya−1, . . . , xd}. Similarly,
[I]d+1 and [I]d+2 are spanned by b = d+2−h(d+1) monomials of degree
d+1 and c = d+3− h(d+2) monomials of degree d+2, respectively;
let B = {xd−b+2yb−1, . . . , xd+1} and C = {xd−c+3yc−1, . . . , xd+2} be
those monomials.

Let B′ = {xd−b+1yb, xd−b+3yb−2, . . . , xd+1}. Since h(d) > h(d+ 1),
we have that b − a ≥ 2 and so every product of a member of A with
either x or y is in B′; in particular, xd−a+1ya−1·y is in B′ since a ≤ b−2.
Further, since h(d+1) > h(d+2), we have that c−b ≥ 2. Hence, every
product of a member of B′ with either x or y is in C; in particular,
xd−b+1yb · y is in C since b + 1 ≤ c − 1. Let J be given by [J ]i = [I]i
for i ̸= d + 1, and suppose [J ]d+1 is spanned by B′. So J is an ideal
with Hilbert function hR/J = h but is not lexsegment in degree d+ 1.

Now suppose that there exists a monomial quotient R/I with hR/I =
h that is not lexsegment. That is, there is a degree, say, d + 1, such
that [I]d+1 is spanned by d + 2 − h(d + 1) monomials where there
are at most d − h(d + 1) pairs of consecutive monomials. For every
monomial m in [I]d, {ym, xm} forms a consecutive pair in [I]d+1, so
there can be at most d − h(d + 1) monomials spanning [I]d. Since
exactly d + 1 − h(d) monomials span [I]d, then h(d + 1) + 1 ≤ h(d).
Moreover, for every monomialm′ in [I]d+1, the monomials xm′ and ym′

are in [I]d+2. However, consecutive monomials overlap in exactly one
multiple. Hence, there are at least 2(d+2−h(d+1))− (d−h(d+1)) =
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d + 4 − h(d + 1) monomials in [I]d+2. Since exactly d + 3 − h(d + 2)
monomials span [I]d+2, then h(d + 2) + 1 ≤ h(d + 1). Thus, we have
that h(d) > h(d+ 1) > h(d+ 2). �

2.2. The width function of a monomial ideal. Throughout this
section, all comparisons of monomials in R = K[x, y] are in the degree
lexicographic order with x > y.

Let I be a (not necessarily artinian or lexsegment) monomial ideal of
R. The width function of R/I is the function wR/I : N0 → N0 defined
as follows. If 0 ≤ d < indeg I, then wR/I(d) = 0. Suppose d ≥ indeg I.

Let b be the smallest integer so that xbyd−b ∈ I, and let c be the largest
integer so that xcyd−c ∈ I. Hence, wR/I(d) = c− b+ 1 is the “width”
of the monomials in [I]d. If R/I is artinian and r = regR/I, then we
call the finite sequence (w(0), . . . , w(r)), where w = wR/I , the w-vector
of R/I.

Remark 2.4. For a monomial ideal I of R, the number of degree d
monomials not in I between the smallest and largest degree d monomi-
als in I is wR/I(d) + hR/I(d)− (d+ 1), which is zero precisely when I
is lexsegment in degree d. Thus, this number can be thought of as the
“lexsegment defect” of I in degree d.

Example 2.5. Let I = (x6, x3y, xy4, y5). The h-vector of R/I is
(1, 2, 3, 4, 4, 2) and the w-vector of R/I is (0, 0, 0, 0, 1, 5). Notice that,
in degree 4, the only monomial in [I]4 is x3y; hence, wR/I(4) = 1.

However, in degree 5, the monomials in [I]5 are y5, xy4, x3y2 and x4y,
so wR/I(5) = 5. In particular, the only nonzero lexsegment defect of I

is in degree 5 and is 1, which corresponds to the monomial x2y3.

We now classify the possible width functions of monomial ideals.

Proposition 2.6. Let w : N0 → N0 be a function, and let R = K[x, y].
The following statements are equivalent :

(i) w = wR/I , where I is a monomial ideal,
(ii) w = wR/I , where I is an initial lexsegment ideal,
(iii) w(d) = d+ 1− hR/I(d), where I is an initial lexsegment ideal,

and
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(iv) either w(d) = d+1 for all d ≥ 0 or there exists an integer m > 0
so that w(d) = 0 for d < m and 1 ≤ w(d) < w(d+ 1) ≤ d+ 2,
for d ≥ m.

Proof. Clearly, (ii) implies (i). We proceed by showing (i) ⇒ (iv) ⇒
(iii) ⇒ (ii).

(i) ⇒ (iv). Let I be a monomial ideal with width function w = wR/I .
If I = R, then w(d) = d+1 for all d. Suppose I ̸= R; then indeg I ≥ 1.
By construction, w(d) = 0 for d < indeg I. Let d ≥ indeg I, and
set b = min{i | xiyd−i ∈ I} and c = max{i | xiyd−i ∈ I}, i.e.,
w(d) = c − b + 1. Clearly, 0 ≤ b ≤ c ≤ d, so 1 ≤ w(d) ≤ d + 1.
Moreover, since xbyd−b and xcyd−c are both in I, then xbyd+1−b

and xc+1yd−c are both in I. Thus, b ≥ min{i | xiyd+1−i} and
c+1 ≤ max{i | xiyd+1−i ∈ I}, and so w(d+1) ≥ c+1− b+1 > w(d).

(iv) ⇒ (iii). If w(d) = d+1 for all d ≥ 0, then w(d) = d+1−hR/I(d),
where I = R, which is clearly an initial lexsegment ideal. Suppose now
w : N0 → N0 is a function such that there exists an integer m > 0
so that w(d) = 0 for d < m and 1 ≤ w(d) < w(d + 1) ≤ d + 2, for
d ≥ m. Define h : N0 → N0 by h(d) = d + 1 − w(d) for d ≥ 0.
Thus, h(0) = 1, h(1) ≤ 2, and h(d) = d + 1 for 0 ≤ d < m.
Moreover, since w(d) < w(d + 1) ≤ d + 2 for d ≥ m, then h(d) =
d+1−w(d) ≥ d+2−w(d+1) = h(d+1) ≥ 0. Hence, by Proposition 2.2,
h is a Hilbert function of some proper homogeneous quotient of R.
Thus, by Macaulay’s theorem (see Theorem 2.1), there exists an initial
lexsegment ideal I such that h = hR/I .

(iii) ⇒ (ii). Let w(d) = d + 1 − hR/I(d), where I is an initial
lexsegment ideal. As I is lexsegment in degree d, for all d, then there
are d+1−hR/I(d) = w(d) monomials of degree d in I. Moreover, these
w(d) monomials are consecutive in the degree lexicographic order and
so wR/I(d) = w(d).

Thus, the four statements (i)–(iv) are indeed equivalent. �

Further, we classify the width functions that force a monomial ideal
to be lexsegment.

Lemma 2.7. Suppose w : N0 → N0 is the width function of some
monomial quotient of R = K[x, y]. Every monomial quotient R/I with
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wR/I = w is lexsegment if and only if, for every nonnegative integer d,
we have 0 ≤ w(d+ 1)− w(d) ≤ 2.

Proof. We prove the negation of the desired statement in two parts.
Moreover, all comparisons of monomials in R = K[x, y] are in the
degree lexicographic order with x > y, and all ordered sets are presented
in ascending order.

Suppose that there exists a nonnegative integer d so that w(d+1)−
w(d) > 2. Let I be the initial lexsegment ideal with width function
wR/I = w, as guaranteed by Proposition 2.6. Hence, [I]d+1 is spanned

by the w(d+1) monomials B = {xd−w(d+1)+2yw(d+1)−1, . . . , xd+1}. No-
tice that the next to last monomial ofB, namely, xd−w(d+1)+3yw(d+1)−2,
is not a multiple of a monomial in [I]d, since xd−w(d)+1yw(d)−1 is the
smallest monomial in [I]d and w(d) ≤ w(d+ 1)− 3.

Let B′ be B \ {xd−w(d)+1yw(d)−1}. Hence, if J given by [J ]i = [I]i
for i ̸= d+1 and [J ]d+1 is spanned by B′, then J is an ideal with width
function wR/J = w, and J is not lexsegment in degree d+ 1.

Now suppose that there exists a monomial quotientR/I with wR/I =
w that is lexsegment in every degree i ≤ d but not lexsegment in
degree d + 1. Thus, there are w(i) consecutive monomials in I of
degree i for i ≤ d, and there are less than w(d + 1) monomials in I
of degree d + 1. By Proposition 2.6, we have w(d) < w(d + 1). Since
I is not lexsegment in degree d + 1, then there must be at least one
monomial that is not consecutive to one of the w(d) + 1 consecutive
multiples of the w(d) consecutive monomials in degree d. Thus the
width in degree d + 1 must be at least two larger than w(d) + 1 (one
for the absent monomial and one for the guaranteed non-consecutive
monomial). That is, w(d+ 1) ≥ w(d) + 3. �

3. Maximal rank multiplication maps. Throughout this sec-
tion, all comparisons of monomials in R = K[x, y] are in the degree
lexicographic order with x > y, and all ordered sets are presented in
ascending order.

Proposition 3.1. [15, Proposition 2.2]. Let I be a monomial artinian
ideal in the ring S = K[x1, . . . , xn]. The quotient S/I has the weak
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(strong) Lefschetz property if and only if x1+ · · ·+xn is a weak (strong)
Lefschetz element of S/I.

Hence, Theorem 1.1 implies that we need only look at the maps
between equi-dimensional components.

Lemma 3.2. Let I be a monomial artinian ideal in R. The quotient
R/I has the strong Lefschetz property if and only if the map ×(x+y)t :
[R/I]d → [R/I]d+t is a bijection for all integers d ≥ 0 and t ≥ 1 where
hR/I(d) = hR/I(d+ t) = d+ 1.

Proof. The presence of the strong Lefschetz property clearly implies
the second condition.

Suppose now that the second condition holds. Let φd,d+t be the map
×(x+ y)t : [R/I]d → [R/I]d+t, and so φa,a+b+c = φa+b,a+b+c ◦ φa,a+b.

Theorem 1.1 implies that φd,d+1 always has maximal rank. In par-
ticular, φd,d+1 is injective for 0 ≤ d < indeg I and surjective for
indeg I ≤ d. Since φd,d+t = φd+t−1,d+t ◦ · · · ◦ φd,d+1, if d+ t ≤ indeg I
(respectively, d > indeg I), then each term in the composition is in-
jective (respectively, surjective) and so φd,d+t is injective (respectively,
surjective).

Now suppose that d < indeg I < d + t. Since d + t > indeg I, then
h(d+t)−1 ≤ indeg I, and so h(h(d+t)−1) = h(d+t) by Proposition 2.2.
Thus, by assumption, φh(d+t)−1,d+t is a bijection. If d < h(d+ t) − 1,
then φd,d+t = φh(d+t)−1,d+t ◦φd,h(d+t)−1. Since h(d+ t)− 1 ≤ indeg I,
φd,h(d+t)−1 is injective. Hence, φd,d+t is injective as the composition of
injective functions is injective. On the other hand, if d > h(d+ t)− 1,
then φh(d+t)−1,d+t = φd,d+t ◦ φh(d+t)−1,d. Hence, φd,d+t is surjective
as φh(d+t)−1,d+t is, by assumption, a bijection. �

Let I be a monomial ideal in R, and let d ≥ 0 and t ≥ 1 be any
integers such that h(d) = h(d + t) = d + 1. Suppose the ordered
monomials {xb0yd+t−b0 , . . . , xbdyd+t−bd} span [R/I]d+t. Note that
the ordering implies that 0 ≤ b0 < · · · < bd ≤ d + t. The map
×(x+ y)t : [R/I]d → [R/I]d+t is given by the (d+ 1)× (d+ 1) matrix
NR/I(d, d+ t), where the entry (i, j) is the coefficient on xbjyd+t−bj in

xiyd−i(x+ y)t, i.e.,
(

t
bj−i

)
.
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Example 3.3. Let I = (x10, y7). Hence, hR/I(5) = hR/I(10) = 6, and
thus NR/I(5, 5) is the 6× 6 matrix

5 10 10 5 1 0
1 5 10 10 5 1
0 1 5 10 10 5
0 0 1 5 10 10
0 0 0 1 5 10
0 0 0 0 1 5

 .

The determinant of this matrix is 210 = 2 · 3 · 5 · 7, and so the map
×(x+y)5 : [R/I]5 → [R/I]10 has maximal rank if and only if charK = 0
or charK > 7.

The determinant of N−(d, d+ t) can be given by a closed form.

Lemma 3.4. Let I be a monomial ideal in R. If d ≥ 0 and t ≥ 1 are
integers so that hR/I(d) = hR/I(d+ t) = d+1, then |detNR/I(d, d+ t)|
is ∏

0≤i<j≤s−r

(br+j − br+i)

s−r∏
i=0

(t+ i)!

(t+ s− br+i)!(br+i − r)!
,

where the ordered monomials {xb0yd+t−b0, . . . , xbdyd+t−bd} span [R/I]d+t,
r := max({0}∪{k+1 | bk = k}), and s := min({d}∪{k−1 | bk = t+k}).

If r = s+1, then the determinant is one; otherwise, the largest factor
of the above closed form is wR/I(d+ t)−1, and it appears exactly once.

Proof. For 0 ≤ i < r, we have bi = i, and so the (i, j) entry of
NR/I(d, d + t) is

(
t

j−i

)
, i.e., 1 if i = j and 0 if i > j. Similarly, for

s < j ≤ d, we have that bj = t+j and so the (i, j) entry of NR/I(d, d+t)

is
(

t
t+j−i

)
, i.e., is 1 if i = j and 0 if i < j.

Partitioning NR/I(d, d+ t) into a block matrix with square diagonal
matrices with sizes r, s− r + 1, and d− s, respectively, yields

NR/I(d, d+ t) =

 U A 0

0 N̂ 0
0 B L

 ,
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where U is a square upper-triangular matrix with ones on the diagonal,
L is a square lower-triangular matrix with ones on the diagonal, and

N̂ is an (s− r + 1)× (s− r + 1) square matrix with entry (i, j) given
by

(
t

br+j−(r+i)

)
. Using the block matrix formula for the determinant

(twice), we have

detNR/I(d, d+ t) = detU · det N̂ · detL = det N̂ .

Set A := t, n := s−r+1 and Lj := br+j−1−r+1. The determinant

evaluation of N̂ , hence of NR/I(d, d+ t), follows immediately from [5,
equation (12.5)]. Re-indexing to start from 0 instead of 1 yields the
stated result.

If r = s+1, then the products are all empty; hence, the determinant
is one. Suppose r ≤ s. Notice that bs < t + s and br > r. Hence, the
largest factor in the first product bs − br is less than t+ s− r, and the
largest factor in the numerator of the second product is t+ s− r. The
largest factor in the denominator of the second product is the maximum
of t + s − br and bs − r, both of which are less than t + s − r. Hence,
the largest factor of the products in the formula is t+ s− r.

Notice that, by the definitions of r and s, xryd+t−r and xt+syd−s are
the degree lexicographically smallest and largest monomials in [I]d+t,
respectively. Hence, wR/I(d + t) = t + s − r + 1, and so the largest
factor of the products in the formula is wR/I(d+ t)− 1. �

Remark 3.5. Let I be a monomial artinian ideal in R = K[x, y].
If NR/I(d, d + t) is square, as in the preceding lemma, then the
determinant can be interpreted combinatorially. In particular, using
a beautiful theorem first given by Lindström [13, Lemma 1] and
stated independently by Gessel and Viennot [8, Theorem 1], the
determinant can be interpreted as the enumeration of families of non-
intersecting lattice paths on a finite sublattice of Z2. This connection
follows from work of the author with Nagel [7], as the presence of the
strong Lefschetz property of R/I is reflected in the presence of the
weak Lefschetz property of R[z]/(I + (zt)). (The connection between
the strong Lefschetz property in n variables and the weak Lefschetz
property in n + 1 variables has been used more generally; see, e.g.,
[4, 6, 14, 16].)
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The matrix N̂ in the proof of Lemma 3.4 is the matrix NR/J(s −
r, s − r + t), where J is the ideal (xbr−ryt+s−br , . . . , xbs−ryt+s−bs) +
(x, y)t+s−r+1.

Example 3.6. Let I = (x15, x10y2, x2y9, y15). Hence, hR/I(9) = 10 =
hR/I(14), so NR/I(9, 14) is the 10× 10 matrix

1 5 10 5 1 0 0 0 0 0
0 1 10 10 5 1 0 0 0 0
0 0 5 10 10 5 1 0 0 0
0 0 1 5 10 10 5 1 0 0
0 0 0 1 5 10 10 5 0 0
0 0 0 0 1 5 10 10 0 0
0 0 0 0 0 1 5 10 0 0
0 0 0 0 0 0 1 5 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 5 1


.

Notice that the upper-left 2× 2 matrix is upper-triangular, the lower-
left 2 × 2 matrix is lower-triangular, and the central 6 × 6 matrix has
determinant 210 = 2 · 3 · 5 · 7. Thus, the determinant of NR/I(9, 14)

has magnitude 210, and so the map ×(x + y)5 : [R/I]9 → [R/I]14 has
maximal rank if and only if charK = 0 or charK > 7.

Indeed, the central 6× 6 matrix is the same as the matrix in Exam-

ple 3.3 and is the matrix N̂ in the proof of Lemma 3.4. Furthermore, fol-
lowing the preceding remark, we note that d = 9, t = 5, r = 2 and s = 7

for R/I in degree 14. Hence, N̂ is the matrix NR/J(s− r, s− r + t) =

NR/J (5, 10), where J = (x10, x3y7, x2y8, xy9, y10). Notice that R/J
and the quotient considered in Example 3.3 are the same in degrees 5
and 10.

Analyzing the formula in Lemma 3.4, we determine exactly when
|detN | = 1.

Corollary 3.7. Let I be a monomial ideal in R, and let d ≥ 0 and
t ≥ 1 be integers so that hR/I(d) = hR/I(d+ t) = d+ 1. The following
statements are equivalent :

(i) | detNR/I(d, d+ t)| = 1,
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(ii) wR/I(d+ t) = t, and
(iii) I is lexsegment in degree d+ t.

Specifically, if t = 1, then |detNR/I(d, d+ t)| = 1.

Proof. By Remark 2.4, wR/I(d+ t) = d+ t− 1− hR/I(d+ t) = t if
and only if I is lexsegment in degree d, hence (ii) is equivalent to (iii).

Suppose [R/I]d+t is spanned by the ordered monomials {xb0yd+t−b0 ,
. . . , xbdyd+t−bd}. Set r := max({0} ∪ {k + 1 | bk = k}) and s :=
min({d} ∪ {k − 1 | bk = t + k}). Thus, r < br < · · · < bs < s + t. By
Lemma 3.4, |detNR/I(d, d+ t)| is

∏
0≤i<j≤s−r

(br+j − br+i)
s−r∏
i=0

(t+ i)!

(t+ s− br+i)!(br+i − r)!
.

Further, notice that wR/I(d+ t) = s− r + t+ 1.

We prove (i) is equivalent to (ii) via an induction on t.

Step 1: Setup. Let r, s, and t be integers such that 0 ≤ r ≤ s+1 and
t ≥ 1. Let br, . . . , bs be integers such that r < br < · · · < bs < s + t.
Define D(r, s, t, {br, . . . , bs}) to be

∏
0≤i<j≤s−r

(br+j − br+i)

s−r∏
i=0

(t+ i)!

(t+ s− br+i)!(br+i − r)!
.

Clearly, D(r, s, t, {br, . . . , bs}) ≥ 1 for all valid arguments. Moreover, if
r = s+ 1, then D(s+ 1, s, t, ∅) = 1 for all s and t, as the products are
all empty.

Step 2: Base case. Suppose t = 1. If r ≤ s, then r < br < · · · <
bs < s + 1, which implies there are at least s − r + 1 distinct integers
exclusively between r and s + 1; however, there are only s − r such
integers. Hence, r = s+1, and so D(s+1, s, 1, ∅) = 1 for every s. (We
also note that this follows immediately from Theorem 1.1.)

Step 3: Induction step. Suppose t ≥ 2. If r = s, then
D(r, r, t, {br}) =

(
t

br−r

)
≥ t, as 1 ≤ br − r ≤ t − 1. Hence we may

assume r < s. We consider two cases.

Case (a). When bs < s + t − 1. Clearly, (r, s, t + 1, {br, . . . , bs})
forms a valid argument for D(·). Indeed, we can rewrite D(r, s, t +
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1, {br, . . . , bs}) in terms of D(r, s, t, {br, . . . , bs}) as follows:

D(r, s, t+ 1, {br, . . . , bs}) =
∏

0≤i<j≤s−r

(br+j − br+i)

×
s−r∏
i=0

((t+ 1) + i)!

((t+ 1) + s− br+i)!(br+i − r)!

=

s−r∏
i=0

((t+1)+i)

((t+1)+s−br+i)
D(r, s, t, {br, . . . , bs}).

For 0 ≤ i ≤ s − r, we have br+i > r + i, and so (t + 1) + s − br+i ≤
t+s+1−(r+i+1) = t+s−r−i. Further still, t+1+i = t+s−r−j+1,
where j = s− r − i, i.e., 0 ≤ j ≤ s− r. Thus, we have

s−r∏
i=0

((t+ 1) + i) =

s−r∏
j=0

(t+ s− r − j + 1)

>
s−r∏
j=0

(t+ s− r − j)

≥
s−r∏
i=0

((t+ 1) + s− br+i).

Hence,
s−r∏
i=0

((t+ 1) + i)

((t+ 1) + s− br+i)
> 1

and D(r, s, t+ 1, {br, . . . , bs}) > D(r, s, t, {br, . . . , bs}) ≥ 1.

Case (b): When bs = s + t − 1. Since r ≤ s, we have r ≤
(s − 1) + 1, and so (r, s − 1, t, {br, . . . , bs−1}) forms a valid argument
for D(·). Indeed, we can rewrite D(r, s, t, {br, . . . , bs}) in terms of
D(r, s− 1, t, {br, . . . , bs−1}) as follows:

D(r, s, t, {br, . . . , bs})

=
∏

0≤i<j≤s−r

(br+j − br+i)

s−r∏
i=0

(t+ i)!

(t+ s− br+i)!(br+i − r)!

=

(
(t+ s− r)!

(t+ s− bs)!(bs − r)!

∏
0≤i<s−r

bs − br+i

t+ s− br+i

)
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×D(r, s− 1, t, {br, . . . , bs−1})

=

(
(t+ s− r)

∏
0≤i<s−r

t+ s− 1− br+i

t+ s− br+i

)
×D(r, s− 1, t, {br, . . . , bs−1})

=
(t+ s− r)(t+ s− 1− br)

t+ s− bs−1
D(r, s− 1, t, {br, . . . , bs−1}).

Since r < bs−1, we have t+ s− r > t+ s− bs−1, and so

t+ s− r

t+ s− bs−1
> 1.

Thus, D(r, s, t, {br, . . . , bs}) > D(r, s− 1, t, {br, . . . , bs−1}) ≥ 1.

Conclusion. We thus see that D(r, s, t, {br, . . . , bs}) = 1 if and only
if r = s + 1. This is equivalent to wR/I(d + t) = t, as wR/I(d + t) =
s− r + t+ 1. �

4. The strong Lefschetz property. Let I be a homogeneous ideal
of S = K[x1, . . . , xn], and fix a term order < on the monomials of
S (e.g., the degree lexicographic order). There exists a Zariski open
subset U of GLn(K) such that in<(g · I) = in<(h · I) for all g, h ∈ U ;
the ideal in<(g · I) is the generic initial ideal of I with respect to <
and is denoted by gin I = gin< I.

Remark 4.1. The generic initial ideal is known to be strongly stable
if the characteristic of K is zero (see, e.g., [10, Proposition 4.2.6]). For
ideals inK[x, y], being strongly stable is equivalent to being lexsegment.
However, the generic initial ideal is not so well-behaved in positive
characteristic. Indeed, [10, Example 4.2.8] shows that, for every prime
p > 0, gin (xp, yp) = (xp, yp) if the characteristic of K is p.

Proposition 4.2. [19, Proposition 2.8] Let I be a homogeneous ar-
tinian ideal in S = K[x1, . . . , xn], and let J be the generic initial ideal
of I with respect to the degree reverse lexicographic order. The quotient
S/I has the weak (strong) Lefschetz property if and only if S/J has the
weak (strong) Lefschetz property.

Further, for R = K[x, y] the degree lexicographic and degree reverse
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lexicographic orders are identical. In some cases, we can use the above
result to lift statements about monomial ideals to statements about
homogeneous ideals.

4.1. Bounds on the absence of the strong Lefschetz property.
We first use the width function to bound the characteristics in which
the strong Lefschetz property can be absent. See Corollary 4.7 for a
classification of when this bound is sharp.

Theorem 4.3. Let I be a monomial artinian ideal in R = K[x, y],
where K is a field of characteristic p > 0. The quotient R/I has the
strong Lefschetz property if p ≥ wR/I(regR/I).

Proof. Let d ≥ 0 and t ≥ 1 be integers such that h(d) = h(d+ t) =
d + 1. The largest factor of the determinant of NR/I(d, d + t) is
wR/I(d + t) − 1 by Lemma 3.4. Hence, NR/I(d, d + t) has maximal
rank if p ≥ wR/I(d+ t).

Further, we have that wR/I(regR/I) ≥ wR/I(i) for all 0 ≤ i ≤
regR/I by Proposition 2.6. This implies that every matrix NR/I(d, d+
t) has maximal rank if p ≥ wR/I(regR/I). Therefore, R/I has the
strong Lefschetz property by Lemma 3.2 if p ≥ wR/I(regR/I). �

We now recover Theorem 1.2 with different techniques than those
used in [1, 9]. (Nota bene: We have not assumed Theorem 1.2 up to
this point; doing so offers no benefit as our approach and desired results
are different.) In particular, by weakening the bound in the preceding
proof we can generalize from monomial ideals to homogeneous ideals.
See Corollary 4.8 for a classification of when this bound is sharp.

Theorem 4.4. Let I be a homogeneous artinian ideal in R = K[x, y],
where K is a field of characteristic p > 0. The quotient R/I has the
strong Lefschetz property if p > regR/I.

Proof. Let J = gin I under the degree (reverse) lexicographic or-
der. By Theorem 4.3, R/J has the strong Lefschetz property if
p ≥ wR/J(regR/J). By Proposition 2.6 we have that wR/J (regR/J) ≤
regR/J + 1, and since the generic initial ideal preserves the Hilbert
function we have regR/J = regR/I as J is artinian. Hence, R/I has
the strong Lefschetz property if p > regR/I by Proposition 4.2. �
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Remark 4.5. The bound in the preceding theorem sometimes holds
in higher codimension. Let I be a monomial complete intersection in
S = K[x1, . . . , xn], i.e., I = (xd1

1 , . . . , xdn
n ). Thus, we have that S/I

has the strong Lefschetz property if p > regS/I [6, Theorem 3.6(ii)].
Moreover, this bound is sharp in some cases; in particular, if p =
regS/I, then S/I fails to have the strong Lefschetz property [6,
Theorem 3.6(i)]. See Corollary 4.8 for a similar statement about the
sharpness of the bound in the preceding corollary.

On the other hand, the bound is not true in general, even as
a bound for the failure of the weak Lefschetz property. Let I =
(x20, y20, z20, x3y8z13) be an ideal of S = K[x, y, z]. In this case,
regS/I = 50, and S/I has the weak Lefschetz property if and only
if the characteristic of K is not one of the following primes: 2, 3, 5,
7, 11, 17, 19, 23, or 20554657. This example comes from [7], wherein
the presence and absence of the weak Lefschetz property for monomial
ideals in codimension three is considered.

We now consider for which characteristics the strong Lefschetz
property is absent.

Lemma 4.6. Let I be a monomial artinian ideal in R = K[x, y].
If there exists a j such that indeg I ≤ j ≤ regR/I, wR/I(j) ̸=
j + 1− hR/I(j), and wR/I(j)− 1 = charK is prime, then R/I fails to
have the strong Lefschetz property.

Proof. Let d = hR/I(j)− 1 and t = j − d. Then hR/I(d) = d+ 1 =
hR/I(d + t). By Lemma 3.4, since wR/I(d + t) > d + 1 − hR/I(d + t),
we have that the largest factor of the formula giving the determinant
of NR/I(d, d + t) is wR/I(d + t) − 1 = charK. This implies that the
map ×(x + y)t : [R/I]d → [R/I]d+t fails to have maximal rank, i.e.,
R/I fails to have the strong Lefschetz property. �

Using this, we classify exactly when the bound in Theorem 4.3 is
sharp.

Corollary 4.7. Let I be a monomial artinian ideal in R = K[x, y],
and suppose p = wR/I(regR/I) − 1 is prime. The quotient R/I fails
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to have the strong Lefschetz property in characteristic p if and only if
xregR/I , yregR/I ∈ I.

Proof. Suppose p = wR/I(regR/I) − 1 is prime. If one of xregR/I

and yregR/I is not in I, then R/I can only fail to have the strong
Lefschetz property in characteristics smaller than p = wR/I(regR/I)−1
by Theorem 4.3.

On the other hand, suppose xregR/I , yregR/I ∈ I. So wR/I(regR/I)
̸= regR/I + 1− hR/I(regR/I), and hence R/I fails to have the strong
Lefschetz property by Lemma 4.6. �

As with Theorems 4.3 and 1.2, the above pair of results can be
extended to homogeneous ideals, if we strengthen the restrictions on the
ideals. This in turn classifies exactly when the bound in Theorem 1.2
is sharp.

Corollary 4.8. Let I be a homogeneous artinian ideal in R = K[x, y],
where K is a field of characteristic p > 0. If p ≤ regR/I and
xp, yp ∈ gin I (under the degree lexicographic order), then R/I fails
to have the strong Lefschetz property.

In particular, if regR/I is prime and p = regR/I, then R/I fails to
have the strong Lefschetz property if and only if xp, yp ∈ gin I (under
the degree lexicographic order).

Proof. Let J = gin I under the degree (reverse) lexicographic order.
If xp, yp ∈ J , then wR/J(p) = p + 1. Since p ≤ regR/I = regR/J ,
then wR/J(p) ̸= p + 1 − hR/J(p). Hence, by Lemma 4.6, R/J fails to
have the strong Lefschetz property, and so R/I fails to have the strong
Lefschetz property by Proposition 4.2. �

However, the bounds can be far from sharp in some cases.

Example 4.9. Ignoring lexsegment ideals (which always have the
strong Lefschetz property by Theorem 4.11), the bounds in Theo-
rems 4.3 and 1.2 are far from sharp in some cases. In particular, con-
sider the ideal In = (x2n , y2), where n ≥ 1. By [6, Lemma 4.2(i)], we
have that In has the strong Lefschetz property if and only if the char-
acteristic of K divides 2n, i.e., charK = 2. However, regR/In = 2n,
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so the regularity bound is sharp if and only if n = 1. Moreover,
wR/In(regR/In) = 2n + 1, so the width bound is never sharp for this
family.

Remark 4.10. Corollary 4.8 further implies that the maximal degree
of a minimal generator is not a good bound. For example, let Ip =

(x(p+1)/2, y(p+3)/2), where p is an odd prime. Hence, regR/Ip = p and
xp, yp ∈ Ip, so by Corollary 4.8 R/Ip fails to have the strong Lefschetz
property in characteristic p. Notice that the maximal generating degree
of a minimal generator of Ip is (p+ 3)/2, which is less than p for p > 3.

4.2. Forcing the presence of the strong Lefschetz property.
Let S = K[x1, . . . , xn] be a polynomial ring, where K is a field of
characteristic zero. Migliore and Zanello [18, Theorem 5] classified
the Hilbert functions of artinian quotients of S that force the weak
Lefschetz property to hold. Similarly, Zanello and Zylinski [20, Corol-
lary 3.3] proved all artinian quotients of S with a given Hilbert function
have the strong Lefschetz property if and only if the initial lexsegment
ideal with the given Hilbert function has the strong Lefschetz property.

In some cases, the strong Lefschetz property always holds, regardless
of characteristic. The following theorem classifies the monomial ideals
with this property.

Theorem 4.11. Let I be a monomial artinian ideal in R = K[x, y].
The quotient R/I always has the strong Lefschetz property, regardless
of the characteristic of K, if and only if I is a lexsegment ideal.

Proof. Suppose I is not a lexsegment ideal. There is a degree j ≥
indeg I such that I is not lexsegment in degree j. Let d = hR/I(j)− 1
and t = j − d. Then hR/I(d) = d+ 1 = hR/I(d+ t). By Corollary 3.7,
we see that NR/I(d, d+ t) does not always have maximal rank; hence,
R/I does not always have the strong Lefschetz property.

Suppose now that I is a lexsegment ideal. By Corollary 3.7, the
matrices NR/I(d, d + t), where h(d) = h(d + t) = d + 1, always
have maximal rank. Therefore, R/I always has the strong Lefschetz
property, regardless of the characteristic of K, by Lemma 3.2. �

We also see that non-monomial ideals can satisfy this property.
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Example 4.12. Let R = K[x, y], and let I be a homogeneous ideal
of R. Weibe showed [19, Proposition 2.9] that R/I has the strong
Lefschetz property if R/in I does.

Consider the following ideals of R.

(i) Let Ib = (x2, xyb−1 + yb), where b ≥ 2. Thus, in Ib =
(x2, xyb−1, yb+1).

(ii) Let Jb = (x3, x2yb−2 + yb), where b ≥ 3. Thus, in Jb =
(x3, x2yb−2, xyb, yb+2).

In either case, the initial ideal is a lexsegment ideal and so its quotient
always has the strong Lefschetz property by the preceding theorem.

We note that Ib is a complete intersection of type (2, b), and Jb
is a complete intersection of type (3, b). In [6, Lemma 4.2], it was
shown that the monomial complete intersections of these types fail to
have the strong Lefschetz property for some positive characteristic. In
particular, the complete intersection type of an ideal of R is insufficient
to classify the presence of the strong Lefschetz property in positive
characteristic.

Theorem 4.11 implies that no Hilbert function (see Proposition 2.2)
or width function (see Proposition 2.6) can force the strong Lefschetz
property to be absent in some characteristic for all ideals with the given
Hilbert or width function. On the other hand, we can describe a large
class of Hilbert functions and width functions that force the strong
Lefschetz property to be present.

Using Lemma 2.3, we classify the Hilbert functions that force mono-
mial ideals to always have the strong Lefschetz property, regardless of
characteristic.

Proposition 4.13. Suppose h : N0 → N0 is the Hilbert function of
some homogeneous artinian quotient of R = K[x, y]. Every monomial
quotient of R such that hR/I = h has the strong Lefschetz property,
regardless of the characteristic of K, if and only if for every nonnegative
integer d such that h(d) > h(d+ 1) then h(d+ 1) = h(d+ 2).

Proof. Combine Lemma 2.3 and Theorem 4.11. �
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Hence, we can force homogeneous ideals with these Hilbert functions
to have the strong Lefschetz property.

Corollary 4.14. Suppose h : N0 → N0 is the Hilbert function of
some homogeneous artinian quotient of R = K[x, y]. If, for every
nonnegative integer d such that h(d) > h(d + 1), we have h(d + 1) =
h(d+2), then every homogeneous artinian quotient R/I with hR/I = h
has the strong Lefschetz property.

Proof. Let R/I be some homogeneous artinian quotient with hR/I =
h. Since gin I preserves the Hilbert function, we have that hR/ gin I = h.
By Proposition 4.13, R/ gin I has the strong Lefschetz property, and so
R/I has the strong Lefschetz property by Proposition 4.2. �

Remark 4.15. We must be careful with the ring in which we consider
an ideal to be. For example, the ideal I = (x2 + y2, x3 + y3) is in
R = K[x, y], regardless of the field K. However, I is not artinian in a
field of characteristic two. Indeed, if charK = 2, then (x, y) = (1, 1) is
a non-trivial common zero of the generators of I. However, in all other
characteristics R/I is artinian and has h-vector (1, 2, 2, 1).

Suppose charK ̸= 2. The reduced Gröbner basis for I is (x2 +
y2, xy2 − y3, y4), and so the initial ideal of I is in I = (x2, xy2, y4).
Notice that in I is lexsegment and so always has the strong Lefschetz
property by Theorem 4.11. Using [19, Proposition 2.9], the latter
implies that R/I also has the strong Lefschetz property, if charK ̸= 2.

Moreover, we classify the width functions that force monomial
ideals to always have the strong Lefschetz property, regardless of
characteristic, using Lemma 2.7.

Proposition 4.16. Suppose w : N0 → N0 is the width function of
some monomial artinian quotient of R = K[x, y]. Every monomial
artinian quotient R/I such that wR/I = w has the strong Lefschetz
property, regardless of the characteristic of K, if and only if for every
nonnegative integer d we have 0 ≤ w(d+ 1)− w(d) ≤ 2.

Proof. Combine Lemma 2.7 and Theorem 4.11. �
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Hence, we can force homogeneous ideals with these width functions
to have the strong Lefschetz property.

Corollary 4.17. Suppose w : N0 → N0 is the width function of
some homogeneous artinian quotient of R = K[x, y]. If, for every
nonnegative integer d, we have 0 ≤ w(d + 1) − w(d) ≤ 2, then every
homogeneous artinian quotient R/I with wR/ gin I = w has the strong
Lefschetz property.

Proof. LetR/I be some homogeneous artinian quotient with wR/ ginI

= w. By Proposition 4.13, R/ gin I has the strong Lefschetz property,
and so R/I has the strong Lefschetz property by Proposition 4.2. �
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