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A SHORT NOTE ON MINIMAL PRIME IDEALS

A.R. NAGHIPOUR

ABSTRACT. In this note we give a characterization of
the rings with finitely many minimal prime ideals.

Throughout this note, R is a commutative ring with identity. It
is well known that if R is Noetherian (i.e., any ideal of R is finitely
generated), then the set of minimal prime ideals of R, Min(R), is finite.

In [1], Anderson abandoned the Noetherianness and showed the
following theorem:

Theorem A. If each minimal prime ideal of R is finitely generated
ideal, then Min(R) is finite.

Let I be a proper ideal of R. Then the radical of I is defined to be
the intersection of all prime ideals of R containing I.

In [2], Gilmer and Heinzer proved the following theorem that is an
extension of Anderson’s theorem:

Theorem B. If each minimal prime ideal of R is the radical of a
finitely generated ideal, then Min(R) is finite.

The following example shows that the converse of Theorem B (and,
by extension, of Theorem A) is false.

Example. Let R = R[x1, x2, . . .], I = ⟨x1x2, x1x3, . . .⟩, p0 =
⟨x2, x3, . . .⟩ and p1 = ⟨x1⟩. Then it is easy to see that Min(R/I) =
{p0/I, p1/I} and p0/I is not a radical of a finitely generated ideal.

In this note we extend Theorem B (Theorem A) and bring a char-
acterization of the rings with finitely many minimal prime ideals:
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Theorem. The following are equivalent:

(a) The set Min(R) is finite.
(b) For any p ∈ Min(R), there exists a finitely gener-

ated ideal p∗ of R such that p∗ ⊆ p and Min(R/p∗)
is finite.

Proof. (a) ⇒(b). Follows by taking p∗ = 0.
(b) ⇒(a). Let S denote the collection of finitely generated ideals I of
R such that Min(R/I) is finite.

Set

T = {J | J is an ideal of R such that I ̸⊆ J for any I ∈ S}.

We show that 0 ̸∈ T . Suppose to the contrary that 0 ∈ T . Since the
collection T is nonempty and elements of S are finitely generated, T
is inductive and hence by Zorn’s lemma has a maximal element q. We
show that q is a prime ideal of R. If q is not prime, then there exist
a, b ∈ R \ q such that ab ∈ q. Therefore, there exist I1, I2 ∈ S such
that I1 ⊆ q+Ra and I2 ⊆ q+Rb. So, we have

I1I2 ⊆ (q+Ra)(q+Rb) ⊆ q2 + qRb+ qRa+Rab ⊆ q.

Since |Min(R/I1I2)| ≤ |Min(R/I1)∪Min(R/I2)|, it follows that I1I2 ∈
S, which is a contradiction. Thus, q is a prime ideal of R. Now let p
be a minimal prime ideal of R such that p ⊆ q. By hypothesis, there
is an element p∗ ∈ S such that p∗ ⊆ p. Thus, q /∈ T , and this is also
a contradiction. Therefore, 0 /∈ T , and hence 0 ∈ S, it follows that
Min(R) is finite. Thus, the theorem is completely proved. �
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