A SHORT NOTE ON MINIMAL PRIME IDEALS

A.R. NAGHIPOUR

ABSTRACT. In this note we give a characterization of the rings with finitely many minimal prime ideals.

Throughout this note, R is a commutative ring with identity. It is well known that if R is Noetherian (i.e., any ideal of R is finitely generated), then the set of minimal prime ideals of R, Min(R), is finite.

In [1], Anderson abandoned the Noetherianness and showed the following theorem:

Theorem A. If each minimal prime ideal of R is finitely generated ideal, then Min(R) is finite.

Let I be a proper ideal of R. Then the *radical* of I is defined to be the intersection of all prime ideals of R containing I.

In [2], Gilmer and Heinzer proved the following theorem that is an extension of Anderson's theorem:

Theorem B. If each minimal prime ideal of R is the radical of a finitely generated ideal, then Min(R) is finite.

The following example shows that the converse of Theorem B (and, by extension, of Theorem A) is false.

Example. Let $R = \mathbf{R}[x_1, x_2, \ldots]$, $I = \langle x_1 x_2, x_1 x_3, \ldots \rangle$, $\mathfrak{p}_0 = \langle x_2, x_3, \ldots \rangle$ and $\mathfrak{p}_1 = \langle x_1 \rangle$. Then it is easy to see that $\operatorname{Min}(R/I) = \{\mathfrak{p}_0/I, \mathfrak{p}_1/I\}$ and \mathfrak{p}_0/I is not a radical of a finitely generated ideal.

In this note we extend Theorem B (Theorem A) and bring a characterization of the rings with finitely many minimal prime ideals:

DOI:10.1216/JCA-2014-6-2-231 Copyright ©2014 Rocky Mountain Mathematics Consortium

²⁰¹⁰ AMS Mathematics subject classification. Primary 13A10, 13A15.

Keywords and phrases. Minimal prime ideal, radical.

Received by the editors on January 6, 2013, and in revised form on January 19, 2013.

Theorem. The following are equivalent:

- (a) The set Min(R) is finite.
- (b) For any p ∈ Min(R), there exists a finitely generated ideal p* of R such that p* ⊆ p and Min(R/p*) is finite.

Proof. (a) \Rightarrow (b). Follows by taking $\mathfrak{p}^* = 0$.

(b) \Rightarrow (a). Let S denote the collection of finitely generated ideals I of R such that Min(R/I) is finite.

Set

$$T = \{J \mid J \text{ is an ideal of } R \text{ such that } I \not\subseteq J \text{ for any } I \in S\}.$$

We show that $0 \notin T$. Suppose to the contrary that $0 \in T$. Since the collection T is nonempty and elements of S are finitely generated, T is inductive and hence by Zorn's lemma has a maximal element \mathfrak{q} . We show that \mathfrak{q} is a prime ideal of R. If \mathfrak{q} is not prime, then there exist $a, b \in R \setminus \mathfrak{q}$ such that $ab \in \mathfrak{q}$. Therefore, there exist $I_1, I_2 \in S$ such that $I_1 \subseteq \mathfrak{q} + Ra$ and $I_2 \subseteq \mathfrak{q} + Rb$. So, we have

$$I_1I_2 \subseteq (\mathfrak{q} + Ra)(\mathfrak{q} + Rb) \subseteq \mathfrak{q}^2 + \mathfrak{q}Rb + \mathfrak{q}Ra + Rab \subseteq \mathfrak{q}.$$

Since $|\operatorname{Min}(R/I_1I_2)| \leq |\operatorname{Min}(R/I_1) \cup \operatorname{Min}(R/I_2)|$, it follows that $I_1I_2 \in S$, which is a contradiction. Thus, \mathfrak{q} is a prime ideal of R. Now let \mathfrak{p} be a minimal prime ideal of R such that $\mathfrak{p} \subseteq \mathfrak{q}$. By hypothesis, there is an element $\mathfrak{p}^* \in S$ such that $\mathfrak{p}^* \subseteq \mathfrak{p}$. Thus, $\mathfrak{q} \notin T$, and this is also a contradiction. Therefore, $0 \notin T$, and hence $0 \in S$, it follows that $\operatorname{Min}(R)$ is finite. Thus, the theorem is completely proved. \Box

REFERENCES

1. D.D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), 13–14.

2. R. Gilmer and W. Heinzer, Primary ideals with finitely generated radical in a commutative ring, Manuscr. Math. 78 (1993), 201–221.

DEPARTMENT OF MATHEMATICS, SHAHREKORD UNIVERSITY, P.O. BOX 115, SHAHRE-KORD, IRAN

Email address: naghipour@sci.sku.ac.ir