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WHEN IS THE COMPLEMENT OF THE ZERO-DIVISOR
GRAPH OF A COMMUTATIVE RING PLANAR?

S. VISWESWARAN

ABSTRACT. Let R be a commutative ring with identity
admitting at least two distinct zero-divisors a, b with ab �=
0. In this article, necessary and sufficient conditions are
determined in order that (Γ(R))c (that is, the complement
of the zero-divisor graph of R) is planar. It is noted that,
if (Γ(R))c is planar, then the number of maximal N-primes
of (0) in R is at most three. Firstly, we consider rings
R admitting exactly three maximal N-primes of (0) and
present a characterization of such rings in order that the
complement of their zero-divisor graphs be planar. Secondly,
we consider rings R admitting exactly two maximal N-primes
of (0) and investigate the problem of when the complement
of their zero-divisor graphs is planar. Thirdly, we consider
rings R admitting only one maximal N-prime of (0) and
determine necessary and sufficient conditions in order that
the complement of their zero-divisor graphs be planar.

1. Introduction. All rings considered in this article are nonzero
commutative rings with identity. Unless otherwise specified, we con-
sider rings which admit at least two nonzero zero-divisors. For any
ring R, and for any R-module M , the set of zero-divisors of M as an
R-module denoted by ZR(M) is defined as ZR(M) = {r ∈ R | rm =
0 for some m ∈ M \ {0}}. In the special case when M = R, ZR(R) is
simply denoted by Z(R). We denote by Z(R)∗ the set of all nonzero
zero-divisors of R.

Let R be a ring which is not an integral domain. Recall from [5] that
the zero-divisor graph of R, denoted by Γ(R), is defined as the graph
whose vertex set is Z(R)∗ and distinct x, y ∈ Z(R)∗ are joined by an
edge in this graph if and only if xy = 0. Many interesting and inspiring
theorems are known about zero-divisor graphs. Several researchers
investigated in the area of zero-divisor graphs, and the theorems proved
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in this topic either characterize rings R such that Γ(R) has a specific
graph theoretic property or describe the relationship between the ring
theoretic properties of R and the graph theoretic properties of Γ(R).
Among many interesting research papers that appeared in this area,
we mention the following research papers which mainly motivate the
present work [1, 4, 5, 8, 9, 15, 16].

First, it is useful to recall the following definitions from the theory of
graphs. Let G = (V,E) be a graph. Recall from [7, Definition 8.1.1]
that G is said to be planar if G can be drawn in a plane in such a way
that no two edges of G intersect in a point other than a vertex of G.

Let n ∈ N. A complete graph on n vertices is denoted by Kn. For
any set A, we denote by |A|, the cardinality of A. A graph G is said
to be bipartite if its vertex set can be partitioned into two nonempty
subsets V1 and V2 such that each edge of G has one end in V1 and the
other in V2. A bipartite graph with vertex partition V1 and V2 is said
to be complete if each element of V1 is adjacent to every element of
V2. Let m,n ∈ N. Let G = (V,E) be a complete bipartite graph with
V = V1 ∪ V2. If |V1| = m and |V2| = n, then G is denoted by Km,n [7,
Definitions 1.1.12].

Recall that two adjacent edges of a graph G are said to be in series
if their common end vertex is of degree two [11, page 9]. Two graphs
are said to be homeomorphic if one graph can be obtained from the
other by insertion of vertices of degree two or by the merger of edges
in series [11, page 100]. It is useful to note from [11, page 93] that the
graph K5 is referred to as Kuratowski’s first graph and the graph K3,3

is referred to as Kuratowski’s second graph. The celebrated theorem of
Kuratowski states that a graph G is planar if and only if G does not
contain either of Kuratowski’s two graphs or any graph homeomorphic
to either of them [11, Theorem 5.9].

Let G = (V,E) be a simple graph. Recall from [7, Definition
1.1.13] that the complement of G denoted by Gc is defined by taking
V (Gc) = V and making two vertices u and v adjacent in Gc if and only
if they are not adjacent in G.

Let R be a commutative ring with identity, and let |Z(R)∗| ≥ 2.
Suppose that (Γ(R))c contains at least one edge. Motivated by the
research work done on planar zero-divisor graphs which is presented
in the research papers [1, 4, 9, 15, 16], in this article, we make an
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attempt to determine all rings R such that (Γ(R))c is planar. For
an excellent survey of zero-divisor graphs in commutative rings and a
clear history on the problem of planar zero-divisor graphs, the reader
is referred to [3].

Let G = (V,E) be a graph. By a clique of G we mean a complete
subgraph of G [7, Definition 1.2.2]. Let G = (V,E) be a simple graph.
By the clique number of G, denoted by ω(G), we mean the largest
positive integer n such that G contains a clique on n vertices [7, page
185, Definition]. If G contains a clique on n vertices for all n ≥ 1, then
we set ω(G) = ∞.

We now proceed to describe the results that are proved in this article.
First, it is convenient to name the following conditions satisfied by a
graph G = (V,E) so that it can be used throughout this work.

Let G = (V,E) be a graph.

(i) We say that G satisfies (C1) if G does not contain K5 as a
subgraph (that is, equivalently, if ω(G) ≤ 4).

(ii) We say that G satisfies (C2) if G does not contain K3,3 as a
subgraph.

Next, we recall the following definition from commutative ring theory.
Let I be an ideal of a ring R, I �= R. A prime ideal P of R is said to be
a maximal N -prime of I if P is maximal with respect to the property of
being contained in ZR(R/I) [13]. Note that maximal N -primes always
exist by theorems of Zorn and Krull [14, Section 1-1]. Thus, a prime
ideal P of R is a maximalN -prime of (0) if P is maximal with respect to
the property of being contained in Z(R). Let {Pα}α∈Λ be the set of all
maximal N -primes of (0) in R. It is well known that Z(R) = ∪α∈ΛPα

[14, Theorem 2].

This article consists of five sections. Let R be a commutative ring
with identity. Initially it is observed in Section 2 (see Proposition
2.1) that if R has more than three maximal N -primes of (0), then
(Γ(R))c does not satisfy (C1) and it does not satisfy (C2). The main
result of this section is Proposition 2.4 which determines necessary and
sufficient conditions in order that (Γ(R))c be planar where R is a ring
with exactly three maximal N -primes of (0).

In Section 3, we consider commutative rings R with identity such that
R admits exactly two maximal N -primes of (0) and focus our study on
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the problem of characterizing when (Γ(R))c is planar. With the help of
Lemma 3.1, Remark 3.2, Lemmas 3.3 and 3.4 and Proposition 3.5, the
main result of this section is deduced in Remark 3.6, which provides,
up to isomorphism of rings, a complete list of rings R such that (Γ(R))c

is planar.

In Section 4, we consider commutative rings R with identity such that
|Z(R)∗| ≥ 2, R has exactly one maximalN -prime of (0), and determine
necessary and sufficient conditions in order that (Γ(R))c be planar
under the assumption that (Γ(R))c contains at least one edge. The
main results proved in this section are Propositions 4.15 and 4.19 and
Corollary 4.20. We prove in Proposition 4.15 that (Γ(R))c satisfies (C2)
implies that (Γ(R))c satisfies (C1). It is shown in Proposition 4.19 that
(Γ(R))c satisfies (C2) if and only if |R| = 8 or 16 and (Γ(R))c is planar.
With the help of Proposition 4.19, [5, Theorem 3.2], and relevant results
from [9, 10], in Corollary 4.20 we provide, up to isomorphism of rings,
a complete list of rings R such that (Γ(R))c is planar.

Let T be a commutative ring with identity which has a unique
maximal N -prime of (0). Let P be the unique maximal N -prime of (0)
in T . Suppose that (Γ(T ))c contains at least one edge. In Section 5,
we attempt to answer the question of determining rings T such that
(Γ(T ))c satisfies (C1). The main result of this section is Corollary 5.5
in which it is proved that (Γ(T ))c satisfies (C2) if and only if (Γ(T ))c

satisfies (C1) and |P/P 2| ≤ 4.

Let R be a commutative ring with identity which admits at least
two nonzero zero-divisors. This article determines, up to isomorphism
of rings, all rings R such that (Γ(R))c is planar(see Proposition 2.4,
Remark 3.6 and Corollary 4.20). We observe from the results proved
in this article that, if a ring R is such that (Γ(R))c is planar, then R
must be finite (except in the case where R has exactly one maximal
N -prime of (0) such that (Γ(R))c has no edges) and, moreover, |R| ∈
{4, 6, 8, 9, 10, 12, 15, 16, 20, 25}.
2. Characterization of rings R such that R has exactly three

maximal N-primes of (0) and (Γ(R))c is planar. Let R be a
commutative ring with identity which is not an integral domain. The
following proposition gives a bound on the maximal N -primes of (0)
in R so that (Γ(R))c satisfies either (C1) or (C2). We make use of
the following observation in the proofs of several results of this article.
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Suppose that a graph G contains K6 as a subgraph. Then G admits
K5 as a subgraph and it also contains K3,3 as a subgraph. Hence, G
does not satisfy (C1) and it does not satisfy (C2).

Proposition 2.1. Let R be a commutative ring with identity. If R
has more than three maximal N -primes of (0), then (Γ(R))c does not
satisfy (C1) and it does not satisfy (C2).

Proof. In view of the hypothesis on the set of all N -primes of (0) in R,
it is possible to find a subset {P1, P2, P3, P4} of the set of all maximal
N -primes of (0) in R. Let 1 ≤ i ≤ 4. Let xi ∈ Pi \ (∪j∈{1,2,3,4}\{i}Pj).
Let x5 ∈ (P1∩P2)\(P3∪P4), and let x6 ∈ (P2∩P3)\(P1∪P4). It is easy
to verify that xi �= xj and xixj �= 0 for all i, j ∈ {1, 2, 3, 4, 5, 6} with
i �= j. Hence, the subgraph of (Γ(R))c induced on {x1, x2, x3, x4, x5, x6}
is a clique. This implies, as is observed in the beginning of this section,
that (Γ(R))c does not satisfy (C1) and it does not satisfy (C2).

Let R be a commutative ring with identity which has exactly three
maximal N -primes of (0). Let {P1, P2, P3} be the set of all maximal
N -primes of (0) in R. Our aim is to determine necessary and sufficient
conditions in order that (Γ(R))c be planar. In order to achieve that
aim, we next have the following lemma.

Lemma 2.2. Let R be a commutative ring with identity which has
exactly three maximal N -primes of (0). Let {P1, P2, P3} be the set of
all maximal N -primes of (0) in R. If ∩3

i=1Pi �= (0), then (Γ(R))c does
not satisfy (C1) and it does not satisfy (C2).

Proof. Let x ∈ ∩3
i=1Pi, x �= 0. Let xi ∈ Pi \ (∪j∈{1,2,3}\{i}Pj). Let

yi = xi + x. If i �= j, then xi ∈ Pi \ Pj and yi ∈ Pi \ Pj . Hence,
xi �= xj , yi �= yj , and xi �= yj . Moreover, there is a k ∈ {1, 2, 3} such
that xi, xj /∈ Pk and yi, yj /∈ Pk. Hence, xixj �= 0, yiyj �= 0 and
xiyj �= 0. For any i, as x �= 0, xi �= yi. As xi, yi /∈ Pj for any j �= i, it
follows that xiyi �= 0. Hence, we obtain that the subgraph of (Γ(R))c

induced on {x1, x2, x3, y1, y2, y3} is a clique and hence it contains K5

and K3,3 as subgraphs. Thus, if ∩3
i=1Pi �= (0), then (Γ(R))c does not

satisfy (C1) and it does not satisfy (C2).

LetR, {P1, P2, P3} be as in the statement of Lemma 2.2. If |R/Pi| ≥ 3
for some i ∈ {1, 2, 3}, then we show in Proposition 2.4 that (Γ(R))c does
not satisfy either (C1) or (C2). We need the following result for proving
Proposition 2.4.
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Lemma 2.3. Let R1, R2, and R3 be integral domains. Let T =
R1 ×R2 ×R3. If |Ri| ≥ 3 for some i ∈ {1, 2, 3}, then (Γ(T ))c does not
satisfy either (C1) or (C2).

Proof. We may assume, without loss of generality, that |R1| ≥ 3.
Let x ∈ R1 \ {0, 1}. Let t1 = (1, 0, 0), t2 = (1, 1, 0), t3 = (1, 0, 1),
t4 = (x, 0, 0), t5 = (x, 1, 0) and t6 = (x, 0, 1). Since R1 is an integral
domain, it follows that x2 �= 0 and so the subgraph of (Γ(T ))c induced
on {t1, t2, t3, t4, t5, t6} is a clique. Hence, we obtain that the (Γ(T ))c

contains K5 and K3,3 as subgraphs. Thus, if |Ri| ≥ 3 for some
i ∈ {1, 2, 3}, then (Γ(T ))c does not satisfy either (C1) or (C2).

Let R be a commutative ring with identity. Suppose that R has
exactly three maximalN -primes of (0). The following proposition is the
main result of this section, and it determines necessary and sufficient
conditions in order that (Γ(R))c be planar. For any n > 1, we denote
by Zn, the ring of integers modulo n.

Proposition 2.4. Let R be a commutative ring with identity which
has exactly three maximal N -primes of (0). Let {P1, P2, P3} be the set
of all maximal N -primes of (0) in R. The following statements are
equivalent:

(i) (Γ(R))c satisfies (C1).

(ii) R ∼= Z2 × Z2 × Z2 as rings.

(iii) (Γ(R))c satisfies (C2).

(iv) (Γ(R))c is planar.

Proof. (i) ⇒ (ii). It follows from Lemma 2.2 that ∩3
i=1Pi = (0).

Since (Γ(R))c satisfies (C1), ω((Γ(R))c) ≤ 4. Now it follows from
[17, Proposition 4.4] that R is finite. Hence, each prime ideal of R
is a maximal ideal of R. Now we obtain from the Chinese remainder
theorem that R = R/(0) = R/ ∩3

i=1 Pi
∼= R/P1 × R/P2 × R/P3 as

rings. On applying Lemma 2.3, we obtain that |R/Pi| = 2 for each
i ∈ {1, 2, 3}. Hence, we arrive at R ∼= Z2 × Z2 × Z2 as rings.

(ii) ⇒ (iii). Let T = Z2 × Z2 × Z2. Since R ∼= T as rings, it is
enough to show that (Γ(T ))c satisfies (C2). Note that Z(T )∗ = {z1 =
(1, 0, 0), z2 = (0, 1, 0), z3 = (0, 0, 1), z4 = (1, 1, 0), z5 = (0, 1, 1), z6 =
(1, 0, 1)}. Since |Z(T )∗| = 6 and as (Γ(T ))c admits vertices of degree
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two (indeed deg(Γ(T ))c(zi) = 2 for i = 1, 2, 3), it follows that (Γ(T ))c

satisfies (C2).

(iii) ⇒ (ii). Suppose that (iii) holds. Then ω((Γ(R))c) ≤ 5. Hence, it
follows from [17, Proposition 4.4] that R is finite. Note that (ii) follows
as in the proof of (i) ⇒ (ii) with the help of Lemmas 2.2 and 2.3.

(ii) ⇒ (i). Let T be as in the proof of (ii) ⇒ (iii). Since R ∼= T as
rings, it is enough to show that (Γ(T ))c satisfies (C1). It can be easily
verified that ω((Γ(T ))c) = 3. Hence we obtain that (Γ(T ))c satisfies
(C1).

(iv) ⇒ (i) is clear since a subgraph of a planar graph is planar and it
is well known that K5 is nonplanar.

(i) ⇒ (iv). It follows from (i) ⇒ (ii) that R ∼= Z2 ×Z2 ×Z2 as rings.
Let T = Z2×Z2×Z2. It is easy to verify that (Γ(T ))c is the union of the
cycles Γi for i = 1, 2, with Γ1 : (1, 1, 0)− (1, 0, 0)− (1, 0, 1)− (0, 0, 1)−
(0, 1, 1)−(0, 1, 0)−(1, 1, 0) and Γ2 : (1, 1, 0)−(1, 0, 1)−(0, 1, 1)−(1, 1, 0).
The cycle Γ1 can be represented by means of a hexagon. The vertex
set of the cycle Γ2 is a subset of the vertex set of the hexagon that
represents Γ1. Hence, the cycle Γ2 can be drawn inside this hexagon
in such a way that there is no crossing over of the edges of (Γ(T ))c.
Hence we obtain that (Γ(T ))c is planar and so (Γ(R))c is planar.

3. Determination of rings R such that R has exactly two
maximal N-primes of (0) and (Γ(R))c is planar. Let R be a
commutative ring with identity, and suppose that R has exactly two
maximal N -primes of (0). Let {P1, P2} denote the set of all maximal
N -primes of (0) in R. Our aim in this section is to determine ring
theoretic necessary and sufficient conditions in order that (Γ(R))c be
planar. If (Γ(R))c is planar, then (Γ(R))c must satisfy (C1) and (C2).
Hence ω((Γ(R))c) ≤ 5. Therefore, we obtain from [17, Proposition 4.4]
that R is finite. Since any prime ideal of a finite ring is maximal, it
follows from [14, Theorem 84] that any prime ideal of R is a subset of
the set of zero-divisors of R. Hence, it follows that {P1, P2} is the set
of all prime ideals of R. Let (0) = q1 ∩ q2 be the irredundant primary
decomposition of (0) in R where qi is Pi-primary for i = 1, 2. Since
P1+P2 = R, it follows that q1+q2 = R. Therefore, we obtain from the
Chinese remainder theorem [6, Proposition 1.10] that R ∼= R/q1×R/q2
as rings. In view of the above discussion, in this section we consider
rings R of the form R1 × R2 where Ri admits exactly one maximal
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N -prime of (0) for i = 1, 2 and study the problem of when (Γ(R))c is
planar. We initially prove several lemmas and present the main result
of this section in Remark 3.6. We start with the following lemma.

Lemma 3.1. Let T1 and T2 be commutative rings with identity such
that each of them admits a unique maximal N -prime of (0) (that is,
equivalently, Z(Ti) is an ideal of Ti for i = 1, 2). Let T = T1 × T2.
Then the following hold:

(i) If both T1 and T2 are not domains, then (Γ(T ))c does not satisfy
either (C1) or (C2).

(ii) If Ti is a domain for some i ∈ {1, 2} with |Ti| ≥ 6, then (Γ(T ))c

does not satisfy either (C1) or (C2).

Proof. (i) Let us denote Z(Ti) by Ni for i = 1, 2. Since Ti is not an
integral domain for i = 1, 2, it follows that |Ni| ≥ 2 for i = 1, 2. Let
a ∈ N1 \ {0} and b ∈ N2 \ {0}. Note that 1 + a /∈ N1 = Z(T1) and
1 + b /∈ N2 = Z(T2). Hence, it follows that the subgraph of (Γ(T ))c

induced on {(a, 1), (a, b), (a, 1 + b), (1, 0), (1, b), (1 + a, 0)} is a clique.
Thus, (Γ(T ))c contains K6 as a subgraph. Hence, (Γ(T ))c does not
satisfy either (C1) or (C2).

This proves that, if both T1 and T2 are not domains, then (Γ(T ))c

does not satisfy either (C1) or (C2).

(ii) We may assume, without loss of generality, that T1 is a domain
with |T1| ≥ 6. We claim that |T1| must exceed 6. This is clear
if T1 is infinite. If T1 is finite, then as the number of elements
in any finite field is a prime power, it follows that |T1| > 6. Let
{xi|i ∈ {1, 2, 3, 4, 5, 6}} ⊆ T1 \ {0}. Observe that the subgraph of
(Γ(T ))c induced on {(xi, 0) | i ∈ {1, 2, 3, 4, 5, 6}} is a clique. Hence,
(Γ(T ))c does not satisfy either (C1) or (C2). This proves (ii).

Remark 3.2. Let R = R1 × R2 where Ri is a finite local ring with
unique maximal ideal Mi for i = 1, 2. Note that Z(Ri) = Mi for
i = 1, 2. Suppose that (Γ(R))c satisfies either (C1) or (C2). Then
it follows immediately from Lemma 3.1 (i) that either R1 or R2 is a
field.

Let F1 and F2 be fields, and let R = F1 × F2. The following
lemma provides necessary and sufficient conditions on F1 and F2 so
that (Γ(R))c is planar.



COMPLEMENT OF THE ZERO-DIVISOR GRAPH 575

Lemma 3.3. Let F1 and F2 be fields. Let R = F1 × F2. Then the
following statements are equivalent:

(i) (Γ(R))c satisfies (C1).

(ii) |Fi| ≤ 5 for i = 1, 2.

(iii) (Γ(R))c satisfies (C2).

(iv) (Γ(R))c is planar.

Proof. (i) ⇒ (ii) and (iii) ⇒ (ii) follow immediately from Lemma
3.1 (ii).

(ii) ⇒ (iv). Observe that (Γ(R))c consists of exactly two components
H1, H2 with V (H1) = {(α, 0) | α ∈ F1 \ {0}} and V (H2) = {(0, β) |
β ∈ F2 \ {0}}. Since |Fi| ≤ 5, it follows that |V (Hi)| ≤ 4 for i = 1, 2.
Hence, Hi is planar for i = 1, 2 and so we obtain that (Γ(R))c is planar.

(iv) ⇒ (i) and (iv) ⇒ (iii) follow because any subgraph of a planar
graph is planar and, moreover, K5 and K3.3 are nonplanar.

Let F1 be a field and R2 a commutative ring with identity which is
not an integral domain. Suppose that R2 has exactly one maximal N -
prime of (0). Let R = F1 ×R2. We determine in Proposition 3.5 when
(Γ(R))c is planar. We make use of the following lemma in the proof of
Proposition 3.5.

Lemma 3.4. Let F be a field and S a commutative ring with
identity which is not an integral domain. Suppose that S has exactly
one maximal N -prime of (0). Let P be the unique maximal N -prime
of (0) in S. Let T = F × S. Then the following hold:

(i) If |F | ≥ 4, then (Γ(T ))c does not satisfy either (C1) or (C2).

(ii) If |S \ P | ≥ 4, then (Γ(T ))c does not satisfy either (C1) or (C2).

Proof. (i) As |F | ≥ 4, it is possible to find a subset {α, β, γ} of F \{0}.
Let x ∈ P \ {0}. Let A = {(α, 0), (β, 0), (γ, 0), (α, x), (β, x), (γ, x)}.
Note that A ⊆ Z(T )∗ and the subgraph of (Γ(T ))c induced on A is a
clique. Hence, (Γ(T ))c contains K6 as a subgraph. Therefore, (Γ(T ))c

does not satisfy either (C1) or (C2).

(ii) By assumption, |S \P | ≥ 4. Hence it follows from [12, Theorem
1] that P = Z(S) must contain at least three elements. One can
also appeal to [5] to conclude that |P | ≥ 3. Indeed, if |P | ≤ 2,
then since S is not an integral domain, |P | = 2. Hence, it follows
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from [5] that S is isomorphic either to Z4 or to Z2[x]/x
2Z2[x]. This

implies that |S \ P | = 2. This is a contradiction. Hence, |P | ≥ 3.
Let {s1, s2, s3, s4} ⊆ S \ P , and let {x, y} ⊆ P \ {0}. Let B =
{(0, s1), (0, s2), (0, s3), (0, s4), (1, x), (1, y)}. Observe that B ⊆ Z(T )∗.
Since si /∈ Z(S) for all i ∈ {1, 2, 3, 4}, it follows that the subgraph of
(Γ(T ))c induced on B is a clique. Thus, if |S \ P | ≥ 4, then (Γ(T ))c

contains K6 as a subgraph, and hence we obtain that (Γ(T ))c does not
satisfy either (C1) or (C2).

The following proposition characterizes rings R = F1 × R2 such
that (Γ(R))c is planar where F1 and R2 are as in the paragraph just
preceding the statement of Lemma 3.4.

Proposition 3.5. Let F1 be a field and R2 a commutative ring with
identity which is not an integral domain. Suppose that R2 has exactly
one maximal N -prime of (0). Let R = F1 × R2. Then the following
statements are equivalent:

(i) (Γ(R))c satisfies (C1).

(ii) |F1| ≤ 3 and |R2| = 4.

(iii) (Γ(R))c satisfies (C2).

(iv) (Γ(R))c is planar.

Proof. (i) ⇒ (ii) and (iii) ⇒ (ii). Let N2 denote the unique
maximal N -prime of (0) in R2. If either (i) or (iii) holds, then it
follows from Lemma 3.4 that |F1| ≤ 3 and |R2 \ N2| ≤ 3. Since
1 + x ∈ R2 \ N2, for all x ∈ N2, it follows that |N2| ≤ 3. Thus,
|R2| = |N2|+ |R2 \N2| ≤ 3 + 3 = 6. Since R2 is not a field, 4 ≤ |R2|.
Hence, 4 ≤ |R2| ≤ 6. Now R2 is a finite ring with N2 as its unique
maximal N -prime of (0). Since any prime ideal of a finite ring is
maximal and any prime ideal of a finite ring is contained in its set
of all zero-divisors, it follows that R2 is a finite local ring with N2 as its
unique maximal ideal. Therefore, |R2| must be a prime power. Hence,
we obtain that |R2| = 4. This proves (i) ⇒ (ii) and (iii) ⇒ (ii).

(ii) ⇒ (iv). Observe that |Z(R2)
∗| = 1, |R2 \ Z(R2)| = 2. Let

Z(R2) = {0, a}. Note that R2 = {0, 1, a, 1 + a}. Now either |F1| = 2
or |F1| = 3.

Let |F1| = 2. Then F1 = {0, 1}. Now Z(R)∗ = {(0, a), (0, 1), (0, 1 +
a), (1, 0), (1, a)}. It is easy to verify that (Γ(R))c is the union of the
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cycle Γ : (0, 1)− (0, a)− (0, 1 + a)− (1, a)− (0, 1) and two edges e1, e2
where e1 : (0, 1)− (0, 1 + a) and e2 : (1, a)− (1, 0). The cycle Γ can be
represented by means of a rectangle. Note that e1 is a diagonal of the
rectangle that represents Γ. Now it is clear that (Γ(R))c can be drawn
in a plane in such a way that there is no crossing over of the edges, and
hence we obtain that (Γ(R))c is planar.

Let |F1| = 3. Let F1 = {0, 1, α}. Note that Z(R)∗ = {(0, 1), (0, a),
(0, 1 + a), (1, 0), (1, a), (α, 0), (α, a)}. Observe that the subgraph H1 of
(Γ(R))c induced on {(1, a), (α, a), (1, 0), (α, 0)} is a complete graph on
four vertices and the subgraph H2 of (Γ(R))c induced on {(1, a), (α, a),
(0, 1), (0, 1 + a)} is also a complete graph on four vertices. Moreover,
(Γ(R))c is the union of H1, H2 and the cycle Γ : (0, 1 + a) − (0, a) −
(0, 1)− (0, 1+ a). Observe that the edge (1, a)− (α, a) is the only edge
which is common to both H1 and H2. Note that the cycle Γ has no
edge in common with H1 and (0, 1)− (0, 1 + a) is the only edge which
is common to both H2 and Γ. Since K4 is planar, it follows from the
above description of (Γ(R))c that it can be drawn in a plane in such
a way that there is no crossing over of the edges. This proves that
(Γ(R))c is planar.

(iv) ⇒ (i) and (iv) ⇒ (iii) follow as in the argument given for (iv) ⇒
(i) and (iv) ⇒ (iii) of Lemma 3.3.

The following remark determines up to isomorphism of rings, the
commutative ringsR with identity such thatR has exactly two maximal
N -primes of (0) and (Γ(R))c is planar.

Remark 3.6. Let R be a commutative ring with identity. Suppose
that R has exactly two maximal N -primes of (0). If (Γ(R))c satisfies
either (C1) or (C2), then it is noted in the beginning of this section
that R is necessarily finite and, moreover, if (0) = q1 ∩ q2 is the
irredundant primary decomposition of (0) in R, then it follows from the
Chinese remainder theorem that R ∼= R/q1 × R/q2 as rings. Observe
that it follows from Lemma 3.1, Remark 3.2, Lemmas 3.3 and 3.4 and
Proposition 3.5 that (Γ(R))c satisfies (C1) if and only if (Γ(R))c satisfies
(C2) if and only if (Γ(R))c is planar if and only if R is isomorphic to
exactly one of the rings given below:

(i) F1 × F2 where F1 and F2 are fields with |Fi| ≤ 5 for i = 1, 2.

(ii) Z2 × Z4.
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(iii) Z2 × Z2[x]/x
2Z2[x] where Z2[x] is the polynomial ring in one

variable over Z2.

(iv) Z3 × Z4.

(v) Z3 × Z2[x]/x
2Z2[x].

4. Characterization of rings R such that R has exactly one
maximal N-prime of (0) and (Γ(R))c is planar. Let R be a
commutative ring with identity and suppose that R has exactly one
maximal N -prime of (0). Let P be the unique maximal N -prime of
(0) in R. We assume that (Γ(R))c contains at least one edge. That
is, there exist a, b ∈ P such that a �= b and ab �= 0. It is useful to
mention here that (Γ(R))c contains at least one edge equivalent to the
condition that P 2 �= (0) [5, Theorem 2.8]. The aim of this section is
to determine all such rings R such that (Γ(R))c is planar. We prove
in this section that, for such rings R, (Γ(R))c is planar if and only if
(Γ(R))c satisfies both (C1) and (C2). It is worth mentioning here that
[11, Figure 5.9 (a)] illustrates that a graph satisfying both (C1) and
(C2) need not be planar.

It is noted in Section 2 that, if T is a commutative ring with identity
with exactly three maximal N -primes of (0), then (Γ(T ))c satisfies
(C1) if and only if it satisfies (C2) if and only if (Γ(T ))c is planar. In
Section 3, it is proved that, for any commutative ring S with identity
which has exactly two maximal N -primes of (0), (Γ(S))c satisfies (C1)
if and only if it satisfies (C2) if and only if (Γ(S))c is planar. The
following example illustrates that there exists a commutative ring R
with identity such that R has exactly one maximal N -prime of (0)
with the property that (Γ(R))c satisfies (C1) but it does not satisfy
(C2).

Example 4.1. Let T = Z2[x1, x2, x3] be the polynomial ring
in three variables over Z2. Let I be the ideal of T generated by
{x2

1, x
2
2, x

2
3, x2x3, x3x1}. Let R = T/I. Then (Γ(R))c satisfies (C1)

but it does not satisfy (C2).

Proof. Observe that R is a finite local ring with unique maximal
ideal M = N/I where N = Tx1 + Tx2 + Tx3. Moreover, M2 �= (0),
but M3 = (0). We show that (Γ(R))c satisfies (C1) by proving that
ω((Γ(R))c) = 3.
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For any element f(x1, x2, x3) ∈ T , we denote f(x1, x2, x3) + I by
f(x1, x2, x3). Note that x1x2 �= 0. Let r1 = x1, r2 = x1 + x2, r3 =
x2 + x3. Observe that the subgraph of (Γ(R))c induced on {r1, r2, r3}
is a clique. Hence, ω((Γ(R))c) ≥ 3. Let A ⊆ Z(R)∗ = M \ {0} be
such that A contains exactly 4 elements. We claim that the subgraph
of (Γ(R))c induced on A is not a clique. Suppose that the subgraph of
(Γ(R))c induced on A is a clique. Let A = {a1, a2, a3, a4}. Note that
ai = ai1x1 + ai2x2 + ai3x3 + ai12x1x2 where ai1, ai2, ai3, ai12 ∈ Z2 for
i = 1, 2, 3, 4. Since aiaj �= 0 for all i, j ∈ {1, 2, 3, 4} with i �= j, it
follows that ai2 must be 1 for at least three values of i ∈ {1, 2, 3, 4}.
We may assume, without loss of generality, that a12 = a22 = a32 = 1.
Since a1a2 �= 0, it follows that exactly one between a11 and a21 must
be 0. We may assume that a11 = 1 and a21 = 0. Now either a31 = 1 or
a31 = 0. If a31 = 1, then a1a3 = 0 and this is impossible. If a31 = 0,
then a2a3 = 0. This is also impossible. This proves that the subgraph
of (Γ(R))c induced on A cannot be a clique. Hence, ω((Γ(R))c) ≤ 3
and so ω((Γ(R))c) = 3. Therefore, we obtain that (Γ(R))c satisfies
(C1).

We next verify that (Γ(R))c does not satisfy (C2). Let r1 = x1,
r2 = x2, r3 = x2 + x3, r4 = x1 + x2, r5 = x1 + x2 + x1x2 and
r6 = x1 + x2 + x3. Let V1 = {r1, r2, r3}, V2 = {r4, r5, r6}. Observe
that the subgraph of (Γ(R))c induced on V1 ∪ V2 contains K3,3 as a
subgraph. Hence, (Γ(R))c does not satisfy (C2).

We prove in Proposition 4.15 that if a commutative ring R with
identity is such that R has exactly one maximalN -prime of (0), (Γ(R))c

contains at least one edge and, if it satisfies (C2), then it satisfies (C1).

Let T be a commutative ring with identity with exactly one maximal
N -prime of (0). Let P be the unique maximal N -prime of (0) in T . It
was shown in [17, Proposition 4.21] that if ω((Γ(T ))c) < ∞, then P is
nilpotent. Indeed, it was shown in [17, Proposition 4.21] that Pn = (0)
where n = (ω((Γ(T ))c))2 + 1. The following lemma is an improvement
of [17, Proposition 4.21] and, moreover, we need this lemma to prove
other results in this note.

Lemma 4.2. Let T be a commutative ring with identity which has
exactly one maximal N -prime of (0). Let P be the unique maximal
N -prime of (0) in T . Let n ≥ 4. If ω((Γ(T ))c) ≤ n, then Pn−1 = (0).
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Proof. Note that Z(T ) = P . We first show that, for any
a, a1, . . . , an−3 ∈ P , a2a1 · · · an−3 = 0. Suppose that a2a1 · · · an−3 �= 0.
Let

t1 = a,

t2 = a+ aa1 = a(1 + a1),

t3 = a+ aa1 + aa1a2 = a(1 + a1 + a1a2), . . .

tn−2 = a+ aa1 + aa1a2 + · · ·+ aa1a2 · · · an−3

= a(1 + a1 + a1a2 + · · ·+ a1a2 · · · an−3),

tn−1 = a+ aa1 + aa1a2 + · · ·+ aa1a2 · · · an−3 + a2a1a2 · · ·an−3

= a(1 + a1 + a1a2 + · · ·+ a1a2 · · · an−3 + aa1a2 · · · an−3),

tn = a + a2a1a2 · · ·an−3 = a(1 + aa1a2 · · ·an−3), and tn+1 = aa1.
Using the assumption that a2a1 · · · an−3 �= 0, and the fact that, for
any x ∈ P , 1 + x /∈ P = Z(T ), it can be easily verified that ti �= tj
and titj �= 0 for all i, j ∈ {1, 2, . . . , n + 1} with i �= j. Hence, the
subgraph of (Γ(T ))c induced on {tk|k = 1, 2, . . . , n + 1} is a clique.
This is impossible since, by hypothesis, ω((Γ(T ))c) ≤ n. Therefore, we
obtain that a2a1 · · · an−3 = 0 for all a, a1, . . . , an−3 ∈ P .

Let x1, x2, . . . , xn−1 ∈ P be such that xi �= xj for all i, j ∈
{1, 2, . . . , n − 1} with i �= j. We claim that x1x2 · · ·xn−1 = 0.
Suppose that x1x2 · · ·xn−1 �= 0. We assert that x2

k = 0 for each
k = 1, 2, . . . , n− 1. Suppose that x2

k �= 0 for some k ∈ {1, . . . , n− 1}.
We may assume without loss of generality that x2

1 �= 0. For i ∈
{1, 2, . . . , n+1}, let yi ∈ P be defined by yi = xi for i = 1, 2, . . . , n−1,
yn = x1 + x1x2 · · ·xn−2 = x1(1 + x2 · · ·xn−2), and yn+1 = x1 +
x1x2 · · ·xn−1 = x1(1 + x2 · · ·xn−1). We know from the first paragraph
of this proof that a2a1 · · · an−3 = 0 for any a, a1, . . . , an−3 ∈ P . Using
this and the assumptions that x2

1 �= 0, x1x2 · · ·xn−1 �= 0, and the fact
that, for any a ∈ P , 1 + a /∈ P = Z(T ), it can be easily verified
that yi �= yj for all distinct i, j ∈ {1, 2, . . . , n + 1} and the subgraph
of (Γ(T ))c induced on {yk | k = 1, 2, . . . , n + 1} is a clique. This
contradicts the hypothesis that ω((Γ(T ))c) ≤ n. Hence, we obtain that
x2
k = 0 for each k = 1, 2, . . . , n− 1.

Let zi ∈ P for i = 1, 2, . . . , n + 1 be defined by zi = xi for
i = 1, 2, . . . , n−1, zn = x1+x2x3 · · ·xn−2 and zn+1 = x1+x2 · · ·xn−1.
Using the fact that x2

k = 0 for each k = 1, 2, . . . , n − 1 and the
assumption that x1x2 · · ·xn−1 �= 0, it can be shown that zi �= zj ,
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and zizj �= 0 for all i, j ∈ {1, 2, . . . , n + 1} with i �= j. Hence, the
subgraph of (Γ(T ))c induced on {zi | i = 1, 2, . . . , n + 1} is a clique.
This is impossible since ω((Γ(T ))c) ≤ n. Thus, for any (n− 1) distinct
elements xi ∈ P for i = 1, 2, . . . , n− 1, x1x2 · · ·xn−1 = 0.

This proves that, if ω((Γ(T ))c) ≤ n, then Pn−1 = (0).

As an immediate consequence of Lemma 4.2, we have the following
corollary. We state this as a separate corollary for the sake of convenient
reference.

Corollary 4.3. Let T be a commutative ring with identity which
has exactly one maximal N -prime of (0). Let P be the unique maximal
N -prime of (0) in T . Then the following hold:

(i) If (Γ(T ))c satisfies (C1), then P 3 = (0).

(ii) If (Γ(T ))c satisfies (C2), then P 4 = (0).

Proof. (i) Assume that (Γ(T ))c satisfies (C1). Hence, (Γ(T ))c does
not containK5 as a subgraph and so ω((Γ(T ))c) ≤ 4. Now, on applying
Lemma 4.2 with n = 4, we obtain that P 3 = (0).

(ii) Assume that (Γ(T ))c satisfies (C2). Therefore, (Γ(T ))
c does not

containK3,3 as a subgraph. AsK6 admitsK3,3 as a subgraph, it follows
that (Γ(T ))c does not containK6 as a subgraph. Hence, ω((Γ(T ))

c) ≤ 5
and so, on applying Lemma 4.2 with n = 5, we obtain that P 4 = (0).

Let T, P be as in the statement of Lemma 4.2. Suppose that P 2 �= (0).
If (Γ(T ))c does not contain any infinite clique, then it was shown in [17,
Lemma 4.14 (iii)] that P = ((0) :T c), for some c ∈ P \ {0}, and in [17,
Lemma 4.14 (ii)], it was shown that T/P is finite. We now proceed
to show below that |T/P | = 2 if (Γ(T ))c satisfies either (C1) or (C2).
Towards that goal, we first have the following result.

Lemma 4.4. Let T be a commutative ring with identity. Suppose
that T has only one maximal N -prime of (0), and let it be P . If
ω((Γ(T ))c) < ∞, and if there exists an a ∈ P such that a2 �= 0, and
|T/P | > 3, then ω((Γ(T ))c) ≥ 6.

Proof. By hypothesis, |T/P | > 3. Hence, there exist t, s ∈ T \ P
such that t − 1 /∈ P , s − 1 /∈ P and t− s /∈ P . As ω((Γ(T ))c) < ∞, it
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follows from Lemma 4.2 that P is nilpotent. Moreover, by hypothesis,
a2 �= 0 for some a ∈ P . Hence, P 2 �= (0). Let m ≥ 3 be least with the
property that Pm = (0). Then, for any c ∈ Pm−1 \ {0}, P = ((0) :T c).

Let v1 = a, v2 = at, v3 = as, v4 = a+ c, v5 = a+ ct and v6 = c+ at
where c ∈ P \ {0} is such that P = ((0) :T c). Using the assumption
that a2 �= 0, it follows from the choice of t, s that, for all distinct
i, j ∈ {1, 2, 3, 4, 5, 6}, vi �= vj and vivj �= 0. Hence, the subgraph of
(Γ(T ))c induced on {vk|k ∈ {1, 2, 3, 4, 5, 6}} is a clique. This implies
that ω((Γ(T ))c) ≥ 6.

We next have the following useful lemma which is a consequence of
Lemma 4.4.

Lemma 4.5. Let T, P be as in the statement of Lemma 4.2. Suppose
that P 2 �= (0). If ω(Γ(T ))c ≤ 5 and if |T/P | > 3, then 2 ∈ P .

Proof. By hypothesis, P 2 �= (0). Hence, by [3, Theorem 2.8], there
exist a, b ∈ P such that a �= b and ab �= 0. Moreover, by assumption,
ω((Γ(T ))c) ≤ 5 and |T/P | > 3. Hence, it follows from Lemma 4.4, that
x2 = 0 for each x ∈ P . Therefore, a2 = b2 = (a + b)2 = 0. Hence, we
obtain that 2ab = 0. Since ab �= 0, it follows that 2 ∈ Z(T ) = P .

The following lemma is also used in proving that if (Γ(T ))c satisfies
(C1), then |T/P | = 2.

Lemma 4.6. Let T, P be as in the statement of Lemma 4.2. Suppose
that P 2 �= (0). If ω((Γ(T ))c) ≤ 4, then |T/P | ≤ 3.

Proof. Since P 2 �= (0), there exist a, b ∈ P such that a �= b and
ab �= 0. Suppose that |T/P | > 3. Let t, s ∈ T \ P be such that
{t − 1, s − 1, t − s} ⊆ T \ P . Since ω((Γ(T ))c) ≤ 4, it follows from
Lemma 4.4 that a2 = b2 = 0. Consider the elements of P given
by w1 = a, w2 = a + bt, w3 = a + bs, w4 = b and w5 = a + b.
Since a2 = b2 = 0 and ab �= 0, it follows from the choice of t, s that
wi �= wj for all distinct i, j ∈ {1, 2, 3, 4, 5}. Moreover, it follows from
Lemma 4.5 that 2 ∈ P and, as {t− 1, s− 1, t− s} ⊆ T \ P , we obtain
that {t + 1, s + 1, t + s} ⊆ T \ P . Using these facts, it can be easily
verified that wiwj �= 0 for all distinct i, j ∈ {1, 2, 3, 4, 5}. Hence, the
subgraph of (Γ(T ))c induced on {wk|k ∈ {1, 2, 3, 4, 5}} is a clique. This
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contradicts the assumption that ω((Γ(T ))c) ≤ 4. This proves that
|T/P | ≤ 3.

We next have the following lemma which we use in the proof of
Propositions 4.8 and 4.10.

Lemma 4.7. Let T, P be as in the statement of Lemma 4.2. Suppose
that P 2 �= (0) and ω((Γ(T ))c) < ∞. If |T/P | = 3, then ω((Γ(T ))c) ≥ 6.

Proof. By hypothesis, ω((Γ(T ))c) < ∞. Hence, it follows as in
the proof of Lemma 4.4 that there exists a c ∈ P \ {0} such that
P = ((0) :T c). Moreover, by assumption, |T/P | = 3. Therefore, there
exists a t ∈ T \ P such that t − 1 /∈ P . Since P 2 �= (0), there exist
a, b ∈ P with a �= b and ab �= 0. As |T/P | = 3, 2 /∈ P . Hence from
ab �= 0, it follows that 2ab �= 0. Now it is clear that one among a2, b2

and (a+ b)2 must be nonzero. Either renaming a and b or on replacing
a by a+ b, if necessary, we may assume without loss of generality that
a, b ∈ P are such that a �= b, ab �= 0 and a2 �= 0. Consider the
elements of P given by z1 = a, z2 = ta, z3 = a + c, z4 = ta + c,
z5 = a+ tc and z6 = ta+ tc. Since a2 �= 0, it follows from the choice of
t that the elements z1, z2, z3, z4, z5, and z6 are distinct and, moreover,
zizj �= 0 for all distinct i, j ∈ {1, 2, 3, 4, 5, 6}. Hence, the subgraph of
(Γ(T ))c induced on {z1, z2, z3, z4, z5, z6} is a clique. This implies that
ω((Γ(T ))c) ≥ 6.

Proposition 4.8. Let T, P be as in the statement of Lemma 4.2.
Suppose that P 2 �= (0). If (Γ(T ))c satisfies (C1), then |T/P | = 2.

Proof. Assume that (Γ(T ))c satisfies (C1). That is, equivalently,
ω((Γ(T ))c) ≤ 4. It now follows from Lemmas 4.6 and 4.7 that
|T/P | = 2.

The following lemma is also used in the proof of Proposition 4.10.

Lemma 4.9. Let T, P be as in the statement of Lemma 4.2. Suppose
that P 2 �= (0). If (Γ(T ))c satisfies (C2), then |T/P | ≤ 3.

Proof. By hypothesis, (Γ(T ))c satisfies (C2). Hence, ω((Γ(T ))
c) ≤ 5.

Suppose that |T/P | > 3. Then, it follows from Lemma 4.4 that a2 = 0
for each a ∈ P . Let t, s ∈ T \P be such that {t−1, s−1, t−s} ⊆ T \P .
From Lemma 4.5, we obtain that 2 ∈ P .
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Since P 2 �= (0), there exist a, b ∈ P such that a �= b and ab �= 0.
Let W1 = {a, a + tb, a + sb}, and let W2 = {b, a+ b, a + b + c} where
c ∈ P \ {0} is such that P = ((0) :T c). Since 2 ∈ P , it follows that
{t+1, s+1, t+s} ⊆ T \P . Since a2 = b2 = 0 and ab �= 0, it can be easily
verified with the help of the choice of the elements t, s thatW1∩W2 = ∅

and, moreover, each element of W1 is adjacent to each element of W2 in
(Γ(T ))c. Hence the subgraph of (Γ(T ))c induced on W1 ∪W2 contains
K3,3 as a subgraph. This is in contradiction to the assumption that
(Γ(T ))c satisfies (C2). Hence, we obtain that |T/P | ≤ 3.

This completes the proof of Lemma 4.9.

Proposition 4.10. Let T, P be as in the statement of Lemma 4.2.
Suppose that P 2 �= (0). If (Γ(T ))c satisfies (C2), then |T/P | = 2.

Proof. Assume that (Γ(T ))c satisfies (C2). Then it follows immedi-
ately from Lemmas 4.9 and 4.7 that |T/P | = 2.

The following lemma is another step that we need to prove that if
(Γ(T ))c satisfies (C2), then it satisfies (C1).

Lemma 4.11. Let T, P be as in the statement of Lemma 4.2.
Suppose that (Γ(T ))c satisfies (C2). If there exists an ideal I of T
with I ⊆ ((0) :T P ) and |I| = 2, then (Γ(T ))c satisfies (C1).

Proof. Suppose that (Γ(T ))c does not satisfy (C1). Then there exists
a subset A = {a1, a2, a3, a4, a5} ⊆ P \ {0} such that the subgraph of
(Γ(T ))c induced on A is a clique. Hence, aiaj �= 0 for all distinct
i, j ∈ {1, 2, 3, 4, 5}.
Let i ∈ {1, 2, 3, 4, 5}. We assert that there exists a j ∈ {1, 2, 3, 4, 5} \

{i} such that ai − aj ∈ I. Suppose that it does not hold. Then, for
some i ∈ {1, 2, 3, 4, 5}, ai−aj /∈ I for all j ∈ {1, 2, 3, 4, 5}\{i}. Without
loss of generality, we may assume that a1−aj /∈ I for all j ∈ {2, 3, 4, 5}.
Let I = {0, c}. Let V1 = {a1, a1 + c, a2} and V2 = {a3, a4, a5}. Then it
is clear that V1∩V2 = ∅ and, moreover, using the fact that aiaj �= 0 for
all distinct i, j ∈ {1, 2, 3, 4, 5} and the hypothesis that I ⊆ ((0) :T P ),
it follows that the subgraph of (Γ(T ))c induced on V1 ∪ V2 contains
K3,3 as a subgraph. This is in contradiction to the assumption that
(Γ(T ))c satisfies (C2). Thus, for each i ∈ {1, 2, 3, 4, 5}, there exists a
j ∈ {1, 2, 3, 4, 5} \ {i} such that ai − aj ∈ I.

Since |I \ {0}| = 1, it follows that such a j is necessarily unique. We
may assume, without loss of generality, that a1 − a2 ∈ I. Then a3 − a1
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and a3 − a2 cannot be in I. Hence, either a3 − a4 ∈ I or a3 − a5 ∈ I.
We may assume, without loss of generality, that a3 − a4 ∈ I. Observe
that a5 − aj /∈ I for all j ∈ {1, 2, 3, 4}. This is a contradiction. This
proves that, if there exists an ideal I of T with I ⊆ ((0) :T P ), |I| = 2,
and if (Γ(T ))c satisfies (C2), then (Γ(T ))c satisfies (C1).

Lemma 4.12. Let T, P be as in the statement of Lemma 4.2.
Suppose that P 2 �= (0). If P is a principal ideal of T , and if (Γ(T ))c

satisfies (C2), then P 3 = (0) and |P 2| = 2, and (Γ(T ))c satisfies (C1).

Proof. Assume that (Γ(T ))c satisfies (C2). We know from Corollary
4.3 (ii) that P 4 = (0) and, moreover, from Proposition 4.10, we know
that |T/P | = 2. We are assuming that P is a principal ideal of T . Let
x ∈ P be such that P = Tx. We first show that P 3 = (0).

Suppose that P 3 �= (0). Then x3 �= 0. Let V1 = {x, x + x2, x + x3}
and V2 = {x2, x2 + x3, x+ x2 + x3}. It is clear that V1 ∪ V2 ⊆ P \ {0},
V1 ∩ V2 = ∅, and the subgraph of (Γ(T ))c induced on V1 ∪ V2 contains
K3,3 as a subgraph. This contradicts the assumption that (Γ(T ))c

satisfies (C2). Hence, P
3 = (0).

So, the T -module structure on P 2 induces a T/P -module structure
on P 2, and hence P 2 is a vector space over the field T/P . Since
P 2 is a nonzero principal ideal of T , it follows that dimT/PP

2 = 1.
As |T/P | = 2, we obtain that |P 2| = 2. Now P 3 = (0), and so
P 2 ⊆ ((0) :T P ). Since |P 2| = 2, it follows from Lemma 4.11 that
(Γ(T ))c satisfies (C1).

We also need the following lemma in the proof of the assertion that
if (Γ(T ))c satisfies (C2), then (Γ(T ))c satisfies (C1).

Lemma 4.13. Let T, P be as in the statement of Lemma 4.2.
Suppose that P 2 �= (0). If T/P is a field, P is nilpotent (hence
P is the only prime ideal of T ), and if dimT/P (P/P

2) ≥ m with
m ≥ 2, then there exist a1, a2, . . . , am ∈ P such that a1a2 �= 0 and
{a1 + P 2, a2 + P 2, . . . , am + P 2} is linearly independent over T/P .

Proof. Let {aα}α∈Λ ⊆ P \ {0} be such that {aα + P 2}α∈Λ forms a
basis of P/P 2 as a vector space over T/P . Let I = Σα∈ΛTaα. Note
that P = I+P 2. Hence, P = I+(I+P 2)2 = I+P 4. Proceeding in this
way, we obtain that P = I + P 2t for all t ≥ 1, and hence P = I + P k
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for all k ≥ 2. We are assuming that P is nilpotent. Hence, Pn = (0)
for some n ∈ N. As P 2 �= (0), it follows that n ≥ 3. As P = I + Pn,
we obtain that P = I.

Suppose that aα1aα2 �= 0 for some distinct α1, α2 ∈ Λ. Let A ⊆
Λ \ {α1, α2} be such that |A| = m − 2. Let A = {α3, . . . , αm}. Let
ai = aαi for i = 1, 2, . . . ,m. Then it is clear that a1a2 �= 0 and
{a1 + P 2, a2 + P 2, . . . , am + P 2} is linearly independent over T/P .

Suppose that aαaβ = 0 for all distinct α, β ∈ Λ. Then, from
P = I = Σα∈ΛTaα, we obtain that P 2 = I2 = Σα∈ΛT (aα)

2.
Since P 2 �= (0), it follows that (aα1)

2 �= 0 for some α1 ∈ Λ. Let
{α2, . . . , αm} ⊆ Λ \ {α1}. Let a1 = aα1 , a2 = aα1 + aα2 , ai = aαi for
i = 3, . . . ,m. Then it is clear that the elements a1, a2, . . . , am satisfy
the conclusion of the lemma.

We next have the following lemma which is also needed for proving
some results of this paper.

Lemma 4.14. Let T, P be as in the statement of Lemma 4.2. Let
I be an ideal of T such that I ⊆ ((0) :T P ). If (Γ(T ))c satisfies (C2),
and if there exist a, b ∈ P \ {0} such that ab �= 0 and a − b /∈ I, then
|I| ≤ 2.

Proof. Suppose that |I| ≥ 3. Let c1, c2 ∈ I \{0} be such that c1 �= c2.
Let W1 = {a, a+c1, a+c2} and W2 = {b, b+c1, b+c2}. Since a−b /∈ I,
it is clear that a �= b. Using the hypotheses that ab �= 0, a− b /∈ I and
I ⊆ ((0) :T P ), it is easy to verify that the subgraph of (Γ(T ))c induced
on W1∪W2 contains K3,3 as a subgraph. This is in contradiction to the
assumption that (Γ(T ))c satisfies (C2). Hence, we obtain that |I| ≤ 2.

With T, P as in the statement of Lemma 4.2, we prove below in the
following proposition that, if (Γ(T ))c satisfies (C2), then it satisfies
(C1).

Proposition 4.15. Let T, P be as in the statement of Lemma 4.2.
Suppose that P 2 �= (0). If (Γ(T ))c satisfies (C2), then P 3 = (0),
|P 2| = 2, and moreover, (Γ(T ))c satisfies (C1).

Proof. Assume that (Γ(T ))c satisfies (C2). We know from Corollary
4.3 (ii) that P 4 = (0). Since P �= (0), it follows that P �= P 2. It
is shown in Proposition 4.10 that |T/P | = 2. Note that P/P 2 is a
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nonzero vector space over the field T/P . Let {aα}α∈Λ ⊆ P be such
that {aα + P 2}α∈Λ is a basis of P/P 2 as a vector space over T/P .
Then P = Σα∈ΛTaα, as is noted in the proof of Lemma 4.13. We
consider the following two cases.

Case (i). dimT/P (P/P
2) = 1. In this case, P is principal. Hence,

we obtain from Lemma 4.12 that P 3 = (0), |P 2| = 2 and, furthermore,
(Γ(T ))c satisfies (C1).

Case (ii). dimT/P (P/P
2) ≥ 2. We know from Lemma 4.13 that

there exist a, b ∈ P such that ab �= 0 and {a + P 2, b + P 2} is linearly
independent over T/P . Hence, a − b /∈ P 2. Since P 4 = (0), it follows
that P 3 ⊆ ((0) :T P ).

Suppose that P 3 �= (0). Then |P 3| ≥ 2. As a − b /∈ P 2, it follows
that a− b /∈ P 3. Now we obtain from Lemma 4.14 that |P 3| = 2. On
applying Lemma 4.11 with I = P 3, it follows that (Γ(T ))c satisfies (C1).
This implies by Corollary 4.3 (i) that P 3 = (0). This is a contradiction.
Hence, P 3 = (0).

So P 2 ⊆ ((0) :T P ). Now a, b ∈ P, ab �= 0 and a− b /∈ P 2. Hence, on
applying Lemma 4.14 with I = P 2, we obtain that |P 2| = 2. It now
follows immediately from Lemma 4.11 that (Γ(T ))c satisfies (C1).

This shows that, if P 2 �= (0) and if (Γ(T ))c satisfies (C2), then
P 3 = (0), |P 2| = 2, and, moreover, (Γ(T ))c satisfies (C1).

Recall that a commutative ringR with identity is called a chained ring
if the principal ideals of R are comparable under the inclusion relation
(equivalently, the ideals of R are comparable under the inclusion
relation). Let R be a chained ring with M as its unique maximal
ideal. If M2 �= (0), then it is known that (Γ(R))c does not contain any
infinite clique if and only if ω((Γ(R))c) is finite if and only if R is finite
[17, Proposition 4.16]. Thus, if a chained ring R is such that (Γ(R))c

contains at least one edge and if it satisfies either (C1) or (C2) (and
hence satisfies (C1) by Proposition 4.15), then R must be finite.

Let R be a chained ring with M as its unique maximal ideal. Suppose
that M2 �= (0). The following proposition characterizes when (Γ(R))c

is planar.

Proposition 4.16. Let R be a chained ring which is not an integral
domain. Let M denote the unique maximal ideal of R. Suppose that
M2 �= (0). The following statements are equivalent:
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(i) (Γ(R))c satisfies (C1).

(ii) |R| = 8.

(iii) (Γ(R))c satisfies (C2).

(iv) (Γ(R))c is planar.

Proof. (i) ⇒ (ii). We know from Corollary 4.3 (i) that M3 = (0).
Moreover, we know from Proposition 4.8 that |R/M | = 2. Since
ω((Γ(R))c) ≤ 4, it follows from [17, Proposition 4.16] that R is finite.
As R is a finite chained ring, M must be a principal ideal of R. Since
M3 = (0), M2 is a vector space over the field R/M . As M is principal
and M2 is nonzero, it follows that dimR/MM2 = 1 and, moreover, as
M �= M2, we obtain that dimR/M (M/M2) = 1. Since |R/M | = 2, it
follows that |M2| = 2 and |M/M2| = 2. As |M | = |M/M2||M2|, we
obtain that |M | = 4. Thus, |R| = |R/M ||M | = 8.

(ii) ⇒ (iii) and (ii) ⇒ (iv). Since |R| = 8, Lagrange’s theorem implies
that |M | ≤ 4. As M2 �= (0), it follows from [5, Theorem 2.8] that there
exist a, b ∈ M with a �= b such that ab �= 0. It is clear that a �= ab and
b �= ab. Hence, M contains at least 4 elements and so |M | = 4. Thus
(Γ(R))c is a graph on 3 vertices. Now it is clear that (Γ(R))c satisfies
(C2) and (Γ(R))c is planar.

(iv) ⇒ (i) and (iv) ⇒ (iii) follow immediately since K5 and K3,3 are
nonplanar and a subgraph of a planar graph is planar.

(iii) ⇒ (i). This follows immediately from Proposition 4.15.

This completes the proof of Proposition 4.16.

With the help of Proposition 4.16 and [4, Theorem 3.2], we determine
in the following remark all chained rings R such that (Γ(R))c contains
at least one edge and is planar.

Remark 4.17. Observe that if R is one of the rings from the collec-
tion {Z8,Z2[x]/x

3Z2[x],Z4[x]/(2xZ4[x]+(x2−2)Z4[x])} (where Z2[x],
respectively Z4[x], denotes the polynomial ring in one variable over
Z2, respectively over Z4), then it is easy to verify that R is a chained
ring with the property that the number of elements in its unique max-
imal ideal equals 4, square of its unique maximal ideal is nonzero and
|R| = 8. Hence, (Γ(R))c is a graph with at least one edge and as it is
a graph on three vertices, it is clearly planar.
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We next verify with the help of [4, Theorem 3.2] that if R is any
chained ring with the property that (Γ(R))c admits at least one edge
and is planar, then R is isomorphic to one of the rings mentioned in
the preceding paragraph. Let R be chained such that (Γ(R))c admits
at least one edge and is planar. Hence, (Γ(R))c satisfies (C1) and (C2).
As was remarked before the statement of Proposition 4.16, we obtain
that R is finite. Let M denote the unique maximal ideal of R. It
follows from the proof of (i) ⇒ (ii) of Proposition 4.16 that M3 = (0),
|M | = 4, |R| = 8. Let a, b ∈ M be such that a �= b and ab �= 0.
Observe that ab /∈ {a, b}. Thus, M = {0, a, b, ab}. Moreover, as ab �= 0
and a2b = ab2 = 0, it follows that ω((Γ(R)) = 2. Now it follows from
[4, Theorem 3.2] that R is isomorphic to exactly one of the following
rings: Z8,Z2[x]/x

3Z2[x], Z4[x]/(2xZ4[x] + (x2 − 2)Z4[x]). Thus, if R
is a chained ring satisfying the conditions

(i) (Γ(R))c contains at least one edge and

(ii) (Γ(R))c is planar,

then R is isomorphic to one of the rings mentioned above.

Let T , P be as in the statement of Lemma 4.2. Suppose that
P 2 �= (0). It is proved in Proposition 4.8 that, if (Γ(T ))c satisfies
(C1), then |T/P | = 2 and in Proposition 4.10 that, if (Γ(T ))c satisfies
(C2), then |T/P | = 2. If (Γ(T ))c satisfies (C2), then in the following
lemma we show that dimT/P (P/P

2) ≤ 2.

Lemma 4.18. Let T be a commutative ring with identity, and
suppose that T has only one maximal N -prime of (0). Let P be the
unique maximal N -prime of (0) in T . Suppose that P 2 �= (0). If
(Γ(T ))c satisfies (C2), then dimT/P (P/P

2) ≤ 2.

Proof. Assume that (Γ(T ))c satisfies (C2). We know from Proposi-
tion 4.10 that |T/P | = 2. Moreover, we know from Proposition 4.15
that P 3 = (0), |P 2| = 2 and (Γ(T ))c satisfies (C1).

Suppose that dimT/P (P/P
2) ≥ 3. Then it follows from Lemma 4.13

that there exist a, b, c ∈ P such that ab �= 0 and {a+P 2, b+P 2, c+P 2}
is linearly independent over T/P . Observe that we have one of the
following possibilities:

(i) bc = ca = 0,

(ii) bc �= 0, ca = 0,
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(iii) bc = 0, ca �= 0, and

(iv) bc �= 0, ca �= 0.

We now discuss the above-mentioned possibilities separately.

Case (i). ab �= 0, bc = ca = 0. In this case, we assert that a2 �= 0,
b2 �= 0 and c2 �= 0. Suppose that a2 = 0. Let V1 = {a, a+ ab, a + c},
V2 = {a+ b, b, b+ ab}. It follows from the choice of the elements a, b,
and c that V1 ∩ V2 = ∅. Now, using the fact that P 3 = (0) and the
assumptions that ab �= 0, bc = ca = a2 = 0, it can easily be verified that
each element of V1 is adjacent to every element of V2 in (Γ(T ))c. Hence,
we obtain that the subgraph of (Γ(T ))c induced on V1∪V2 containsK3,3

as a subgraph. This contradicts the assumption that (Γ(T ))c satisfies
(C2). Thus, a2 �= 0. Similarly, if b2 = 0, it can be shown that the
subgraph of (Γ(T ))c induced on W1∪W2 (where W1 = {b, b+ab, b+ c}
and W2 = {a, a + b, a + ab}) contains K3,3 as a subgraph. This is
impossible and so b2 �= 0. Similarly, if c2 = 0, then the subgraph
of (Γ(T ))c induced on A1 ∪ A2 (where A1 = {b, b + ab, b + c} and
A2 = {a, a+c, a+ab}) contains K3,3 as a subgraph. This is impossible,
and so c2 �= 0. Let U1 = {a, a+ c, b+ c} and U2 = {b, b+ b2, a+ c2}.
It can easily be verified that the subgraph of (Γ(T ))c induced on

U1 ∪ U2 contains K3,3 as a subgraph. This contradicts the assumption
that (Γ(T ))c satisfies (C2). This shows that Case (i) cannot hold.

Case (ii). ab �= 0, bc �= 0, ca = 0. We claim that a2 �= 0 and c2 �= 0.
Suppose that a2 = 0. Let U1 = {a, c, a+ab} and U2 = {b, a+ b, b+ bc}.
Using the choice of the elements a, b and c, it is straightforward to
show that U1 ∩ U2 = ∅. Moreover, using the fact that P 3 = (0) and
the assumptions that a2 = ac = 0, ab �= 0 and bc �= 0, it follows
that each element of U1 is adjacent to every element of U2 in (Γ(T ))c.
Hence, the subgraph of (Γ(T ))c induced on U1 ∪ U2 contains K3.3 as a
subgraph. This is impossible. Hence, a2 �= 0. Similarly, it follows that
c2 �= 0. Let V1 = {a, c, a+ ab} and V2 = {a+ c, b, b+ ab}. It is easy to
show that the subgraph of (Γ(T ))c induced on V1 ∪V2 contains K3,3 as
a subgraph. This is impossible. Hence, Case (ii) cannot hold.

Case (iii). ab �= 0, ca �= 0, bc = 0. Proceeding as in Case (ii), it can
be shown that Case (iii) is impossible.

Case (iv). ab �= 0, bc �= 0, ca �= 0. We claim that at least one
among a2, b2 and c2 must be equal to 0. Suppose that a2 �= 0,
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b2 �= 0 and c2 �= 0. Then the subgraph of (Γ(T ))c induced on
{a, b, c, a+ab, b+ab, c+ab} is a clique. This is impossible since (Γ(T ))c

satisfies (C2). Hence, at least one among a2, b2 and c2 must be equal
to 0.

We may assume, without loss of generality, that a2 = 0. We next
claim that either b2 = 0 or c2 = 0. Suppose that b2 �= 0 and c2 �= 0.
Let V1 = {a+ b, a+ c, c} and V2 = {a, a+ ab, a+ b+ c}. Now we have
a2 = 0, b2 �= 0 and c2 �= 0. Moreover, we know from Proposition 4.15
that |P 2| = 2. Thus, ab = bc = ca. We know from Proposition 4.10 that
|T/P | = 2. As P 3 = (0), it follows that ab+ bc = bc+ ca = ca+ab = 0.
Using these facts, it can be easily verified that the subgraph of (Γ(T ))c

induced on V1 ∪ V2 contains K3,3 as a subgraph. This contradicts the
assumption that (Γ(T ))c satisfies (C2). Hence, either b

2 = 0 or c2 = 0.

We may assume without loss of generality that b2 = 0. Let W1 =
{a, b, a+ab} andW2 = {a+b, c, c+ab}. It can be easily verified that the
subgraph of (Γ(T ))c induced on W1 ∪W2 contains K3,3 as a subgraph.
This is in contradiction to the hypothesis that (Γ(T ))c satisfies (C2).
This shows that Case (iv) cannot hold.

It is now clear from the above discussion that dimT/P (P/P
2) ≤ 2.

Let T, P be as in the statement of Lemma 4.2. Suppose that P 2 �= (0).
The following proposition characterizes when (Γ(T ))c satisfies (C2). We
verify in the following proposition, among other equivalent conditions,
that (Γ(T ))c satisfies (C2) if and only if (Γ(T ))c is planar. Moreover,
the following proposition is one of the main results in this paper.

Proposition 4.19. Let T be a commutative ring with identity which
admits exactly one maximal N -prime of (0). Let P be the unique
maximal N -prime of (0) in T . Suppose that (Γ(T ))c admits at least
one edge. Then the following statements are equivalent:

(i) (Γ(T ))c satisfies (C2).

(ii) (Γ(T ))c satisfies both (C1) and (C2).

(iii) P 3 = (0), |T/P | = 2, |P 2| = 2 and dimT/P (P/P
2) ≤ 2.

(iv) |T | is either 8 or 16 and (Γ(T ))c is planar.

(v) (Γ(T ))c is planar.
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Proof. (i) ⇒ (ii). We know from Proposition 4.15 that (Γ(T ))c

satisfies (C1). Hence, (i) ⇒ (ii) holds.

(ii) ⇒ (iii). By hypothesis, (Γ(T ))c admits at least one edge. Hence,
there are elements a, b ∈ P, a �= b, and ab �= 0. Therefore, P 2 �= (0). It
is now clear that (ii) ⇒ (iii) follows immediately from Propositions 4.8
and 4.15 and Lemma 4.18.

(iii) ⇒ (iv). Since dimT/P (P/P
2) ≤ 2 and |T/P | = 2, it follows that

|P/P 2| ≤ 4. Since P �= P 2, and |T/P | = 2, we obtain that either
|P/P 2| = 2 or |P/P 2| = 4. We have |P 2| = 2. Thus, either |P | = 4 or
|P | = 8. As |T/P | = 2, we obtain that either |T | = 8 or |T | = 16. If
|P | = 4, then (Γ(T ))c is a graph on three vertices and is clearly planar.
Suppose that |P | = 8. Then dimT/P (P/P

2) = 2. Let a, b ∈ P be such
that {a+P 2, b+P 2} forms a basis of P/P 2 as a vector space over T/P
with ab �= 0. Thus, P = {0, a, b, a+ b, ab, a+ ab, b+ ab, a+ b+ ab} and
P 2 = {0, ab}. Since P 3 = (0), ab is an isolated vertex of (Γ(T ))c. We
need to consider the following cases.

Case (i). a2 = b2 = 0. In this case it is easy to verify that, except
for the isolated vertex ab, each of the other vertices are of degree 4
in (Γ(T ))c. Moreover, it is easy to show that (Γ(T ))c is the union
of the cycles Γ1 : a − b − (a + b + ab) − (b + ab) − (a + b) − a,
Γ2 : a−(a+b+ab)−(b+ab)−a, Γ3 : (b+ab)−(a+b+ab)−(a+ab)−(b+ab),
the edges e1 : (a + b)− b, e2 : b − (a+ ab), e3 : (a+ ab) − (a + b), and
the isolated vertex ab. The cycle Γ1 can be represented by means of
a pentagon. Note that the cycle Γ2 is a triangle enclosed by one side
and two diagonals of the pentagon representing Γ1. Observe that Γ3

has only one edge in common with Γ1. The vertex a+ ab of Γ3 can be
plotted outside this pentagon. It is easy to see that the cycle Γ3 and
the edges e1, e2, e3 can be drawn outside this pentagon without any
crossing over of the edges. The above discussion shows that (Γ(T ))c

can be drawn in a plane without any crossing over of the edges. This
proves that (Γ(T ))c is planar.

Case (ii). a2 �= 0, b2 = 0. Now a2 + ab ∈ P 2 = {0, ab} and, as a2 �= 0,
it follows that a2 + ab = 0. In this case, in (Γ(T ))c, it can be easily
verified that deg (a) = 3, deg (b) = 4, deg (a+ b) = 3, deg (a+ ab) = 3,
deg (b+ab) = 4, deg (a+b+ab) = 3, and deg (ab) = 0. It is easy to verify
that (Γ(T ))c is the union of the cycles Γ1 : a−b−(a+b+ab)−(b+ab)−a,
Γ2 : b − (a + b) − (b + ab) − (a + ab) − b, the edges e1 : a − (a + ab),
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e2 : (a+ b+ ab)− (a+ b), and the isolated vertex ab. Observe that the
cycle Γ1 can be represented by means of a rectangle. It is not hard to
verify that the vertices a+ b, a+ ab can be plotted inside the rectangle
representing Γ1 in such a way that the cycle Γ2 and the edges e1 and
e2 can be drawn inside this rectangle so that there is no crossing over
of the edges. This proves that (Γ(T ))c is planar.

Case (iii). a2 = 0, b2 �= 0. It follows as in Case (ii) that (Γ(T ))c is
planar.

Case (iv). a2 �= 0, b2 �= 0. Note that, as a2 �= 0, b2 �= 0, it follows as
in Case (ii) that a2 + ab = b2 + ab = 0. Moreover, in (Γ(T ))c, it can be
easily verified that deg (a) = deg (b) = deg (a+ ab) = deg (b + ab) = 3,
and deg (ab) = deg (a+b) = deg (a+b+ab) = 0. Furthermore, it is easy
to verify that the subgraph of (Γ(T ))c induced on {a, b, a+ ab, b+ ab}
is a clique. Hence, (Γ(T ))c is K4 together with three isolated vertices.
Hence, (Γ(T ))c is planar.

(iv) ⇒ (v). This is clear.

(v) ⇒ (i). Since a planar graph cannot contain K3,3 as a subgraph,
(v) ⇒ (i) follows immediately.

The following corollary is an immediate consequence of Proposi-
tion 4.19, [4, Theorem 3.2] and the list of all finite commutative local
rings with identity of order 16 given in [9, page 475]. The list of rings
given in [9, page 475] are listed with the help of the theorems proved
in [10]. Let n ≥ 2. In the list of rings given below Zn[x] (respectively
Zn[x, y]) denotes the polynomial ring in one variable (respectively the
polynomial ring in two variables) over Zn.

Corollary 4.20. Let R be a commutative ring with identity. Suppose
that R has exactly one maximal N -prime of (0), and let it be P . Suppose
that (Γ(R))c contains at least one edge. Then (Γ(R))c is planar if
and only if R is isomorphic to exactly one of the following rings. In
particular, if R is infinite, then (Γ(R))c is not planar.

(a) Z8.

(b) Z2[x]/x
3Z2[x].

(c) Z4[x]/(2xZ4[x] + (x2 − 2)Z4[x]).

(d) Z2[x, y]/(x
2Z2[x, y] + y2Z2[x, y]).
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(e) Z4[x, y]/(x
2Z4[x, y] + y2Z4[x, y] + (xy − 2)Z4[x, y]).

(f) Z4[x]/x
2Z4[x].

(g) Z2[x, y]/((x
2 − y2)Z2[x, y] + xyZ2[x, y]).

(h) Z4[x, y]/((x
2−2)Z4[x, y]+xyZ4[x, y]+(y2−2)Z4[x, y]+2xZ4[x, y]).

(i) Z4[x]/(x
2 − 2x)Z4[x].

(j) Z8[x]/((x
2 − 4)Z8[x] + 2xZ8[x]).

(k) Z2[x, y]/(x
3Z2[x, y] + xyZ2[x, y] + y2Z2[x, y]).

(l) Z4[x, y]/((x
2 − 2)Z4[x, y] + xyZ4[x, y] + y2Z4[x, y] + 2xZ4[x, y]).

(m) Z4[x]/(x
3Z4[x] + 2xZ4[x]).

(n) Z8[x]/(x
2Z8[x] + 2xZ8[x]).

Proof. Observe that the each of the rings given in the list from (a) (n)
in the statement of the corollary is a finite local ring where the square
of its unique maximal ideal is nonzero whereas the cube of its maximal
ideal is zero. Hence, each one of the above rings admits exactly one
maximal N -prime for its zero ideal. Moreover, the complement of the
zero-divisor graph of each of the above rings admits at least one edge.
Furthermore, it can easily be verified that each of the rings mentioned in
the list from (a) (n) satisfies condition (iii) of Proposition 4.19. Hence,
it follows from (iii) ⇒ (iv) of Proposition 4.19 that the complement of
the zero-divisor graph of each one of them is planar.

Suppose that R is a commutative ring with identity which has exactly
one maximal N -prime of (0). Let P be the unique maximal N -prime of
(0) in R. Suppose that (Γ(R))c admits at least one edge and is planar.
We now verify with the help of [4, Theorem 3.2] and the results from
[9, 10] that R is isomorphic to exactly one of the rings from the list of
rings given in the statement of the corollary. Since (Γ(R))c admits at
least one edge, there exist a, b ∈ P such that a �= b and ab �= 0. Thus,
P 2 �= 0. As (Γ(R))c is planar, it must satisfy (C2). Hence, we obtain
from (i) ⇒ (iii) of Proposition 4.19 that P 3 = (0), |P 2| = 2, |R/P | = 2,
and dimR/P (P/P

2) ≤ 2. Since P �= P 2, dimR/P (P/P
2) ≥ 1.

If dimR/P (P/P
2) = 1, then R is a chained ring and, in this case, it

is already verified in Remark 4.17 that R is isomorphic to exactly one
among the rings mentioned in the statement of the corollary against
(a), (b) or (c).
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Suppose that dimR/P (P/P
2) = 2. Now it is clear from Lemma 4.13

that there exist a, b ∈ P such that {a + P 2, b + P 2} forms a basis of
P/P 2 as a vector space over R/P with ab �= 0. Then, as noted in the
proof of (iii) ⇒ (iv) of Proposition 4.19, P = {0, a, b, a+b, ab, a+ab, b+
ab, a+ b+ ab}. Note that R is a finite local ring with |R| = 16.

We now consider the following cases.

Case (A). a2 = b2 = 0. In this case it follows from the list of finite
local rings of order 16 given in [9, page 475] that R is isomorphic to
one of the following rings:

Z2[x, y]/(x
2Z2[x, y] + y2Z2[x, y]),

Z4[x, y]/(x
2Z4[x, y] + y2Z4[x, y] + (xy − 2)Z4[x, y]),

Z4[x]/x
2Z4[x].

Thus, in this case, R is isomorphic to one among the rings mentioned
in (d), (e) or (f).

Case (B). a2 �= 0, b2 = 0. It follows from [9, page 475] that in this
case R is isomorphic to one of the following rings:

Z2[x, y]/((x
2 − y2)Z2[x, y] + xyZ2[x, y]),

Z4[x, y]/((x
2− 2)Z4[x, y]+xyZ4[x, y]+ (y2 − 2)Z4[x, y]+2xZ4[x, y]),

Z4[x]/(x
2 − 2x)Z4[x],

Z8[x]/((x
2 − 4)Z8[x] + 2xZ8[x]).

Thus in this case R is isomorphic to exactly one of the rings mentioned
in (g), (h), (i) or (j).

Case (C). a2 �= 0, b2 �= 0. Now it follows from [9, page 475] that in
this case R is isomorphic to exactly one of the following rings:

Z2[x, y]/(x
3Z2[x, y] + xyZ2[x, y] + y2Z2[x, y]),

Z4[x, y]/((x
2 − 2)Z4[x, y] + xyZ4[x, y] + y2Z4[x, y] + 2xZ4[x, y]),

Z4[x]/(x
3Z4[x] + 2xZ4[x]),

Z8[x]/(x
2Z8[x] + 2xZ8[x]).

Hence, in this case R is isomorphic to exactly one among the rings
mentioned against (k), (l), (m) or (n).

Thus, if R is a commutative ring with identity which has exactly
one maximal N -prime of (0), (Γ(R))c admits at least one edge, then
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(Γ(R))c is planar if and only if R is isomorphic to exactly one of the
rings mentioned against (a) (n) in the statement of the corollary. Now
it is clear that, if R is an infinite ring which has exactly one maximal
N -prime of (0), and, if (Γ(R))c admits at least one edge, then (Γ(R))c

is not planar. This completes the proof of Corollary 4.21.

5. Rings T with exactly one maximal N-prime of (0) such
that (Γ(T ))c satisfies (C1). Let T, P be as in the statement of
Lemma 4.2. That is, T is a commutative ring with identity which has P
as its unique maximal N -prime of (0). Suppose that (Γ(T ))c admits at
least one edge. It is shown in Proposition 4.19 that, if (Γ(T ))c satisfies
(C2), then T is necessarily a finite ring and, indeed, |T | is either 8 or
16. The following example illustrates that this is not the case for a ring
that satisfies (C1).

Example 5.1. Let S = Z2[x1, x2, x3, . . . ] be the polynomial ring
in an infinite number of variables over Z2. Let I be the ideal of
S generated by {(xk)

2|k = 1, 2, 3, . . .} ∪ {x1xk | k = 3, 4, 5, . . .} ∪
{xixj |i, j ∈ N, 2 ≤ i < j}. Let T = S/I. Let M be the maximal
ideal of S generated by {xi|i = 1, 2, 3, . . .}. Let P = M/I. Note that
T is an infinite quasi-local ring with P as its unique maximal ideal.
Moreover, x1 + I, x2 + I are distinct zero-divisors of T with x1x2 /∈ I.
Hence, it follows that (Γ(T ))c admits at least one edge. Observe that
P 3 = (0). It was verified in [17, Example 4.22] that ω((Γ(T ))c) = 3.
Hence, (Γ(T ))c satisfies (C1).

Let T, P be as in the statement of Lemma 4.2. Suppose that (Γ(T ))c

admits at least one edge. That is, equivalently, P 2 �= (0) by [5, Theorem
2.8]. If (Γ(T ))c satisfies (C1), then it is proved in Corollary 4.3 (i) that
P 3 = (0). However, the following question remains.

Question 5.2. For which rings T will (Γ(T ))c satisfy (C1)?

In Proposition 5.4 we provide a necessary condition for a ring in order
that the complement of its zero-divisor graph satisfies (C1). We begin
with the following lemma which is used in the proof of Proposition 5.4.

Lemma 5.3. Let T, P be as in the statement of Lemma 4.2. Suppose
that P 2 �= (0). If (Γ(T ))c satisfies (C1), then the following hold:
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(i) P 3 = (0), |T/P | = 2.

(ii) Let A ⊆ P/P 2 be such that A is linearly independent over T/P .
If a, b ∈ P are such that {a + P 2, b + P 2} ⊆ A and if ab �= 0, then
a2, b2 ∈ {0, ab}.
(iii) Let A be as in (ii). Let a, b, c ∈ P be such that{a+P 2, b+P 2, c+

P 2} ⊆ A. Suppose that ab �= 0. If c2 �= 0, then c2 = ab. Moreover,
ac, bc ∈ {0, ab}.
(iv) Let A be as in (ii). Let a, b, c ∈ P be such that {a+P 2, b+P 2, c+

P 2} ⊆ A and ab �= 0. Then ac, bc ∈ {0, ab}.
(v) Let A be as in (ii). Let a, b, c, d ∈ P . If {a + P 2, b + P 2, c +

P 2, d+ P 2} ⊆ A with ab �= 0, then cd ∈ {0, ab}.
Proof. (i) By hypothesis, (Γ(T ))c satisfies (C1). Hence, it follows

from Corollary 4.3 (i) that P 3 = (0). Moreover, we know from
Proposition 4.8 that |T/P | = 2.

(ii) Suppose that a2 /∈ {0, ab}. Then {0, a2, ab} ⊆ P 2, and hence
|P 2| ≥ 3. Since P 3 = (0), P 2 is a vector space over the field T/P
and as |T/P | = 2, it follows that dimT/PP

2 ≥ 2 and so |P 2| ≥ 4. Let
t ∈ P 2 \ {0, a2, ab}. Since {a + P 2, b + P 2} is linearly independent
over T/P , and as {a2, ab, t} ⊆ P 2 \ {0}, it follows that the elements
a, b, a+ ab, a + a2, a + t are all distinct. Moreover, it is easy to verify
that the subgraph of (Γ(T ))c induced on {a, b, a+ ab, a+ a2, a+ t} is a
clique. This is in contradiction to the assumption that (Γ(T ))c satisfies
(C1). Hence, we obtain that a2 ∈ {0, ab}. Similarly, it follows that
b2 ∈ {0, ab}.
(iii) By assumption, {a+ P 2, b+ P 2, c+ P 2} is linearly independent

over T/P with ab �= 0. Suppose that c2 �= 0. We claim that c2 = ab.
Suppose that c2 �= ab. Then {0, ab, c2} ⊆ P 2. Hence, it follows as
in the proof of (ii) that there exists a t ∈ P 2 \ {0, ab, c2}. If ac �= 0,
then the subgraph of (Γ(T ))c induced on {a, c, c + ab, c + c2, c + t} is
a clique. This contradicts the assumption that (Γ(T ))c satisfies (C1).
Hence, ac = 0. Similarly, if bc �= 0, then the subgraph of (Γ(T ))c

induced on {b, c, c+ab, c+ c2, c+ t} is a clique. This is impossible since
ω((Γ(T ))c) ≤ 4. Thus, bc = 0. Observe that the subgraph of (Γ(T ))c

induced on {c, c + ab, c + c2, c + t, a + b + c} is a clique. This is in
contradiction to the assumption that (Γ(T ))c satisfies (C1). Hence, it
follows that c2 = ab.
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We next verify that ac, bc ∈ {0, ab}. Suppose that ac �= 0. Now
{a+P 2, c+P 2} is linearly independent over T/P and, by assumption,
ac �= 0. Hence, we obtain from (ii) that c2 ∈ {0, ac}. As c2 �= 0, it
follows that c2 = ac. Thus, ab = c2 = ac. This shows that ac ∈ {0, ab}.
Since {b + P 2, c + P 2} is linearly independent over T/P , it follows
similarly that bc ∈ {0, ab}.
(iv) Suppose that ac /∈ {0, ab}. Hence, it follows from (iii) that c2 = 0.

Moreover, if b2 �= 0, then it follows from (iii) that ab, bc ∈ {0, ac}.
Since ab �= 0, it follows that ab = ac. This is in contradiction to the
assumption that ac �= ab. Hence, it follows that b2 = 0. If a2 �= 0,
then it follows from (ii) that a2 = ab = ac. This again contradicts the
assumption that ac �= ab. So it follows that a2 = 0. Note that either
bc = 0 or bc �= 0.

Case (I). Suppose that bc = 0. Since P 3 = (0) and 2 ∈ P (indeed,
|T/P | = 2), it follows that x + x = 0 for each x ∈ P 2. As ac �= ab, by
assumption, it follows that ab + ac �= 0. Observe that the subgraph of
(Γ(T ))c induced on {a, b, a+ b, a+ b + c, a+ c + ab} is a clique. This
contradicts the hypothesis that (Γ(T ))c satisfies (C1). Hence, this case
cannot happen.

Case (II). Suppose that bc �= 0. We assert that bc ∈ {ab, ac}. Suppose
that bc /∈ {ab, ac}. Then ab + bc �= 0, bc + ac �= 0, and already by
assumption, ab + ac �= 0. This implies that the subgraph of (Γ(T ))c

induced on {a, b, c, a + b, a + b + c} is a clique. This contradicts the
hypothesis that (Γ(T ))c satisfies (C1). Hence, either bc = ab or bc = ac.
If bc = ab, then bc �= ac and hence bc+ ac �= 0. Note that the subgraph
of (Γ(T ))c induced on {a, b, c, a+b, b+c} is a clique. This is impossible.
If bc = ac, then bc + ab �= 0. Moreover, it is easy to verify that the
subgraph of (Γ(T ))c induced on {a, b, c, a+ c, b+ c} is a clique. This is
impossible. Hence, Case (II) cannot happen.

Thus, if ac /∈ {0, ab}, we arrive at a contradiction. Therefore, we
obtain that ac ∈ {0, ab}. Similarly, it can be shown that bc ∈ {0, ab}.

(v) Suppose that cd /∈ {0, ab}. We claim that ac = bc = ad = bd = 0.
Suppose that ac �= 0. Since {a + P 2, b + P 2, c + P 2} is linearly
independent over T/P with ab �= 0, it follows from (iv) that ac = ab.
Note that {a + P 2, c + P 2, d + P 2} is linearly independent over T/P
with ac �= 0. Hence, it follows from (iv) that ad, cd ∈ {0, ac}. Since
cd �= 0, by assumption, we obtain that cd = ac. Hence, we arrive
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at cd = ac = ab. This contradicts the assumption that cd �= ab.
Hence, ac = 0. Similarly, as ab �= cd, it follows using (ii) and (iii) that
b2 = c2 = d2 = 0. In addition, it can be shown with the help of (iv)
and the assumption that cd �= 0 that bc = ad = bd = 0. Moreover,
if a2 �= 0, it follows from (ii) and (iii) that a2 = ab = cd. This
contradicts the assumption that cd �= ab. Hence, a2 = 0. Since,
by assumption, ab �= cd, we obtain that ab + cd �= 0. Using the
facts that ac = bc = ad = bd = a2 = b2 = c2 = d2 = 0 and
ab + cd �= 0, it follows that the subgraph of (Γ(T ))c induced on
{a + c, a + d, a + b + c, a + b + d, a + b + c + d} is a clique. This is
in contradiction to the hypothesis that (Γ(T ))c satisfies (C1). This
proves that cd ∈ {0, ab}.
This completes the proof of Lemma 5.3.

The following proposition provides a necessary condition in order that
(Γ(T ))c satisfy (C1).

Proposition 5.4. Let T, P be as in the statement of Lemma 4.2.
Suppose that P 2 �= (0). If (Γ(T ))c satisfies (C1), then |P 2| = 2.

Proof. Assume that (Γ(T ))c satisfies (C1). We know from Corollary
4.3 (i) that P 3 = (0). Moreover, we know from Proposition 4.8 that
|T/P | = 2. Observe that P 2 is a nonzero vector space over the field
T/P . If P is a principal ideal of T , then it is clear that |P 2| = 2. Hence,
we may assume that P is not a principal ideal of T . Let {aα+P 2}α∈Λ be
a basis of P/P 2 as a vector space over T/P . Since P 3 = (0), it follows as
in the proof of Lemma 4.13 that P =

∑
α∈Λ Taα. As P is not principal,

it follows that dimT/P (P/P
2) = |Λ| ≥ 2. Moreover, since P 2 �= (0),

it follows as in the proof of Lemma 4.13 that there exists a basis
{aα + P 2}α∈Λ of the (T/P )-vector space P/P 2 such that aα1aα2 �= 0
for some distinct α1, α2 ∈ Λ. Since P =

∑
α∈Λ Taα, it follows that

P 2 =
∑

α,β∈Λ Taαaβ. By hypothesis, (Γ(T ))c satisfies (C1). Hence,

we obtain from Lemma 5.3 (ii) and (iii) that a2α ∈ {0, aα1aα2} for
each α ∈ Λ. Moreover, it follows from Lemma 5.3 (iii) and (iv) that
aαiaα ∈ {0, aα1aα2} for any α ∈ Λ and for i = 1, 2. Furthermore, it
follows from Lemma 5.3 (v) that, for any distinct α, β ∈ Λ \ {α1, α2},
aαaβ ∈ {0, aα1aα2}.
It is now clear that P 2 = T (aα1aα2). Thus, P 2 is a one-dimensional

vector space over the field T/P and, as |T/P | = 2, it follows that
|P 2| = 2. This completes the proof of Proposition 5.4.
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Suppose that (Γ(T ))c satisfies (C1). The following corollary deter-
mines necessary and sufficient conditions in order that (Γ(T ))c satisfy
(C2). (It is shown in Example 4.1 that (Γ(T ))c satisfies (C1) need not
imply that it satisfies (C2).)

Corollary 5.5. Let T, P be as in the statement of Lemma 4.2.
Suppose that (Γ(T ))c contains at least one edge. Then the following
statements are equivalent:

(i) (Γ(T ))c satisfies (C2).

(ii) (Γ(T ))c satisfies (C1) and |P/P 2| ≤ 4.

(iii) (Γ(T ))c is planar.

Proof. (i) ⇔ (iii) is the same as (i) ⇔ (v) of Proposition 4.19.

(i) ⇒ (ii). We know from Proposition 4.15 that (Γ(T ))c satisfies (C1).
Moreover, it follows from (i) ⇒ (iii) of Proposition 4.19 that P 3 = (0),
|T/P | = 2, |P 2| = 2 and dimT/P (P/P

2) ≤ 2. Hence, we obtain that
|P/P 2| ≤ |T/P |2 ≤ 4.

(ii) ⇒ (i). We know from Corollary 4.3 (i) that P 3 = (0). Since
(Γ(T ))c admits at least one edge, it follows that P 2 �= (0). We know
from Proposition 4.8 that |T/P | = 2. Moreover, we obtain from
Proposition 5.4 that |P 2| = 2. As |T/P | = 2 and, by assumption,
|P/P 2| ≤ 4, it is clear that dimT/P (P/P

2) ≤ 2. Thus, if (ii) holds,
then P 3 = (0), |T/P | = 2, |P 2| = 2 and dimT/P (P/P

2) ≤ 2. Now it
follows from (iii) ⇒ (i) of Proposition 4.19 that (Γ(T ))c satisfies (C2).

This completes the proof of Corollary 5.5.
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