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ABSTRACT. We compute initial algebras of standard Pfaf-
fian rings via suitable embeddings. This yields simple proofs
that these rings are normal Gorenstein domains, with ratio-
nal singularities in characteristic 0 and F -rational in charac-
teristic p > 0. We also determine their a-invariants. These
methods can also be applied to prove the same properties for
rings defined by cogenerated Pfaffian ideals.

1. Introduction. Since the fundamental results of Buchsbaum and
Eisenbud [7] on structure theorems of minimal resolutions of ideals
of codimension 3, of particular interest are Pfaffian ideals and rings.
More precisely, let X = (Xij) be an n × n matrix which is skew-
symmetric, let K be a field and K[X ] a polynomial ring over K in
the variables Xij for i < j. Then the Pfaffian ideal I2r+2(X) is
generated by all Pfaffians of X of size 2r + 2. The corresponding
Pfaffian ring is R2r+2(X) = K[X ]/I2r+2(X). By results in [22, 23, 25]
the ring R2r+2(X) is a Cohen-Macaulay normal domain of dimension
r(2n− 2r− 1). Moreover, it is proved in [1] that R2r+2(X) is factorial,
hence Gorenstein. At least two more general classes of Pfaffian ideals
have been considered, also motivated by the study of coordinate rings
of some Schubert varieties. One is the class of ladder Pfaffians ideals,
studied first in [13] and more recently in [15, 16]. The second is
the class of cogenerated Pfaffian ideals that arise naturally when one
considers the ASL structure. In [13], it has been proved that rings
defined by cogenerated Pfaffian ideals are also Cohen-Macaulay normal
domains, formulas for the dimension are given and it is characterized
which of these rings are Gorenstein. See also [17] for related results.

The main goal of this paper is to study the rings R2r+2(X) by
initials algebra methods initiated in [6]. Although it does not yield new
results for these rings, one gets relatively quickly and simple structural
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properties of Pfaffian rings by using standard results from combinatorial
commutative algebra; see, e.g., [5, 26, 28] for more details on these
kinds of methods. More precisely, by explicitly computing a finitely
generated initial algebra of R2r+2(X) in a suitable embedding, we
can prove that this ring is a normal Gorenstein domain, with rational
singularities in characteristic 0 and F -rational in characteristic p > 0;
see Theorem 4.3 and Corollary 5.8. Moreover, we can determine in
Corollary 5.8 also its a-invariant and thus also related invariants like the
Castelnuovo-Mumford regularity. In Section 6 we apply our methods
to get structural properties and prove new facts for rings defined by
cogenerated Pfaffian ideals. In Theorem 6.1 we prove in particular
that these rings have rational singularities in characteristic 0 and are
F -rational in characteristic p > 0.

2. Preliminaries on Pfaffian ideals. At first we fix some notation.
Let A = (cij) be an arbitrary m × n matrix with coefficients in some
commutative ring. We write [a1 . . . at | b1 . . . bt]A for the minor of
matrix A of size t with rows indexed by a1 . . . at and columns indexed
by b1 . . . bt. Here we assume that 1 ≤ a1 < · · · < at ≤ m and
1 ≤ b1 < · · · < bt ≤ n.

Most times we are interested in the case that A is an n × n skew-
symmetric matrix for n ≥ 2, i.e., we have cij = −cji and cii = 0 for
all i, j. For an integer r with 1 ≤ 2r ≤ n, let then Pf (a1 . . . a2r)A be
the 2r-Pfaffian of the submatrix of A with rows and columns indexed
by a1 . . . a2r; it is not restrictive to assume 1 ≤ a1 < · · · < a2r ≤ n.
The number 2r is the size of the Pfaffian. We always consider Pfaffians
of even size since Pfaffians of odd size are zero. The empty Pfaffian
Pf ( )A is set to 1.

To study the “generic” case, let X = (Xij) be a skew-symmetric n×n
matrix of indeterminates, and let R = K[X ] := K[Xij : 1 ≤ i < j ≤ n]
be the polynomial ring over a field K. To simplify notation we also
write Pf (a1 . . . a2r) for the Pfaffian Pf (a1 . . . a2r)X .

Let Pf (X) be the set of all the Pfaffians of X . We denote by Pf2s(X)
the subset of Pf (X) consisting of Pfaffians of size exactly 2s where
Pf2s(X) = ∅ for 2s > n. Following [11, Section 6], we consider on
Pf (X) the partial order: if α = Pf (a1 . . . a2s) and β = Pf (b1 . . . b2t).
Then

α ≤ β if s ≥ t and ai ≤ bi for i = 1, . . . , 2t.
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A standard monomial is a product α1 · . . . · αh of Pfaffians with
α1 ≤ · · · ≤ αh.

It is known that the standard monomials are a K-basis of K[X ], see
[11, Theorem 6.5] or Theorem 4.1 below. Moreover, K[X ] is an ASL
on Pf (X); see [10, Section 12].

As mentioned in the introduction, the main goal of this paper is to
study Pfaffian ideals, that is, ideals generated by certain subsets of
Pf (X). The classical Pfaffian ideals are the ideals I2r+2(X) generated
by all Pfaffians in Pf 2r+2(X). More generally, ones defines cogenerated
Pfaffian ideals as follows. Given an α ∈ Pf (X), the ideal cogenerated
by α is:

Iα(X) = (β ∈ Pf (X) : β �≥ α) ⊂ K[X ].

Note that, for α = Pf (1, . . . , 2r), we get back the standard Pfaffian
ideal Iα(X) = I2r+2(X). We will study the algebraic properties of the
Pfaffian ring Rα(X) = K[X ]/Iα(X) in Section 6.

3. Initial forms of Pfaffians at the generic point. To study
the Pfaffian rings R2r+2(X), we follow the approach of [6] where initial
algebra methods were used to prove structural properties of standard
determinantal rings, in a relatively quick and simple way. One of the
key ideas is to consider the generic point of such a ring. Although the
main idea is the same as in [6], in the Pfaffian case non-trivial technical
problems have to be solved, which is partly done in this section.

For this, let Y = (Yij) be an n × 2r-matrix of indeterminates Yij

where n, r are integers such that 1 ≤ 2r ≤ n. Let E(2r) be the 2r× 2r
matrix with integer coefficients which has the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 · · · · · · 0
1 0 −1 0 · · · · · · 0
0 1 0 −1 · · · · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · 1 0 −1 0
0 · · · · · · 0 1 0 −1
0 · · · · · · 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i.e., for E(2r) = (αij), we have αi+1 i = 1 for i = 1, . . . , 2r − 1,
αi−1 i = −1 for i = 2, . . . , 2r and αij = 0 in all other cases. Observe
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that Y E(2r)Y t is a skew-symmetric n × n-matrix. The main goal of
this section is to present results related to initial forms of Pfaffians of
Y E(2r)Y t, the matrix corresponding to a generic point of Pfaffian rings
as considered in the next section.

Let K[Y ] be the polynomial ring over a field K generated by the
entries Yij of Y . On K[Y ] we consider the reverse-lexicographic
monomial order induced by

Yn 1>Yn−1 1> · · ·> Y1 1>Yn 2> · · ·>Y1 2 > · · ·>Yn 2r>Yn−1 2r>Y1 2r.

For any 0 �= f ∈ K[Y ], we denote by in (f) the initial monomial with
respect to the chosen monomial order. At first we present some useful
equations needed later.

Lemma 3.1. (i) in ([a1 . . . a2r | 1 . . . 2r]Y ) =
∏2r

i=1 Yaii for all
1 ≤ a1 < . . . < a2r ≤ n.

(ii) [1 . . . 2r | 1 . . . 2r]E(2r) = 1.

Proof. (i) Using Laplace expansion with respect to the last column
we get

[a1 . . . a2r | 1 . . . 2r]Y
= ±Ya2r2r[a1 . . . a2r−1 | 1 . . . 2r − 1]Y

+

2r−1∑
i=1

(−1)ai+2rYai2r[a1 . . . ai−1ai+1 . . . a2r | 1 . . . 2r − 1]Y .

By the chosen monomial order on K[Y ] we see that

in ([a1 . . . a2r | 1 . . . 2r]Y ) = Ya2r2rin ([a1 . . . a2r−1 | 1 . . . 2r − 1]Y ).

Now an induction on the size of the minor considered concludes the
proof.

(ii) The equation [1 . . . 2r | 1 . . . 2r]E(2r) = 1 is proved by a direct
computation.

The last result is useful for determining the initial term of a Pfaffian
in K[Y ].
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Lemma 3.2. For all integers t with 1 ≤ t ≤ r and 1 ≤ a1 < · · · <
a2t ≤ n, we have:

in (Pf (a1 . . . a2t)Y E(2r)Y t) =

2t∏
j=1

Yajj .

Proof. We prove the lemma by induction on r − t ≥ 0.

Let r = t. Using Lemma 3.1 (ii), we get

[a1 . . . a2r|a1 . . . a2r]Y E(2r)Y t

= [a1 . . . a2r|1 . . . 2r]Y · [1 . . . 2r|1 . . . 2r]E(2r)

· [1 . . . 2r|a1 . . . a2r]Y t

=
(
[a1 . . . a2r|1 . . . 2r]Y

)2
.

It follows from Lemma 3.1 (i) that

in (Pf (a1 . . . a2r)Y E(2r)Y t) = in ([a1 . . . a2r | 1 . . . 2r]Y ) =
2r∏
j=1

Yajj .

Next we assume that r − t > 0 and thus r > t. Let Y ′ be
the matrix obtained by removing the last two columns of Y and set
W ′ = Y ′E(2r − 2)(Y ′)t. Observe that Y ′ is an n × 2(r − 1)-matrix.
The induction hypothesis yields

in (Pf (a1 . . . a2t)W ′) =

2t∏
j=1

Y ′
ajj =

2t∏
j=1

Yajj .

Let W = Y E(2r)Y t = (Wij). We claim that

in (Pf (a1 . . . a2t)W ) = in (Pf (a1 . . . a2t)W ′ )

which then concludes the proof. For this, let Z = Y E(2r). Note that
Z is an n× 2r matrix and for every i ∈ {1, . . . , n} we see that

Zi 1 = Yi 2,

Zi 2r = −Yi 2r−1,

Zi j = Yi j+1 − Yi j−1 for j = 2, . . . , 2r − 1.
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To avoid special cases, we set Yi 0 = Yi 2r+1 = 0. Since W = ZY t, we
obtain

Wij =

2r∑
k=1

Yjk(Yi k+1 − Yi k−1)

=

2r−3∑
k=1

Yjk(Yi k+1 − Yi k−1) + Yj 2r−2Yi 2r−1 − Yj 2r−2Yi 2r−3 + p′ij

where p′ij ∈ K[Y ] is in the ideal I generated by the indeterminates of
the last two columns of Y . Setting pij = Yj 2r−2Yi 2r−1 + p′ij , one has

Wij = W ′
ij + pij with pij ∈ I.

Thus, Pf (a1 . . . a2t)W = Pf (a1 . . . a2t)W ′ + p with p ∈ I. Since the
monomial order is the reverse lexicographic order and the indetermi-
nates in I are smaller than all the other ones, we get the desired result
in (Pf (a1 . . . a2t)W ) = in (Pf (a1 . . . a2t)W ′).

Now we want to extend the last result to a product of Pfaffians. It
is a standard technique to identify products of Pfaffians with Young
tableaux. More precisely, given Pfaffians αi = Pf (ai1, ai2, . . . , ai 2ti)
for i = 1, . . . , h, with t1 ≥ t2 ≥ · · · ≥ th, one identifies the product
α1 · . . . · αh with the tableau whose ith row is filled with the indexes
of the Pfaffian αi. Such a tableau has two properties. The entries
in each row form a strictly increasing sequence of integers, and the
size of all of its rows is even. Let λj be the number of entries
in the jth row of T . The shape of T is defined to be the vector
(λ1 . . . λt). The length of T is the number of entries of the first row.
T is said to be standard if the entries in every column form a weakly
increasing sequence. It is clear that standard tableaux correspond to
standard monomials of Pfaffians. As an example, consider the standard
monomial α1 · α2 · α3 = Pf (1, 2, 3, 4, 5, 6) · Pf (3, 4, 5, 6) · Pf (3, 6). The
corresponding tableau is:

1 2 3 4 5 6
3 4 5 6
3 6

which is standard.



INITIAL ALGEBRAS OF PFAFFIAN RINGS 157

Let S2r be the set of all standard tableaux with all rows of even
size and of length ≤ 2r. In the following, we will often identify, with
some abuse of notation, standard monomials of Pfaffians with standard
tableaux.

As in Section 2, let X be a skew-symmetric matrix of indeterminates,
and let K[X ] be the associated polynomial ring over the field K.
Consider the homomorphism of rings

Φ2r+2 : K[X ] −→ K[Y ]

which maps Xij to the (i, j)th entry of Y E(2r)Y t. For a standard
tableau Σ ∈ S2r, consider the corresponding product of Pfaffians of X
and denote with ΣY E(2r)Y t the image in K[Y ]. Using this notation, we
can state the main result of this section:

Proposition 3.3. (i) Let Σ = (aij) ∈ S2r be of shape (2s1 . . . 2su).
The initial term of ΣY E(2r)Y t is

in (ΣY E(2r)Y t) =

u∏
i=1

2si∏
j=1

Yaij j .

(ii) For Σ,Σ′ ∈ S2r, Σ �= Σ′, we have in (ΣY E(2r)Y t) �= in (Σ′
Y E(2r)Y t).

In particular, the polynomials {ΣY E(2r)Y t | Σ ∈ S2r} are linear inde-
pendent over K.

Proof. (i) Since initial terms commute with products, the equation is
a direct consequence of Lemma 3.2.

(ii) Let us consider the monomial m = in (ΣY E(2r)Y t) for a standard
tableaux Σ ∈ S2r, and fix j. We take all the indices k1, . . . , kt ∈
{1, . . . , n} such that Yki j divides m, if there exist such indices. Then,
by (i), the indices k1, . . . , kt are exactly the entries of the jth column
of Σ. Since Σ is a standard tableaux, there is only one possibility for
putting the entries in the column which have to be non-decreasing from
top to bottom. Repeating the argument for all columns one sees that
there is exactly one standard tableau whose initial term is m. The
linear independence of the polynomials {ΣY E(2r)Y t | Σ ∈ S2r} is an
immediate consequence.
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4. An initial algebra of R2r+2(X). Using the results of Section 3,
we can complete the program suggested in [6, Remark 3.10] for the
Pfaffian case. Throughout the section, we consider n, r ∈ N with
1 ≤ 2r ≤ n, and we use the same notation as in the previous sections.

The map Φ2r+2:K[X ] → K[Y ] comes from the above factors through
the Pfaffian ringR2r+2(X) = K[X ]/I2r+2(X), since rank (Y E(2r)Y t) =
2r. Note that R2r+2(X) = K[X ] for r = �n/2	 since I2r+2(X) = (0)
in this case. We partially recover a new proof of a classical result for
Pfaffians; see [11, Theorem 6.5], whose proof is based on the ideas and
results of Hodge [21] and Doubilet, Rota and Stein [18].

Theorem 4.1 The standard monomials of Pfaffians are a K-basis of
K[X ].

Proof. We apply Proposition 3.3 with r = �n/2	. It yields that
all standard monomials of Pfaffians in K[X ] are linearly independent,
which is a new proof of Lemma 6.4 in [11]. That the standard
monomials generate K[X ] as a K-vector space can be proved in at
least two ways. Either one follows the remaining part of the original
proof in [11, Theorem 6.5]. Another possibility is to use the Knuth-
Robinson-Schensted correspondence [24] in the version of [20] applied
to the Pfaffian case, which shows that degreewise we have as many
standard tableaux in S2r as monomials in K[X ].

In the following, we identify Pfaffians and products of Pfaffian (that
is tableaux) in K[X ] with their classes in R2r+2(X). We obtain well-
known results about R2r+2(X).

Corollary 4.2. Let K[Y E(2r)Y t] be the K-subalgebra of K[Y ]
generated by the entries of the matrix Y E(2r)Y t.

(i) The homomorphism of rings Φ2r+2 induces an isomorphism

φ2r+2 : R2r+2(X) −→ K[Y E(2r)Y t].

(ii) The ring R2r+2(X) has a K-basis given by all standard tableaux
in S2r.
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Proof. Recall that φ2r+2 is well defined (see above) and obviously
it is surjective. Let J ⊂ K[X ] be the ideal generated by all standard
tableaux not in S2r . By definition, we see that J ⊆ I2r+2(X). This
fact, together with Theorem 4.1, implies that the standard tableaux
in S2r generate R2r+2(X). Applying Proposition 3.3, we see that
these standard tableaux and the images in K[Y E(2r)Y t] areK-linearly
independent. This concludes the proof of Corollary 4.2 (i) and (ii).

We prove an analogous statement to [6, Theorem 3.5] for Pfaffians.
Note that this approach via the initial algebras gives new proofs to
some known facts on R2r+2(X), see e.g., [1, 2, 12, 23, 25].

Theorem 4.3. The initial algebra in (R2r+2(X)) ⊆ K[Y ] is gener-
ated by

2t∏
j=1

Yajj where 1 ≤ t ≤ r and 1 ≤ a1 < · · · < a2t ≤ n.

In particular, in (R2r+2(X)) is a normal affine monoid ring. Moreover,
R2r+2(X) is a normal Cohen-Macaulay domain, with rational singular-
ities in characteristic 0 and F -rational in characteristic p > 0.

Proof. The proof is analogous to the one of [6, Theorem 3.5]
with minor modifications. Note the latter proof is itself based on
Corollary 4.2 and the fact that one is able to apply [8, Corollary 2.3]
and [8, Proposition 2.4].

5. The cone associated to the initial algebra of R2r+2(X).
To avoid trivial cases, we assume 2r < n and n ≥ 3 from now on.
Let D2r+2 = in (R2r+2(X)) be the initial algebra of R2r+2(X) inside
K[Y ] where we identify R2r+2(X) with its image inK[Y E(2r)Y t] under
φ2r+2. In this section, we describe explicitly the cone generated by the
exponent vectors of the elements in D2r+2. We give an irredundant
description of the defining half spaces of this cone and determine its
relative interior. Using standard tools of combinatorial commutative
algebra this will allow us, for example, to provide a relatively quick
proof of the Gorenstein property of the rings R2r+2(X).
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Proposition 5.1. Let E2r+2 be the set of vectors (cij) ∈ Rn·2r

appearing as exponent vectors of elements in D2r+2 = in (R2r+2(X)) ⊂
K[Y ]. Then E2r+2 is the set of lattice points of the cone C2r+2 defined
by the following inequalities and equalities:

(i) cij ≥ 0 for all i, j with 1 ≤ j ≤ 2r and j ≤ i ≤ n.

(ii) cij = 0 for all i, j with 1 ≤ j ≤ 2r and j > i ≥ 1.

(iii)
∑k

i=j cij −
∑k+1

i=j+1 ci j+1 ≥ 0 for all j, k with 1 ≤ j ≤ 2r− 1 and
j ≤ k ≤ n− 1.

(iv)
∑n

i=j cij −
∑n

i=j+1 ci j+1 = 0 for all odd j with 1 ≤ j ≤ 2r − 1.

Proof. Let (cij) be the exponent vector of a monomial in (ΣY E(2r)Y t)
for a certain standard tableau Σ ∈ S2r. Trivially, (cij) satisfies the
equations in (i). Observe that

cij = #{entries equal to i in the jth column of Σ}.

Note that, by the standard tableau property, we have cij = 0 for j > i.
In particular, (cij) satisfies the equations in (ii). Moreover, we see that

k∑
i=j

cij = #{a ∈ N : a ≤ k, a is in the jth column of Σ}.

Since Σ is a standard tableau, the number of entries in the (j + 1)th
column which are less than or equal to k + 1 is at most the number of
entries in the jth column which are less than or equal to k. The latter
number might be larger. Hence, (cij) satisfies the equations in (iii).

We have the additional property that the rows of Σ have even length.
Thus, we see that, for an odd j, the number of entries in the jth column
is equal to the number of entries in the (j + 1)th column, and so (cij)
satisfies also the equations in (iv). Hence, we get that E2r+2 is a subset
of all lattice points in C2r+2.

Next, let (cij) be an arbitrary lattice point in C2r+2. We have to
construct a standard tableau Σ ∈ S2r such that (cij) is the exponent
vector of the monomial in (ΣY E(2r)Y t). For this, consider an integer j
with 1 ≤ j ≤ 2r. Note that, by (i) and (ii), the number ckj is non-
negative. We insert ckj many entries k in the jth column such that the



INITIAL ALGEBRAS OF PFAFFIAN RINGS 161

entries of that column are increasing from the top to the bottom and
obtain a candidate Σ = (aij) for the standard tableau. By definition,
we have that

k∑
i=j

cij = #{a ∈ N : a ≤ k, a is in the jth column of Σ}.

Note that, by (ii), the number j is the first one which might occur in

the jth column. Since
∑n−1

i=j ci j ≥
∑n

i=j+1 ci j+1, we see that there are
at least as many elements in the (j+1)th column as in the jth column,
which assures that Σ is a tableau.

It remains to prove that the entries in each row form a strictly
increasing sequence. Suppose this is not the case, and choose i the
maximal index such that there exists j with aij ≥ ai j+1.

Then, alj < al j+1 for l > i if there is an entry at position (l, j + 1).
Let k + 1 = ai j+1. Assume that ai+1 j+1 = k + 1. Then, we get the
contradiction

k + 1 = ai+1 j+1 > ai+1 j ≥ aij ≥ ai j+1 = k + 1.

Hence, ai+1 j+1 > k + 1 or the (j + 1)th column has only i entries. In
particular, we see that

k+1∑
i=j+1

ci j+1=#{a ∈ N : a≤k+1, a is in the (j + 1)th column of Σ}= i.

Since aij ≥ ai j+1 = k + 1, we also have

k∑
i=j

cij = #{a ∈ N : a ≤ k, a is in the jth column of Σ} ≤ i− 1.

This is a contradiction to the fact that (cij) satisfies the equation in
(iii). This shows that every row of Σ is a strictly increasing sequence
of integers and, by construction, we know already that every column
forms a weakly increasing sequence of integers. Condition (iv) implies
that we deal with a tableau whose rows have even length, that is, the
jth and the (j + 1)th columns have the same number of entries for
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every odd j. By definition, the length of Σ is bounded by 2r. Hence,
Σ ∈ S2r, and we see that (cij) is indeed the exponent vector of the
monomial in (ΣY E(2r)Y t). This concludes the proof.

The inequalities describing the cone in Proposition 5.1 are not irre-
dundant, as we will see below. Before continuing the discussion, we
prove the following result:

Lemma 5.2. Let (cij) ∈ Rn·2r be a vector satisfying conditions
(i) (iv) in Proposition 5.1. Then:

(a) c11 ≥ c22 ≥ · · · ≥ c2r 2r.

(b) cn j = 0 for all odd j with 1 ≤ j ≤ 2r − 1.

(c) For all odd j with 1 ≤ j ≤ 2r − 1 and k = n− 1, the inequalities
in (iii) are satisfied by (cij) as equalities.

Proof. (a) Proposition 5.1 (iii) for k = j is just cj j ≥ cj+1 j+1 for all
j with 1 ≤ j ≤ 2r − 1.

(b) and (c). Let j be an odd integer in {1, . . . , 2r − 1}. By
Proposition 5.1, applying (iii) for k = n − 1 together with (iv), we
see that

n−1∑
i=j

cij ≥
n∑

i=j+1

ci j+1 =
n∑

i=j

cij .

Since cij ≥ 0 by (i) and (ii), this implies cnj = 0, which is (b).
Moreover, we see that the first inequality has to be an equation, and
this proves (c).

Using Lemma 5.2, we rewrite the inequalities and equalities in Propo-
sition 5.1 to describe C2r+2 in a way which is more suitable in the
following.

Lemma 5.3. The cone C2r+2 in Rn·2r is defined by the following
system of inequalities and equalities:

(i) cij ≥ 0 for all i, j with 1 ≤ j ≤ 2r and

(a) j < i ≤ n− 1 if j is odd,
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(b) j < i ≤ n if j is even.

(ii) c2r 2r ≥ 0.

(iii) cnj = 0 for all odd j with 1 ≤ j ≤ 2r − 1.

(iv) cij = 0 for all i, j with 1 ≤ j ≤ 2r and j > i ≥ 1.

(v)
∑k

i=j cij−
∑k+1

i=j+1 ci j+1 ≥ 0 for all j, k with 1 ≤ j ≤ 2r−1, and

(a) k = j, . . . , n− 2 if j is odd,

(b) k = j, . . . , n− 1 if j is even.

(vi)
∑n−1

i=j ci j −
∑n

i=j+1 ci j+1 = 0 for all odd j with 1 ≤ j ≤ 2r − 1.

Proof. Let (cij) ∈ Rn·2r satisfy (i) (iv) of Proposition 5.1. Using
Lemma 5.2, we see that this element also satisfies the new inequalities
and equalities.

Conversely, (i), (ii), (iii) and (v) for k = j imply the inequalities
of Proposition 5.1 (i). The equations in (iv) are exactly the ones in
Proposition 5.1 (ii). We see also that (v) and (vi) imply the inequalities
of Proposition 5.1 (iii). Finally, (iii) and (vi) give us the equations in
Proposition 5.1 (iv). Thus, we see that (i) (vi) also define C2r+2.

The next goal is to describe the lattice points in the relative interior
of C2r+2. For this, and to prove later the main result of this section,
we construct a special tableau in S2r.

Definition 5.4. Let T2r = (tsp) be the tableau with 2r columns,
obtained as follows. For every p = 1, . . . 2r, let

tsp =

{
p for s = 1, . . . , 2r + 1− p,

2p+ s− 2r − 1 for s = 2r + 2− p, . . . , 2r + n− 2p.

If p is even, set tsp = n for s = 2r + n− 2p+ 1, 2r + n− 2p+ 2.

Example 5.5. Here are T2 with n = 6, T4 with n = 6, and T6 with
n = 9.
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1 2
1 3
2 4
3 5
4 6
5 6

1 2 3 4
1 2 3 5
1 2 4 6
1 3 5 6
2 4
3 5
4 6
5 6

1 2 3 4 5 6
1 2 3 4 5 7
1 2 3 4 6 8
1 2 3 5 7 9
1 2 4 6 8 9
1 3 5 7
2 4 6 8
3 5 7 9
4 6 8 9
5 7
6 8
7 9
8 9

Lemma 5.6. The tableau T2r is in S2r, and it has 2nr elements. The
corresponding lattice point (cij) in C2r+2 has the following properties:

(i) cjj = 2r + 1− j for all j = 1, . . . , 2r.

(ii) cij = 1 for all i, j with 1 ≤ j ≤ 2r and 1 ≤ j < i ≤ n− 1.

(iii) cnj = 2 for all even j with 2 ≤ j ≤ 2r.

(iv)
∑k

i=j cij −
∑k+1

i=j+1 ci j+1 = 1 for all j, k with 1 ≤ j ≤ 2r− 1 and
j ≤ k ≤ n− 2.

(v)
∑n−1

i=j cij −
∑n

i=j+1 ci j+1 = 2 for all even j with 2 ≤ j ≤ 2r− 2.

In particular, (cij) satisfies strictly the inequalities in (i), (ii), (v) of
Lemma 5.3.

Proof. If p is odd, the pth column contains 2r + n − 2p elements,
and the (p+ 1)th column contains 2r+ n− 2(p+ 1) + 2 = 2r+ n− 2p
elements. Thus, T2r is a tableau with rows of even length. We also
see that the length of the first row is 2r. It is easy to check that, by
definition, T2r is a standard tableau. Hence, T2r ∈ S2r. Observe that
the shape of T2r is

(2r, 2r, . . . , 2r︸ ︷︷ ︸
n−2r+2 times

, 2r − 2, · · · , 2r − 2︸ ︷︷ ︸
4times

, 2r − 4, . . . , 2r − 4︸ ︷︷ ︸
4 times

, . . . ,

4, 4, 4, 4, 2, 2, 2, 2).
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So we get that the number of the entries of T is equal to

2r(n− 2r + 2) + 4

r−1∑
i=1

2i = 2r(n− 2r + 2) + 4(r − 1)r = 2nr.

Let (cij) be the lattice point corresponding to T2r. Recall that, by
Proposition 5.1 and Lemma 5.3, this element satisfies all equalities and
inequalities of Lemma 5.3. Moreover, the corresponding proofs show
that cij = #{tsj : tsj = i}.
By Definition 5.4, one has t1j = t2 j = · · · = t2r+1−j j = j,

t2r+2−j j = j + 1, t2r+3−j j = j + 2, . . . , t2r+n−2j j = n − 1. If j is
even, then t2r+n−2j+1 j = t2r+n−2j+2 j = n. Thus, we see that (i), (ii)

and (iii) hold. Moreover,
∑k

i=j cij = #{tsj : tsj ≤ k}. Hence, (iv) and
(v) follow by comparing the entries of the jth column with the entries
of the (j + 1)th column. We also see that (cij) satisfies strictly the
inequalities in (i), (ii), (v) of Lemma 5.3. This concludes the proof.

Using the results so far, we can describe the lattice points in the
relative interior of C2r+2.

Proposition 5.7. The relative interior of C2r+2 is defined by strict
inequalities in (i), (ii), (v) of Lemma 5.3. Moreover, if (cij) ∈ Rn·2r ∈
C2r+2 is a lattice point in the relative interior of C2r+2, then:

(a) cjj ≥ 2r + 1− j for all j = 1, . . . , 2r.

(b) cnj ≥ 2 for all even j with 1 ≤ j ≤ 2r.

(c)
∑n−1

i=j ci j −
∑n

i=j+1 ci j+1 ≥ 2 for all even j with 2 ≤ j ≤ 2r − 2.

Proof. Let U be the subspace ofRn·2r defined by the equations in (iii),
(iv) and (vi) of Lemma 5.3. Then, clearly, C2r+2 ⊆ U . Moreover, in
Lemma 5.6, we observed that T2r corresponds to a lattice point which
strictly satisfies the inequalities in (i), (ii), (v) of Lemma 5.3. This
implies that C2r+2 must be full dimensional inside U and T2r must be
an interior point of C2r+2 inside U , that is a relative interior point of
C2r+2 inside Rn·2r.

Moreover, we can conclude that the relative interior of C2r+2 is defined
by strict inequalities in (i), (ii), (v) of Lemma 5.3. Now let (cij) ∈ Rn·2r

be a lattice point in the relative interior of C2r+2.
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(a) By the strict inequalities in Lemma 5.3 (ii) and (v) for k = j we
get

c11 > c22 > · · · > c2r 2r ≥ 1.

It follows that cjj ≥ 2r + 1− j for j = 1, . . . , 2r.

(b) Let j be even with 1 ≤ j ≤ 2r. By Lemma 5.3 (vi) one has∑n
i=j cij =

∑n−1
i=j−1 ci j−1. Thus,

cnj =

n−1∑
i=j−1

ci j−1 −
n−1∑
i=j

cij = cn−1 j−1 +

[ n−2∑
i=j−1

ci j−1 −
n−1∑
i=j

cij

]
≥ 2.

The last inequality follows since cn−1 j−1 ≥ 1 by the strict inequalities

in Lemma 5.3 (i) and
∑n−2

i=j−1 ci j−1 >
∑n−1

i=j cij by the ones of Lemma
5.3 (v) for k = n− 2.

(c) Lemma 5.3 (v) with k = n − 2 implies that
∑n−2

i=j ci j −∑n−1
i=j+1 ci j+1 ≥ 1. Moreover, cn j+1 = 0 by Lemma 5.3 (iii) and

cn−1 j ≥ 1 by Lemma 5.3 (i). Hence,

n−1∑
i=j

ci j −
n∑

i=j+1

ci j+1 = cn−1 j +

[ n−2∑
i=j

cij −
n−1∑

i=j+1

ci j+1

]
≥ 2.

We are ready to prove the main result of this section:

Corollary 5.8. The ring R2r+2(X) is Gorenstein with a-invariant
−nr.

Remark 5.9. Note that the Gorenstein property of R2r+2(X) is a
classical result. Avramov [1] showed that R2r+2(X) is factorial. Since
it is Cohen-Macaulay, it is also Gorenstein by a result of Murthy (see,
e.g., [19, 12.31]). See also [12]. Here we get it as an application of
tools from combinatorial commutative algebra.

The a-invariant was computed in [4, Corollary 1.7] by different
methods. See also [14]. Observe that the a-invariant determines the
highest shift in the resolution of R2r+2(X). Thus, this determines, e.g.,
also the Castelnuovo-Mumford regularity of R2r+2(X).
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Proof of Corollary 5.8. By Theorem 4.3, we know that D2r+2 is
a normal affine monoid ring. Since it is Cohen-Macaulay, it has a
(graded) canonical module and it is known from results of Danilov
[9] and Stanley [27] that this module is the ideal generated by the
monomials corresponding to the lattice points in the relative interior
of C2r+2, see also [5, subsection 6.3]. We know by Lemma 5.6 and
Proposition 5.7 that T2r corresponds to a lattice point c in the relative
interior of C2r+2. Moreover, for any lattice point d in the relative
interior of C2r+2, we see by Proposition 5.7 that d− c is again a lattice
point in C2r+2. Hence, T2r is a minimal lattice point in the relative
interior of C2r+2 and, equivalently, the canonical module is isomorphic
to D2r+2 shifted by 2nr.

Thus, D2r+2 is Gorenstein with a-invariant −2nr. This implies that
R2r+2(X) is Gorenstein; see, e.g., [3, 8]. Note that in the deformation
from R2r+2(X) to D2r+2 the X variables, which have degree 1, are
mapped to degree 2 polynomials. Hence, the a-invariant of R2r+2(X)
is −nr. This concludes the proof.

6. Pfaffian rings Rα(X). In Section 2, we have introduced the
cogenerated Pfaffian ring Rα(X), for some Pfaffian α ∈ Pf (X). We
have not constructed a generic point for the rings of this form. But
we are able to study them using the generic point of K[X ] and initial
algebra methods. At first, we recall the following result:

Remark 6.1. Let α ∈ Pf (X). It is a well-known fact in ASL theory
that, since Iα(X) is an order ideal, it has a basis over K given by all
standard monomials of Pfaffians α1 · . . . · αu such that α1 �≥ α.

Note that the fact that these standard monomials are linearly inde-
pendent also follows easily by Theorem 4.1.

For the next result, we introduce the following notation. Let D =
in (K[X ]) be the initial algebra of K[X ] inside K[Y ] where we identify
K[X ] with its image K[Y E(2r)Y t] under φ2r+2 for r = �n/2	. For
α ∈ Pf (X), let Jα(X) = in (Iα(X)) be the initial ideal of Iα(X) inside
D. Now we are ready to prove the main result of this section.

Theorem 6.1. Let α ∈ Pf (X). Then Jα(X) is a monomial
prime ideal in D. In particular, Rα(X) is a normal Cohen-Macaulay



168 EMANUELA DE NEGRI AND TIM RÖMER

domain, with rational singularities in characteristic 0 and F -rational
in characteristic p > 0.

That Rα(X) is a normal Cohen-Macaulay domain was observed, for
example, in [12, Proposition 1.1, Corollary 2.2 and Proposition 2.4].

Proof. It follows from Lemma 6.1 (i) that, for Iα(X), a K-basis
is given by all standard monomials of Pfaffians α1 · . . . · αu such that
α1 �≥ α. Hence, Jα(X) is generated by all initial forms of such α1 ·. . .·αu

which we computed explicitly in Theorem 4.3.

More precisely, each of these monomials has the form
∏2t

j=1 Yajj where
1 ≤ t ≤ �n/2	 and 1 ≤ a1 < · · · < a2t ≤ n. If α = Pf (b1 . . . b2s), then
Pf (a1 . . . a2t) �≥ α if and only if t > s or t ≤ s and ai < bi for some
i ∈ {1, . . . , s}. The latter monomials generate Jα(X). Since D is a
normal affine monoid ring, we see that Jα(X) is a monomial prime
ideal and D/Jα(X) is again a normal affine monoid ring; for details
see, e.g., [5, Chapter 6]. This concludes the proof by applying again
[8, Corollary 2.3 and Proposition 2.4].

Remark 6.2. As in Section 5, one could compute the defining equa-
tions of the normal affine monoid ring T/Jα(X) to determine its canon-
ical module and to investigate the Gorenstein property of Rα(X). We
saw already in Corollary 5.8 thatR2r+2(X) is Gorenstein; besides them,
very few of the rings Rα(X) are Gorenstein, see [12, Theorem 3.5] for
a full classification. We leave the proof of the general case with the
techniques used in the previous section to the interested reader or refer
to the original proof in [12].
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11. C. De Concini and C. Procesi, A characteristic free approach to invariant
theory, Adv. Math. 21 (1976), 330 354.

12. E. De Negri, Divisor class group and canonical class of rings defined by ideals
of Pfaffians, Comm. Algebra 23 (1995), 4415 4426.

13. , Pfaffian ideals of ladders, J. Pure Appl. Algebra 125 (1998), 141 153.

14. , Some results on Hilbert series and a-invariant of Pfaffian ideals,
Math. J. Toyama Univ. 24 (2001), 93 106.

15. E. De Negri and E. Gorla, G-biliaison of ladder Pfaffian varieties, J. Algebra
321 (2009), 2637 2649.

16. , Invariants of ideals generated by Pfaffians, in Commutative algebra
and its connections to geometry, Contemp. Math. 555, American Mathematical
Society (2011), 47 62.
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