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A total Roman dominating function on a graph G is a function f :V (G)→{0, 1, 2}
such that every vertex v with f (v)= 0 is adjacent to some vertex u with f (u)= 2,
and the subgraph of G induced by the set of all vertices w such that f (w) > 0
has no isolated vertices. The weight of f is

∑
v∈V (G) f (v). The total Roman

domination number γtR(G) is the minimum weight of a total Roman dominating
function on G. A graph G is k-γtR-edge-critical if γtR(G + e) < γtR(G) = k for
every edge e ∈ E(G) 6=∅, and k-γtR-edge-supercritical if it is k-γtR-edge-critical
and γtR(G+e)= γtR(G)−2 for every edge e ∈ E(G) 6=∅. We present some basic
results on γtR-edge-critical graphs and characterize certain classes of γtR-edge-
critical graphs. In addition, we show that, when k is small, there is a connection
between k-γtR-edge-critical graphs and graphs which are critical with respect to
the domination and total domination numbers.

1. Introduction

We consider the behaviour of the total Roman domination number of a graph G
upon the addition of edges to G. A dominating set S in a graph G is a set of vertices
such that every vertex in V (G)− S is adjacent to at least one vertex in S. The
domination number γ (G) is the cardinality of a minimum dominating set in G.
A total dominating set S (abbreviated by TD-set) in a graph G with no isolated
vertices is a set of vertices such that every vertex in V (G) is adjacent to at least one
vertex in S. The total domination number γt(G) (abbreviated by TD-number) is the
cardinality of a minimum total dominating set in G. For S ⊆ V (G) and a function
f : S→ R, define f (S)=

∑
s∈S f (s). A Roman dominating function (abbreviated

by RD-function) on a graph G is a function f : V (G)→ {0, 1, 2} such that every
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vertex v with f (v)= 0 is adjacent to some vertex u with f (u)= 2. The weight of f ,
denoted by ω( f ), is defined as f (V (G)). The Roman domination number γR(G)
(abbreviated by RD-number) is defined as min{ω( f ) : f is an RD-function on G}.
For an RD-function f , let V i

f = {v ∈ V (G) : f (v)= i} and V+f = V 1
f ∪ V 2

f . Thus,
we can uniquely express an RD-function f as f = (V 0

f , V 1
f , V 2

f ).
As defined by Ahangar, Henning, Samodivkin and Yero [2016], a total Roman

dominating function (abbreviated by TRD-function) on a graph G with no isolated
vertices is a Roman dominating function with the additional condition that G[V+f ]
has no isolated vertices. The total Roman domination number γtR(G) (abbreviated
by TRD-number) is the minimum weight of a TRD-function on G; that is, γtR(G)=
min{ω( f ) : f is a TRD-function on G}. A TRD-function f such that ω( f ) =
γtR(G) is called a γtR(G)-function, or a γtR-function if the graph G is clear from
the context; γR-functions are defined analogously.

The addition of an edge to a graph has the potential to change its total domination
or Roman domination number. Van der Merwe, Mynhardt and Haynes [1998b]
studied γt -edge-critical graphs, that is, graphs G for which γt(G+ e) < γt(G) for
each e ∈ E(G) and E(G) 6= ∅. We consider the same concept for total Roman
domination. A graph G is total Roman domination edge-critical, or simply γtR-
edge-critical, if γtR(G + e) < γtR(G) for every edge e ∈ E(G) and E(G) 6= ∅.
We say that G is k-γtR-edge-critical if γtR(G) = k and G is γtR-edge-critical. If
γtR(G+ e)≤ γtR(G)− 2 for every edge e ∈ E(G) and E(G) 6=∅, we say that G
is γtR-edge-supercritical. If γtR(G+ e)= γtR(G) for all e ∈ E(G), or E(G)=∅,
we say that G is stable.

Pushpam and Padmapriea [2017] established bounds on the total Roman domi-
nation number of a graph in terms of its order and girth. Total Roman domination
in trees was studied by Amjadi, Nazari-Moghaddam, Sheikholeslami and Volk-
mann [2017], as well as by Amjadi, Sheikholeslami and Soroudi [2019]. Amjadi,
Sheikholeslami, and Soroudi [2018] also studied Nordhaus–Gaddum bounds for
total Roman domination. Campanelli and Kuziak [2019] considered total Roman
domination in the lexicographic product of graphs. We refer the reader to the
well-known books [Chartrand and Lesniak 2016; Haynes, Hedetniemi, and Slater
1998] for graph theory concepts not defined here. Frequently used or lesser known
concepts are defined where needed.

We begin with some general results regarding the addition of an edge e ∈ E(G)
to a graph G in Section 2. In Section 3, we characterize n-γtR-edge-critical graphs
of order n. We characterize 4-γtR-edge-critical graphs in Section 4, and, after
investigating γtR-edge-supercritical graphs in Section 5, we present a necessary
condition for 5-γtR-edge-critical graphs in Section 6. In Section 7, we determine
the total Roman domination number of spiders and characterize γtR-edge-critical
spiders. As can be expected, every graph G with γtR(G) = k ≥ 4 is a spanning
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subgraph of a k-γtR(G)-edge-critical graph; a short proof is given in Section 8,
where we also show that for any k ≥ 4, there exists a k-γtR-edge-critical graph of
diameter 2. We conclude in Section 9 with ideas for future research.

2. Adding an edge

We begin with a result from [Van der Merwe, Mynhardt, and Haynes 1998a] which
bounds the effect the addition of an edge can have on the total domination number
of a graph and show that the same bounds hold with respect to the total Roman
domination number.

Proposition 2.1 [Van der Merwe, Mynhardt, and Haynes 1998a]. For a graph G
with no isolated vertices, if uv ∈ E(G), then γt(G)− 2≤ γt(G+ uv)≤ γt(G).

An edge uv∈ E(G) is critical if γtR(G+uv)<γtR(G). The following proposition
restricts the possible values assigned to the vertices of a critical edge uv by a
γtR(G+uv)-function f , which will be useful in proving subsequent results. For a
graph G and a vertex v ∈ V (G), the open neighbourhood of v in G is NG(v) =

{u ∈ V (G) : uv ∈ E(G)}, and the closed neighbourhood of v in G is NG[v] =

NG(v)∪ {v}. When G 6= K2, the unique neighbour of an end-vertex of G is called
a support vertex.

Proposition 2.2. Given a graph G with no isolated vertices, if uv ∈ E(G) is a
critical edge and f is a γtR(G+uv)-function, then

{ f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}.

If , in addition, deg(u) = deg(v) = 1, then there exists a γtR(G+uv)-function f
such that f (u)= f (v)= 1.

Proof. Let G be a graph with no isolated vertices, uv∈ E(G) such that γtR(G+uv)<
γtR(G), and f a γtR-function on G + uv. Suppose for a contradiction that
{ f (u), f (v)} /∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. Then { f (u), f (v)} ∈ {{0, 0}, {0, 1}}.
Note that, in either case, the edge uv cannot affect whether u and v are dom-
inated or whether, in the case where (say) f (v) = 1, v is isolated. Hence
f is a TRD-function of G, contradicting γtR(G + uv) < γtR(G). Therefore
{ f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}.

Now, suppose in addition that deg(u)= deg(v)= 1, and let f be a γtR(G+uv)-
function such that |V 2

f | is as small as possible. Letw and x be the unique neighbours
of u and v, respectively, noting that possibly w = x . Suppose for a contradiction
that f (u)= 2 (without loss of generality). If f (v)= 0, then f (w) > 0, otherwise
u would be isolated in G[V+f ]. Thus, regardless of whether w = x or not, consider
the function f ′ : V (G)→{0, 1, 2} defined by f ′(u)= f ′(v)= 1 and f ′(y)= f (y)
for all other y ∈ V (G). Otherwise, if f (v) ≥ 1, then clearly f (w) = 0. Thus,
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regardless of whether w = x or not, consider the function f ′ : V (G)→ {0, 1, 2}
defined by f ′(u)= f ′(w)= 1 and f ′(y)= f (y) for all other y ∈ V (G). In either
case, f ′ is a γtR-function on G + uv. However, |V 2

f ′ | < |V
2
f |, contradicting |V 2

f |

being as small as possible. Hence f (u) 6= 2, and thus f (u)= f (v)= 1. �

Proposition 2.3. Given a graph G with no isolated vertices, if uv ∈ E(G), then
γtR(G)− 2≤ γtR(G+ uv)≤ γtR(G).

Proof. Let G be a graph with no isolated vertices. Clearly, adding an edge cannot
increase the total Roman domination number; hence the upper bound holds. Now,
let uv ∈ E(G). Note that when γtR(G + uv) = γtR(G), the lower bound clearly
holds. So assume γtR(G+ uv) < γtR(G) and let f be a γtR(G+uv)-function. By
Proposition 2.2, { f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}.

First assume { f (u), f (v)} ∈ {{2, 2}, {2, 1}, {1, 1}}. Then f is an RD-function
of G, and the only possible isolated vertices in G[V+f ] are u and v. Consider
the function f ′ : V (G)→ {0, 1, 2} defined as follows: If u is isolated in G[V+f ],
choose u′ ∈ NG(u) and let f ′(u′)= 1. Similarly, if v is isolated in G[V+f ], choose
v′ ∈ NG(v) and let f ′(v′) = 1. Let f ′(x) = f (x) for all other x ∈ V (G). Now,
assume instead that f (u)= 2 and f (v)= 0 (without loss of generality). Since u
is not isolated in G[V+f ], f is a TRD-function of G − v. Consider the function
f ′ : V (G)→ {0, 1, 2} defined as follows: Let f ′(v) = 1. Then, if v is isolated
in G[V+f ′ ], choose v′ ∈ NG(v) and let f ′(v′) = 1. Let f ′(x) = f (x) for all other
x ∈ V (G). In either case, f ′ is a TRD-function of G and ω( f ′)≤ γtR(G+uv)+2.
Thus γtR(G)≤ γtR(G+ uv)+ 2, and hence the lower bound holds. �

3. γtR-edge-critical graphs with large TRD-numbers

We now investigate the γtR-edge-critical graphs G which have the largest TRD-
number, namely |V (G)|. A subdivided star is a tree obtained from a star on at
least three vertices by subdividing each edge exactly once. A double star is a
tree obtained from two disjoint nontrivial stars by joining the two central vertices
(choosing either central vertex in the case of K2). The corona cor(G) (sometimes
denoted by G ◦ K1) of G is obtained by joining each vertex of G to a new end-
vertex.

Connected graphs G for which γtR(G)= |V (G)| were characterized in [Ahangar,
Henning, Samodivkin, and Yero 2016]. There G was defined as the family of
connected graphs obtained from a 4-cycle v1, v2, v3, v4, v1 by adding k1+ k2 ≥ 1
vertex-disjoint paths P2, and joining vi to the end of ki such paths for i ∈ {1, 2}.
Note that possibly k1 = 0 or k2 = 0. Furthermore, they defined H to be the family
of graphs obtained from a double star by subdividing each pendant edge once and
the nonpendant edge r ≥ 0 times. For r ≥ 0, we define Hr ⊆H as the family of
graphs in H where the nonpendant edge was subdivided r times.
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Proposition 3.1 [Ahangar, Henning, Samodivkin, and Yero 2016]. If G is a con-
nected graph of order n ≥ 2, then γtR(G) = n if and only if one of the following
holds:

(i) G is a path or a cycle.

(ii) G is the corona of a graph.

(iii) G is a subdivided star.

(iv) G ∈ G ∪H.

Using Proposition 3.1, we characterize connected n-γtR-edge-critical graphs as
follows.

Theorem 3.2. A connected graph G of order n ≥ 4 is n-γtR-edge-critical if and
only if G is one of the following graphs:

(i) Cn , n ≥ 4.

(ii) cor(Kr ), r ≥ 3.

(iii) a subdivided star of order n ≥ 7.

(iv) G ∈ G.

(v) G ∈H−H0−H2.

Proof. Let G be a connected graph of order n ≥ 4 with γtR(G)= n. First, suppose
G is any of the graphs listed in (i)–(v) above. Then, for any e ∈ E(G), G + e is
not one of the graphs listed in Proposition 3.1. Therefore γtR(G + e) < n for all
e ∈ E(G), and thus G is γtR-edge-critical.

Otherwise, suppose G is not one of the graphs listed in (i)–(v) above. Note that
since γtR(G)= n, G is still listed in Proposition 3.1(i)–(iv). If G ∼= Pn : v1, . . . , vn ,
n ≥ 4, then G + v1vn ∼= Cn and γtR(G) = γtR(Cn) = n. If G ∼= cor(F), where F
is not a complete graph of order at least 3, then γtR(G) = γtR(G + uv) for any
uv ∈ E(F). If G is a subdivided star of order less than 7, then G = P5. In each of
these cases, G is clearly not γtR-edge-critical.

Now consider G ∈ H. Let w1, . . . , wk be the leaves of G, u1, . . . , uk be their
respective support vertices, and v1, . . . , vm be the path such that v1 and vm are the
two support vertices in the original double star S, labelled so that w1 is adjacent,
in S, to v1. Note that m = r + 2, and therefore m ≥ 2. If G ∈ H0, consider
the graph G + v2w1, and note that G + v2w1 ∈ G. Therefore, by Proposition 3.1,
γtR(G+v2w1)=n, and thus G is not γtR-edge-critical. Similarly, if G∈H2, consider
the graph G + v1v4, and note that G + v1v4 ∈ G. Therefore, by Proposition 3.1,
γtR(G+ v1v4)= n, and again G is not γtR-edge-critical. �
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4. 4-γt R-edge-critical graphs

Before we characterize the graphs G such that γtR(G)= 4 and γtR(G+ e)= 3 for
any e ∈ E(G) (that is, the graphs which are 4-γtR-edge-critical), we present the
following result from [Pushpam and Padmapriea 2017] which characterizes the
graphs with a total Roman domination number of 3, the smallest possible TRD-
number. Note that while the authors required that G has girth 3, the result actually
holds in general for any graph G on at least three vertices, as we now show. A
universal vertex of G is a vertex that is adjacent to all other vertices of G.

Proposition 4.1. For a graph G of order n≥ 3 with no isolated vertices, γtR(G)= 3
if and only if 1(G)= n− 1, that is, G has a universal vertex.

Proof. Suppose γtR(G) = 3 and let f = (V 0
f , V 1

f , V 2
f ) be a γtR(G)-function. If

V 2
f = ∅, then |V 1

f | = 3, and thus n = 3. Since G has no isolated vertices, this
implies that G = K3 or P3, both of which have a universal vertex. Otherwise,
assume |V 2

f | = 1 and |V 1
f | = 1. Pick u, v ∈ V (G) so that f (u)= 1 and f (v)= 2.

Since G[V+f ] has no isolated vertices, uv ∈ E(G). Furthermore, since γtR(G)= 3,
f (x)= 0 for all other x ∈V (G). Therefore NG[v]=V (G), and thus v is a universal
vertex.

Conversely, suppose G has a universal vertex v, and take any u∈NG(v). Consider
the TRD-function f :V (G)→{0, 1, 2} defined by f (v)=2, f (u)=1, and f (x)=0
for all other x ∈ V (G). Since G has at least three vertices, γtR(G) > 2. Therefore,
since ω( f )= 3, we conclude that γtR(G)= 3. �

A galaxy is defined as the disjoint union of two or more nontrivial stars. The
characterization of 4-γtR-edge-critical graphs follows; note that this class of graphs
is exactly the class of 2-γ -edge-critical graphs, as characterized in [Sumner and
Blitch 1983].

Theorem 4.2. A graph G with no isolated vertices is 4-γtR-edge-critical if and only
if G is a galaxy.

Proof. Let G be a graph of order n with no isolated vertices. Suppose first that G
is 4-γtR-edge-critical. Then for any e ∈ E(G), we have γtR(G + e)= 3, and thus
Proposition 4.1 implies that the addition of any edge to G creates a universal vertex.
Therefore, for each edge uv ∈ E(G), one of u and v has degree n− 2 in G; that
is, one of u and v is a leaf in G. Since each edge of G connects a leaf to either a
support vertex or another leaf, the components of G are nontrivial stars. Moreover,
G has at least two components, otherwise G has an isolated vertex.

Conversely, suppose G is a galaxy. Since G has no isolated vertices, G has no
universal vertices, and thus, by Proposition 4.1, γtR(G) > 3. Let u and v be vertices
in different components of G, and define f : V (G)→{0, 1, 2} by f (u)= f (v)= 2
and f (x)= 0 for all other x ∈ V (G). Clearly f is a TRD-function on G, and hence
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γtR(G)= 4. Since the deletion of any edge in G produces an isolated vertex, the
addition of any edge to G creates a universal vertex. Therefore, by Proposition 4.1,
γtR(G+ e)= 3 for all e ∈ E(G), and hence G is 4-γtR-edge-critical. �

Corollary 4.3. If G is a connected (n−2)-regular graph, then G is 4-γtR-edge-
critical.

Having characterized 4-γtR-edge-critical graphs, our next result demonstrates
the existence of stable graphs with total Roman domination number 4.

Proposition 4.4. If G is an (n−3)-regular graph of order n ≥ 6, then γtR(G)= 4.
Moreover, G is stable.

Proof. We prove that γ (G) = 2. Since G is (n−3)-regular, its complement G is
2-regular. If G is disconnected, let u and v be vertices in different components
of G. Otherwise, if G is connected, then G ∼= Cn , n ≥ 6, and thus we can choose
u, v ∈ V (G) such that dG(u, v) ≥ 3. In either case, NG[u] ∩ NG[v] = ∅. In G,
u dominates all vertices in G− NG(u) and v dominates all vertices in G− NG(v).
Therefore {u, v} dominates G, and thus, since G has no universal vertex, γ (G)= 2.

Now, define f : V (G)→ {0, 1, 2} by f (u) = f (v) = 2 and f (y) = 0 for all
other y ∈ V (G). Since uv ∈ E(G), f is a TRD-function on G and ω( f )= 4, so
γtR(G)≤4. Since G has no universal vertex, γtR(G)>3 by Proposition 4.1, and thus
γtR(G)= 4, as required. Furthermore, since the addition of any edge to G does not
create a universal vertex, it follows from Proposition 4.1 that γtR(G+ e)= γtR(G)
for all e ∈ E(G). Therefore G is stable. �

5. γt R-edge-supercritical graphs

We now consider the graphs G which attain the lower bound in Proposition 2.3
for all e ∈ E(G), that is, γtR-edge-supercritical graphs. An edge uv ∈ E(G) is
supercritical if γtR(G+ uv)= γtR(G)− 2. Van der Merwe, Mynhardt, and Haynes
[1998a] defined a graph G to be γt -edge-supercritical if γt(G+ e)= γt(G)− 2 for
all e ∈ E(G). We begin with their characterization of γt -edge-supercritical graphs.

Proposition 5.1 [Van der Merwe, Mynhardt, and Haynes 1998a]. A graph G is
γt -edge-supercritical if and only if G is the union of two or more nontrivial complete
graphs.

The proof of the previous result relies on the fact that, if u and v are vertices of
a graph G with d(u, v)= 2, then γt(G)−1≤ γt(G+uv). However, the analogous
result does not hold with respect to the total Roman domination number, as we now
show. Consider the graph G = cor(K3). By Proposition 3.1, γtR(G)= 6. Consider
any two nonadjacent vertices u and v in G such that deg(u) = 1 and deg(v) = 3.
Clearly uv is a supercritical edge with d(u, v)= 2, and thus d(u, v)= 2 does not
always imply that γtR(G)− 1≤ γtR(G+ uv).
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As a result, the classification of γtR-edge-supercritical graphs will be less straight-
forward than that of γt -edge-supercritical graphs. However, it is easy to see that
there are no 5-γtR-edge-supercritical graphs, where 5 is the smallest possible TRD-
number of a γtR-edge-supercritical graph, and that the disjoint union of two or more
complete graphs of order at least 3 is γtR-edge-supercritical.

Proposition 5.2. (i) There are no 5-γtR-edge-supercritical graphs.

(ii) If G is the disjoint union of k ≥ 2 complete graphs, each of order at least 3,
then G is 3k-γtR-edge-supercritical.

Proof. (i) Suppose for a contradiction that G is a 5-γtR-edge-supercritical graph.
Then γtR(G + uv) = 3 for any edge uv ∈ E(G). However, as in the proof of
Theorem 4.2, this implies that G is a galaxy, that is, G is 4-γtR-edge-critical, a
contradiction.

(ii) It follows from Proposition 4.1 that γtR(G)= 3k. Moreover, joining any two
vertices in different components of G results in a graph with TRD-number 3k−2. �

6. 5-γt R-edge-critical graphs

We now investigate the graphs which are 5-γtR-edge-critical. We begin with the
following results, which bound γtR(G) in terms of γt(G).

Proposition 6.1 [Ahangar, Henning, Samodivkin, and Yero 2016]. If G is a graph
with no isolated vertices, then γt(G)≤ γtR(G)≤ 2γt(G). Furthermore, γtR(G)=
γt(G) if and only if G is the disjoint union of copies of K2.

Note that Amjadi, Nazari-Moghaddam, Sheikholeslami, and Volkmann [2017]
characterized the trees which attain the upper bound in Proposition 6.1.

Proposition 6.2 [Ahangar, Henning, Samodivkin, and Yero 2016]. Let G be a
connected graph of order n≥3. Then γtR(G)=γt(G)+1 if and only if1(G)=n−1,
that is, G has a universal vertex.

By Proposition 4.1, Proposition 6.2 implies that, if G is a connected graph of
order n ≥ 3, then γtR(G)= γt(G)+ 1 if and only if γtR(G)= 3. These results lead
to the following observation.

Observation 6.3. If G is a connected graph of order n ≥ 3 such that 1(G)≤ n−2,
then γt(G)+ 2≤ γtR(G)≤ 2γt(G).

We now provide a result characterizing graphs with γtR ∈ {3, 4} in terms of
their domination and total domination numbers that will be useful in describing
5-γtR-edge-critical graphs.

Proposition 6.4. If G is a connected graph of order n ≥ 3, then γtR(G) ∈ {3, 4} if
and only if γt(G)= 2. Moreover, γ (G)= 1 when γtR(G)= 3, and γ (G)= 2 when
γtR(G)= 4.
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Proof. Suppose first that γt(G)= 2. By Proposition 6.1, 2≤ γtR(G)≤ 4. Clearly
γtR(G) 6= 2, since n ≥ 3. Therefore γtR(G) ∈ {3, 4}.

Conversely, suppose γtR(G) ∈ {3, 4}. First, if γtR(G)= 3, then Proposition 4.1
implies that G has a universal vertex. Therefore γt(G)=2 and γ (G)=1. Otherwise,
if γtR(G)=4, then Proposition 4.1 implies that G has no universal vertex. Therefore,
by Observation 6.3, γt(G) + 2 ≤ 4, and thus γt(G) = 2. Furthermore, since
γ (G)≤ γt(G) and G has no universal vertex, γ (G)= 2. �

Proposition 6.5. For any graph G, if G is 5-γtR-edge-critical, then G is either 3-γt -
edge-critical or G = K2 ∪ Kn for n ≥ 3, in which case G is 4-γt -edge-supercritical.

Proof. Suppose G is 5-γtR-edge-critical. By Proposition 6.4, γt(G) > 2 and
γt(G + e)= 2 for any e ∈ E(G). Therefore, by Proposition 2.1, G is either 3-γt -
edge-critical or 4-γt -edge-supercritical. If G is 4-γt -edge-supercritical, then by
Proposition 5.1, G is the union of two or more nontrivial complete graphs. Since
γtR(G)= 5, this implies that G = K2 ∪ Kn for n ≥ 3. �

Note that if we add the condition that G is not 6-γtR-edge-supercritical, then
the above becomes a necessary and sufficient condition. Clearly G = K2 ∪ Kn

is 5-γtR-edge-critical for any n ≥ 3. Otherwise, if G is 3-γt -edge-critical, then
by Proposition 6.4, γtR(G) > 4 and γtR(G + e) ∈ {3, 4} for any e ∈ E(G). By
Proposition 6.1, γtR(G) ≤ 6, and thus, since G is not 6-γtR-edge-supercritical,
γtR(G)= 5. Hence G is 5-γtR-edge-critical, as required.

7. γt R-edge-critical spiders

A (generalized) spider Sp(l1, . . . , lk), li ≥ 1, k ≥ 2, is a tree obtained from the
star K1,k with centre u and leaves v1, . . . , vk by subdividing the edge uvi exactly
li − 1 times, i = 1, . . . , k. Thus, a spider Sp(2, . . . , 2) is a subdivided star. The
u− vi paths (of length li ) are called the legs of the spider, while u is its head. We
now investigate the spiders which are γtR-edge-critical. Note that when k = 2,
Sp(l1, . . . , lk)∼= Pn for n ≥ 3, which, by Theorem 3.2, is not γtR-edge-critical. We
begin with two propositions restricting γtR-edge-criticality in general graphs, which
will be useful in classifying γtR-edge-critical spiders.

Proposition 7.1. For a graph G with no isolated vertices, if G has an end-vertex w
with support vertex x such that G[N (x) − {w}] is not complete, then G is not
γtR-edge-critical.

Proof. Suppose u, v ∈ NG(x)−{w} such that uv ∈ E(G). We claim γtR(G+uv)=
γtR(G). Suppose for a contradiction that γtR(G + uv) < γtR(G), and consider a
γtR-function f = (V 0

f , V 1
f , V 2

f ) on G + uv. Note that, since w is an end-vertex,
f (x) > 0. By Proposition 2.2, { f (u), f (v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. Since
ux, vx ∈ E(G) and at least one of f (u) and f (v) is positive, we can assume
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without loss of generality that f (x) = 2. In any case, f is also a TRD-function
on G, contradicting γtR(G+ uv) < γtR(G). Therefore γtR(G+ uv)= γtR(G) and
G is not γtR-edge-critical. �

In a tree, the support vertex of a leaf is called a stem. A stem is called weak if it
is adjacent to exactly one leaf, and strong if it is adjacent to two or more leaves. A
vertex b of a tree such that deg(b)≥ 3 is called a branch vertex. An endpath in a
tree is a path from a branch vertex to a leaf, where all of the internal vertices of the
path have degree 2. The next result follows immediately from Proposition 7.1.

Corollary 7.2. If T is a γtR-edge-critical tree, then T contains no stems of degree
at least 3, and hence no strong stems.

Proposition 7.3. For a graph G with no isolated vertices, if G has two endpaths
v0, v1, . . . , vk and u0, u1, . . . , um , where k,m ≥ 3 and vk and um are leaves, then
G is not γtR-edge-critical.

Proof. We claim that γtR(G + vkum) = γtR(G). Suppose for a contradiction that
γtR(G + vkum) < γtR(G), and let f be a γtR-function on G + vkum . Then, by
Proposition 2.2, we may assume f (um)= f (vk)= 1. Define f ′ : V (G)→{0, 1, 2}
as follows: If f (vk−1) = 0, then clearly f (vk−2) = 2 and f (vk−3) ≥ 1, so let
f ′(vk−1) = f ′(vk−2) = 1. Otherwise, let f ′(vk−1) = f (vk−1) and f ′(vk−2) =

f (vk−2). Similarly, if f (um−1)= 0, then clearly f (um−2)= 2 and f (um−3)≥ 1, so
let f ′(um−1)= f ′(um−2)= 1. Otherwise, let f ′(um−1)= f (um−1) and f ′(um−2)=

f (um−2). Finally, let f ′(y) = f (y) for all other y ∈ V (G). Clearly f ′ is a TRD-
function on G and ω( f ′)=ω( f ), contradicting γtR(G+vkum)<γtR(G). Therefore
γtR(G+ vkum)= γtR(G), and thus G is not γtR-edge-critical. �

Let S be a spider with k ≥ 3 legs. In what follows, let c be the head of S, and
let the k legs be labelled c, vi1, vi2, . . . , vimi , where i ∈ {1, 2, . . . , k}, in order of
increasing length. Let m = mk ; that is, m is the length of a longest leg of S. We
begin by determining the TRD-number of spiders.

Proposition 7.4. If S is a spider of order n with k ≥ 3 legs such that S has y legs
of length 2, then

γtR(S)=


n if y ≥ k− 1,
n− k+ y+ 1 if 1≤ y < k− 1,
n− k+ 2 if y = 0.

Proof. Suppose S has x legs of length 1, and consider a γtR-function f on S such
that |V 2

f | is as small as possible. First, suppose y ≥ k − 1. If y = k, then S is a
subdivided star. Otherwise, if y = k− 1, then S has exactly one leg that is not of
length 2, and thus either x = 1 or x = 0. If x = 1, then S is the corona of a graph
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(specifically, S = cor(K1,k−1)). Otherwise, if x = 0, then m = mk ≥ 3, and S ∈Hr ,
where r = m− 3. In any case, by Proposition 3.1, γtR(S)= n.

Assume therefore that y < k − 1. Then S has at least two legs that are not of
length 2. Therefore S is not one of the graphs listed in Proposition 3.1, and thus
γtR(S) < n. Hence there is some vertex u ∈ V (S) such that f (u)= 2 and f (w)= 0
for at least two vertices w adjacent to u. Furthermore, since f is a TRD-function,
such a vertex u is not isolated in S[V+f ], and thus deg(u)≥ 3. Since c is the only
vertex in S with degree at least 3, f (c)= 2. Therefore c Roman dominates each vi1,
and we need f (vi1) to be positive for at least one i to ensure that S[V+f ] has no
isolated vertices.

Consider an arbitrary leg c, vi1, vi2, . . . , vimi of S. If mi = 1, then f (vi1)∈ {0, 1}
in order for f to totally Roman dominate c and vi1. If mi = 2, a total weight of 2 on
vi1 and vi2 is required in order for f to total Roman dominate {vi1, vi2}. Since |V 2

f |

is as small as possible, f (vi1)= f (vi2)=1. Finally, if mi >2, by Proposition 3.1 and
since f (c)= 2, a total weight of at least mi −1 on vi1, . . . , vimi is required in order
for f to totally Roman dominate c and {vi1, . . . ,vimi }. Moreover, by the choice of f ,
f (vi1) ∈ {0, 1} and f (vi2)= · · · = f (vim)= 1. Therefore ω( f )≥ n− k+ y+ 1.

Now, if y > 0, where (say) m j = 2, then f (v j1)= 1. By minimality and since c
is adjacent to v j1, f (vi1)= 0 for each i such that mi 6= 2. Then γtR(S)= ω( f )=
n − k + y + 1, as required. Otherwise, if y = 0, then f (vi1) = 1 for some i to
ensure that c is not isolated in S[V+f ]. By minimality, f (v j1)= 0 for each j 6= i .
Therefore γtR(S)= ω( f )= n− k+ 2. �

The characterization of γtR-edge-critical spiders follows. Our result also shows
that a spider of order n is γtR-edge-critical if and only if it is n-γtR-edge-critical.

Theorem 7.5. A spider S = Sp(l1, . . . , lk), k ≥ 3, is γtR-edge-critical if and only if
li = 2 for each i , 1≤ i ≤ k− 1, and lk ∈ {2,m}, where m = 4 or m ≥ 6.

Proof. Suppose S has order n. If li = 2 for each i = 1, . . . , k, then S is a subdivided
star and, by Theorem 3.2, S is n-γtR-edge-critical. Now, suppose S has exactly one
leg of length m 6= 2. If m = 1, then by Proposition 7.1, S is not γtR-edge-critical. If
m= 3 or m= 5, then S ∈Hr with r = 0 or 2, respectively, and thus, by Theorem 3.2,
S is not γtR-edge-critical. If m = 4 or m ≥ 6, then S ∈ Hr with r = m − 3, and
therefore, by Theorem 3.2, S is n-γtR-edge-critical. Finally, suppose S has at least
two legs that are not of length 2. Again, by Proposition 7.1, if S has a leg of length 1,
S is not γtR-edge-critical. Otherwise, assume S has at least two legs of length at
least 3. Then, by Proposition 7.3, S is not γtR-edge-critical. �

8. k-γt R-edge-critical graphs with minimum diameter

We now consider the minimum diameter possible in a k-γtR-edge-critical graph for
k≥ 4. There are no γtR-edge-critical graphs with diameter 1, as the only graphs with
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diameter 1 are nontrivial complete graphs, which are clearly not γtR-edge-critical
since E(G)=∅. Therefore, the minimum possible diameter for a γtR-edge-critical
graph is 2. Asplund, Loizeaux and Van der Merwe [2018] constructed families
of 3-γt -edge-critical graphs with diameter 2. We will show that, for any k ≥ 4,
there exists a k-γtR-edge-critical graph of diameter 2. We first present the following
proposition which shows that every graph G without a dominating vertex is a
spanning subgraph of a γtR(G)-edge-critical graph with the same total Roman
domination number, which will be useful in proving our result.

Proposition 8.1. For a graph G with no isolated vertices, if γtR(G)= k ≥ 4, then
G is a spanning subgraph of a k-γtR(G)-edge-critical graph.

Proof. Suppose γtR(G)= k ≥ 4. If G is k-γtR(G)-edge-critical, then we are done.
Otherwise, there is, by definition, some edge e1 ∈ E(G) such that γtR(G+ e1)=

γtR(G). Let G1 = G + e1. If G1 is k-γtR(G)-edge-critical, then we are done.
Otherwise, there is some edge e2 ∈ E(G1) such that γtR(G1+ e2)= γtR(G1). Let
G2=G1+e2. Continuing in this way, we eventually obtain a graph Gi such that for
all e ∈ E(Gi ), γtR(Gi+e) < γtR(Gi ) and γtR(Gi )= γtR(Gi−1)= · · · = γtR(G1)=

γtR(G). Since k ≥ 4, Gi is not complete and thus E(Gi ) 6=∅. Therefore, Gi is a
k-γtR(G)-edge-critical graph, of which G is a spanning subgraph. �

Before demonstrating the existence of k-γtR-edge-critical graphs of diameter 2
for any k≥ 4, we determine the TRD-number of Kn �Km , where n,m≥ 2. Consider
the vertices of Kn �Km as an n×m matrix, where vertices vi j and vst are adjacent if
and only if i = s or j = t . The rows and columns of the matrix form disjoint copies
of Km and Kn , respectively. If vi j and vst are nonadjacent, then vs j is adjacent to
both vi j and vst , and hence diam(Kn � Km)= 2.

Proposition 8.2. If m and n are integers such that m ≥ n ≥ 2, then γtR(Kn � Km)=

2n.

Proof. Let G = Kn � Km . To see that γtR(G) ≤ 2n, consider the TRD-function
g = (V 0

g , V 1
g , V 2

g ) on G where V 1
g =∅ and V 2

g = {vi1 : 1≤ i ≤ n}.
Now, suppose for a contradiction that γtR(G) ≤ 2n − 1 and consider a TRD-

function f = (V 0
f , V 1

f , V 2
f ) on G with ω( f ) = 2n− 1. Each vertex v dominates

one row and one column of G, so if |V 2
f | = x (note that x ≤ n− 1), then at most

x rows and at most x columns are dominated by elements of V 2
f . Let S be the set

of vertices undominated by V 2
f . Then |S| ≥ (n− x)(m− x)≥ (n− x)2. Moreover,

|V 1
f | = (2n− 1)− 2x since ω( f )= 2n− 1 and |V 2

f | = x .
If x = n− 1, then |V 1

f | = 1. Since f is a TRD-function and |S| ≥ (n− x)2, we
have |S| = 1; say S = {w}. Hence V 1

f = {w}. However, V 2
f does not dominate w,

and thus w is isolated in G[V+f ], which is a contradiction. Therefore, there is no
TRD-function on G with weight 2n− 1 when x = n− 1.
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Otherwise, if x < n− 1, then

|S| − |V 1
f | ≥ (n− x)2− (2n− 1− 2x)

= x2
− 2(n− 1)x + (n− 1)2

= (n− 1− x)2 > 0.

Therefore, the number of vertices undominated by V 2
f is greater than |V 1

f |, con-
tradicting f being a TRD-function. Thus there is no TRD-function on G with
weight 2n− 1 when x < n− 1. We conclude that γtR(G)= 2n. �

Theorem 8.3. If k ≥ 4, then there exists a k-γtR-edge-critical graph of diameter 2.

Proof. First, assume that k is even; say k = 2l for some l ≥ 2. Let Gl = Kl � Kl . By
Proposition 8.2, γtR(Gl)= 2l, and, by Proposition 8.1, Gl is a spanning subgraph
of a k-γtR-edge-critical graph G ′l . Since k > 3, Proposition 4.1 implies that G ′l has
no dominating vertex, and hence 2≤ diam(G ′l)≤ diam(Gl)= 2.

Now, consider the case where k is odd; say k = 2l + 1 for some l ≥ 2. Let
Gd

l be the graph formed by taking Kl+1 � Kl+1 and deleting the vertices in the set{
v j1 :

⌊ l
2

⌋
+ 2≤ j ≤ l + 1

}
. Similarly to Gl , diam(Gd

l )= 2. See Figure 1.
We claim that γtR(Gd

l ) = 2l + 1. To see that γtR(Gd
l ) ≤ 2l + 1, consider the

following TRD-function on Gd
l : If l is even, place two 2’s in each of the first l

2 − 1
rows, and one 2 in each of rows l

2 and l
2+1, such that they span columns 2 through

l + 1. At this point, every vertex in Gd
l is dominated. However, the 2’s in rows l

2
and l

2 + 1 are isolated, so place a 1 in row l
2 such that it shares a column with the

2 in row l
2 + 1. Otherwise, if l is odd, place two 2’s in each of the first l−1

2 rows,
and one 2 in row l+1

2 , such that they span columns 2 through l + 1. Similarly to
the even case, every vertex in Gd

l is now dominated. However, the 2 in row l+1
2 is

isolated, so place a 1 in row l−1
2 such that it shares a column with that 2. In either

case, we have a TRD-function on Gd
l with weight 2l + 1; hence γtR(Gd

l )≤ 2l + 1.
Now, suppose for a contradiction that γtR(Gd

l ) < 2l + 1, and consider a TRD-
function f = (V 0

f , V 1
f , V 2

f ) on Gd
l with ω( f )= 2l. We claim that f (v j1)= 0 for

all 1≤ j ≤
⌊ l

2

⌋
+1. If f (v j1)= 2 for x ≥ 1 vertices in column 1, the undominated

vertices in columns 2 through l+1 form the graph Kl � Kl+1−x . By Proposition 8.2,
a TRD-function on Kl �Kl+1−x requires a weight of 2 min{l, l+1−x}=2(l+1−x).
However, since 2x+2(l+1− x) > 2l, this is impossible. Therefore f (v j1) 6= 2 for
all 1≤ j ≤

⌊ l
2

⌋
+1. If f (v j1)= 1 for x ≥ 1 vertices in column 1, the undominated

vertices in columns 2 through l+1 (that is, those for which f could be assigned a 2)
form the graph Kl � Kl+1. Again by Proposition 8.2, a TRD-function on Kl � Kl+1

requires a weight of 2 min{l, l+ 1} = 2l. However, x + 2l > 2l for x ≥ 1, so this is
also not possible. Therefore, f (v j1)= 0 for all 1≤ j ≤

⌊ l
2

⌋
+ 1.

As a result, in order to totally Roman dominate the first column, there must be a
2 in each of the first

⌊ l
2

⌋
+ 1 rows, none of which can be in the first column. That
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2 2 2

2 2 1

2

Figure 1. The graphs G3 and Gd
3 with a γtR-function.

is, for each 1≤ s ≤
⌊ l

2

⌋
+ 1, f (vst)= 2 for some 2≤ t ≤ l+ 1. Let S be the set of

these vertices. Note that, thus far, we have accounted for a total weight of

2
(⌊ l

2

⌋
+ 1

)
=

{
l + 2 if l is even,
l + 1 if l is odd,

which leaves a weight of l − 2 if l is even and l − 1 if l is odd to be assigned. That
is, a weight of 2

(⌈ l
2

⌉
− 1

)
remains to be accounted for. We now claim that no

two vertices in S can be in the same column. If the vertices in S span fewer than⌊ l
2

⌋
+ 1 columns, then the vertices which are undominated by S induce a graph

containing Kdl/2e� Kdl/2e as subgraph. If l = 2, then no weight remains to dominate
this vertex, as 2

(⌈ l
2

⌉
− 1

)
= 0. Otherwise, if l > 2, Proposition 8.2 implies that

γtR(Kdl/2e � Kdl/2e)= 2
(⌈ l

2

⌉)
. However, 2

(⌈ l
2

⌉)
> 2

(⌈ l
2

⌉
− 1

)
. In either case, this

contradicts f being a TRD-function, and thus no vertices of S share a column.
Therefore, the vertices left undominated by S induce a graph T ∼=Kdl/2e�Kdl/2e−1,

with
⌈ l

2

⌉
rows and

⌈ l
2

⌉
−1 columns. Moreover, the vertices in S are all isolated, as

none share a row or column. By Proposition 8.2, γtR(T )= 2
(⌈ l

2

⌉
− 1

)
. Thus the

entire remaining weight is required in order to dominate T ; necessarily, the vertices
in V+f − S belong to rows and columns that do not contain vertices in S. However,
this still leaves the vertices in S isolated, which contradicts f being a TRD-function
on Gd

l . Therefore γtR(Gd
l )≥ 2l + 1 and we conclude that γtR(Gd

l )= 2l + 1. As in
the case where k is even, Gd

l is a spanning subgraph of a k-γtR-edge-critical graph
with diameter 2. �

9. Future work

We showed in Section 5 that the disjoint union of two or more complete graphs,
each having order at least 3, is γtR-edge-supercritical. We also explained that a
proof similar to that of Proposition 5.1 does not work for total Roman domination.
Hence we pose the following question.
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Question 1. Are the disjoint unions of two or more complete graphs, each having
order at least 3, the only γtR-edge-supercritical graphs?

Note that if this is the case, Proposition 6.5 automatically becomes a necessary
and sufficient condition for a graph to be 5-γtR-edge-critical.

Now consider, for a moment, Roman dominating functions, and suppose a graph
G has nonadjacent vertices u and v such that f (u)= f (v)= 0 for every γR-function
f on G. We claim that γR(G+uv)= γR(G). Suppose γR(G+uv)<γR(G) and let
f be a γR-function on G+ uv. Similar to Proposition 2.2, we may assume without
loss of generality that f (u)= 2 and f (v)= 0, otherwise f is an RD-function on
G such that ω( f ) < γR(G). However, the function f ′ defined by f ′(v) = 1 and
f ′(y) = f (y) for all other y ∈ V (G) is a γR-function on G such that f ′(v) > 0,
contrary to our assumption. The situation for total Roman domination is different.

For a graph G, we define u ∈ V (G) to be a dead vertex if every γtR-function f
on G has f (u)= 0. Not only do there exist graphs G containing nonadjacent dead
vertices u and v such that γtR(G + uv) < γtR(G), but it is possible to find such
a graph G with γtR(G + uw) < γtR(G) for every edge uw ∈ E(G); that is, every
edge in E(G) incident with the dead vertex u is critical. We define the graph Dn

below and show that Dn is such a graph.
Let Dn be the graph composed of n ≥ 2 copies of K4−e sharing a single central

vertex as follows: let c be the central vertex,w1, . . . , wn be the degree-2 vertices, and
u1, . . . , un and v1, . . . , vn be the remaining vertices (where ui and vi are adjacent for
each i) such that c, ui , wi , vi , c is a 4-cycle in Dn for each 1≤ i ≤ n. See Figure 2.

Proposition 9.1. If n ≥ 2, then γtR(Dn)= 2n+ 1. Moreover, wi is a dead vertex
for each 1≤ i ≤ n.

Proof. To see that γtR(Dn) ≤ 2n + 1, consider the TRD-function g : V (Dn)→

{0, 1, 2} on Dn defined by g(c)= 1, g(ui )= 2 for 1≤ i ≤ n, and g(y)= 0 for all
other y ∈ V (Dn).

We claim that, if f is a TRD-function on Dn with ω( f )≤ 2n+1, then f (c)= 1.
If f (c) = 2, then the only vertices that remain undominated in Dn are wi for
1≤ i ≤ n. However, since d(wi , w j )= 4 for all i 6= j , a weight of 2n is required
in order to totally Roman dominate these vertices, contradicting ω( f ) ≤ 2n+ 1.
If f (c)= 0, then since Dn − c is the disjoint union of n triangles, Proposition 3.1
implies that a weight of 3n is required to totally Roman dominate the remaining
vertices, contradicting ω( f ) ≤ 2n + 1. Therefore f (c) = 1. Since a weight of
at least 2n is required to totally Roman dominate the remaining disjoint union of
n triangles, we conclude that γtR(Dn)= 2n+ 1.

Now, let f be any γtR-function on Dn . Then ω( f )= 2n+ 1 and f (c)= 1. To
dominate each triangle of Dn − c with a weight of 2, { f (ui ), f (vi )} = {0, 2} and
f (wi )= 0 for each 1≤ i ≤ n. Hence each wi is a dead vertex. �
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Figure 2. The graphs D3 and D4.

The following result shows that, for n ≥ 3, every edge in E(Dn) incident with
wi is critical.

Proposition 9.2. If n≥ 3, i ∈ {1, . . . , n}, and wiv ∈ E(Dn), then γtR(Dn+wiv)<

γtR(Dn).

Proof. Without loss of generality, consider an edge w1v ∈ E(Dn). Then (without
loss of generality) v ∈ {w2, u2, c}. If v = w2, define f : V (Dn +w1v)→ {0, 1, 2}
by f (w1) = f (w2) = 1, f (c) = f (u3) = · · · = f (un) = 2, and f (y) = 0 for all
other y ∈ V (Dn). Otherwise, if v ∈ {u2, c}, define f : V (Dn+w1v)→{0, 1, 2} by
f (c)= f (u2)= f (u3)= · · · = f (un)= 2 and f (y)= 0 for all other y ∈ V (Dn).
In either case, f is a TRD-function on Dn +w1v and ω( f ) = 2n. Therefore, by
Proposition 9.1, every edge wiv ∈ E(Dn) is critical. �

However, for n ≥ 3, the graph Dn is not γtR-edge-critical since (for example)
γtR(Dn + u1u2)= 2n+ 1. Furthermore, the graph D2 is not γtR-edge-critical since
(for example) γtR(D2+w1w2)= 5. However, adding edges to Dn until a (2n+1)-
γtR-edge-critical graph D′n is obtained results in D′n having no dead vertices. Hence
we pose the following question.

Question 2. Do there exist γtR-edge-critical graphs containing dead vertices?

We characterized γtR-edge-critical spiders in Theorem 7.5. Finding other classes
of γtR-edge-critical trees and, indeed, characterizing γtR-edge-critical trees, remain
open problems.
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