# $\bullet$ <br> in Olve 

 a journal of mathematicsTotal Roman domination edge-critical graphs Chloe Lampman, Kieka (C. M.) Mynhardt and Shannon Ogden

# Total Roman domination edge-critical graphs 

Chloe Lampman, Kieka (C. M.) Mynhardt and Shannon Ogden

(Communicated by Anant Godbole)


#### Abstract

A total Roman dominating function on a graph $G$ is a function $f: V(G) \rightarrow\{0,1,2\}$ such that every vertex $v$ with $f(v)=0$ is adjacent to some vertex $u$ with $f(u)=2$, and the subgraph of $G$ induced by the set of all vertices $w$ such that $f(w)>0$ has no isolated vertices. The weight of $f$ is $\sum_{v \in V(G)} f(v)$. The total Roman domination number $\gamma_{t R}(G)$ is the minimum weight of a total Roman dominating function on $G$. A graph $G$ is $k-\gamma_{t R}$-edge-critical if $\gamma_{t R}(G+e)<\gamma_{t R}(G)=k$ for every edge $e \in E(\bar{G}) \neq \varnothing$, and $k-\gamma_{t R}$-edge-supercritical if it is $k-\gamma_{t R}$-edge-critical and $\gamma_{t R}(G+e)=\gamma_{t R}(G)-2$ for every edge $e \in E(\bar{G}) \neq \varnothing$. We present some basic results on $\gamma_{t R}$-edge-critical graphs and characterize certain classes of $\gamma_{t R}$-edgecritical graphs. In addition, we show that, when $k$ is small, there is a connection between $k-\gamma_{t R}$-edge-critical graphs and graphs which are critical with respect to the domination and total domination numbers.


## 1. Introduction

We consider the behaviour of the total Roman domination number of a graph $G$ upon the addition of edges to $G$. A dominating set $S$ in a graph $G$ is a set of vertices such that every vertex in $V(G)-S$ is adjacent to at least one vertex in $S$. The domination number $\gamma(G)$ is the cardinality of a minimum dominating set in $G$. A total dominating set $S$ (abbreviated by $T D$-set) in a graph $G$ with no isolated vertices is a set of vertices such that every vertex in $V(G)$ is adjacent to at least one vertex in $S$. The total domination number $\gamma_{t}(G)$ (abbreviated by TD-number) is the cardinality of a minimum total dominating set in $G$. For $S \subseteq V(G)$ and a function $f: S \rightarrow \mathbb{R}$, define $f(S)=\sum_{s \in S} f(s)$. A Roman dominating function (abbreviated by $R D$-function) on a graph $G$ is a function $f: V(G) \rightarrow\{0,1,2\}$ such that every

[^0]vertex $v$ with $f(v)=0$ is adjacent to some vertex $u$ with $f(u)=2$. The weight of $f$, denoted by $\omega(f)$, is defined as $f(V(G))$. The Roman domination number $\gamma_{R}(G)$ (abbreviated by $R D$-number) is defined as $\min \{\omega(f): f$ is an RD-function on $G\}$. For an RD-function $f$, let $V_{f}^{i}=\{v \in V(G): f(v)=i\}$ and $V_{f}^{+}=V_{f}^{1} \cup V_{f}^{2}$. Thus, we can uniquely express an RD-function $f$ as $f=\left(V_{f}^{0}, V_{f}^{1}, V_{f}^{2}\right)$.

As defined by Ahangar, Henning, Samodivkin and Yero [2016], a total Roman dominating function (abbreviated by TRD-function) on a graph $G$ with no isolated vertices is a Roman dominating function with the additional condition that $G\left[V_{f}^{+}\right]$ has no isolated vertices. The total Roman domination number $\gamma_{t R}(G)$ (abbreviated by TRD-number) is the minimum weight of a TRD-function on $G$; that is, $\gamma_{t R}(G)=$ $\min \{\omega(f): f$ is a TRD-function on $G\}$. A TRD-function $f$ such that $\omega(f)=$ $\gamma_{t R}(G)$ is called a $\gamma_{t R}(G)$-function, or a $\gamma_{t R}$-function if the graph $G$ is clear from the context; $\gamma_{R}$-functions are defined analogously.

The addition of an edge to a graph has the potential to change its total domination or Roman domination number. Van der Merwe, Mynhardt and Haynes [1998b] studied $\gamma_{t}$-edge-critical graphs, that is, graphs $G$ for which $\gamma_{t}(G+e)<\gamma_{t}(G)$ for each $e \in E(\bar{G})$ and $E(\bar{G}) \neq \varnothing$. We consider the same concept for total Roman domination. A graph $G$ is total Roman domination edge-critical, or simply $\gamma_{t R^{-}}$ edge-critical, if $\gamma_{t R}(G+e)<\gamma_{t R}(G)$ for every edge $e \in E(\bar{G})$ and $E(\bar{G}) \neq \varnothing$. We say that $G$ is $k-\gamma_{t R}$-edge-critical if $\gamma_{t R}(G)=k$ and $G$ is $\gamma_{t R}$-edge-critical. If $\gamma_{t R}(G+e) \leq \gamma_{t R}(G)-2$ for every edge $e \in E(\bar{G})$ and $E(\bar{G}) \neq \varnothing$, we say that $G$ is $\gamma_{t R}$-edge-supercritical. If $\gamma_{t R}(G+e)=\gamma_{t R}(G)$ for all $e \in E(\bar{G})$, or $E(\bar{G})=\varnothing$, we say that $G$ is stable.

Pushpam and Padmapriea [2017] established bounds on the total Roman domination number of a graph in terms of its order and girth. Total Roman domination in trees was studied by Amjadi, Nazari-Moghaddam, Sheikholeslami and Volkmann [2017], as well as by Amjadi, Sheikholeslami and Soroudi [2019]. Amjadi, Sheikholeslami, and Soroudi [2018] also studied Nordhaus-Gaddum bounds for total Roman domination. Campanelli and Kuziak [2019] considered total Roman domination in the lexicographic product of graphs. We refer the reader to the well-known books [Chartrand and Lesniak 2016; Haynes, Hedetniemi, and Slater 1998] for graph theory concepts not defined here. Frequently used or lesser known concepts are defined where needed.

We begin with some general results regarding the addition of an edge $e \in E(\bar{G})$ to a graph $G$ in Section 2. In Section 3, we characterize $n-\gamma_{t R}$-edge-critical graphs of order $n$. We characterize $4-\gamma_{t R}$-edge-critical graphs in Section 4, and, after investigating $\gamma_{t R}$-edge-supercritical graphs in Section 5, we present a necessary condition for $5-\gamma_{t R}$-edge-critical graphs in Section 6. In Section 7, we determine the total Roman domination number of spiders and characterize $\gamma_{t R}$-edge-critical spiders. As can be expected, every graph $G$ with $\gamma_{t R}(G)=k \geq 4$ is a spanning
subgraph of a $k-\gamma_{t R}(G)$-edge-critical graph; a short proof is given in Section 8, where we also show that for any $k \geq 4$, there exists a $k-\gamma_{t R}$-edge-critical graph of diameter 2. We conclude in Section 9 with ideas for future research.

## 2. Adding an edge

We begin with a result from [Van der Merwe, Mynhardt, and Haynes 1998a] which bounds the effect the addition of an edge can have on the total domination number of a graph and show that the same bounds hold with respect to the total Roman domination number.

Proposition 2.1 [Van der Merwe, Mynhardt, and Haynes 1998a]. For a graph $G$ with no isolated vertices, if $u v \in E(\bar{G})$, then $\gamma_{t}(G)-2 \leq \gamma_{t}(G+u v) \leq \gamma_{t}(G)$.

An edge $u v \in E(\bar{G})$ is critical if $\gamma_{t R}(G+u v)<\gamma_{t R}(G)$. The following proposition restricts the possible values assigned to the vertices of a critical edge $u v$ by a $\gamma_{t R}(G+u v)$-function $f$, which will be useful in proving subsequent results. For a graph $G$ and a vertex $v \in V(G)$, the open neighbourhood of $v$ in $G$ is $N_{G}(v)=$ $\{u \in V(G): u v \in E(G)\}$, and the closed neighbourhood of $v$ in $G$ is $N_{G}[v]=$ $N_{G}(v) \cup\{v\}$. When $G \neq K_{2}$, the unique neighbour of an end-vertex of $G$ is called a support vertex.
Proposition 2.2. Given a graph $G$ with no isolated vertices, if $u v \in E(\bar{G})$ is a critical edge and $f$ is a $\gamma_{t R}(G+u v)$-function, then

$$
\{f(u), f(v)\} \in\{\{2,2\},\{2,1\},\{2,0\},\{1,1\}\} .
$$

If, in addition, $\operatorname{deg}(u)=\operatorname{deg}(v)=1$, then there exists a $\gamma_{t R}(G+u v)$-function $f$ such that $f(u)=f(v)=1$.
Proof. Let $G$ be a graph with no isolated vertices, $u v \in E(\bar{G})$ such that $\gamma_{t R}(G+u v)<$ $\gamma_{t R}(G)$, and $f$ a $\gamma_{t R}$-function on $G+u v$. Suppose for a contradiction that $\{f(u), f(v)\} \notin\{\{2,2\},\{2,1\},\{2,0\},\{1,1\}\}$. Then $\{f(u), f(v)\} \in\{\{0,0\},\{0,1\}\}$. Note that, in either case, the edge $u v$ cannot affect whether $u$ and $v$ are dominated or whether, in the case where (say) $f(v)=1, v$ is isolated. Hence $f$ is a TRD-function of $G$, contradicting $\gamma_{t R}(G+u v)<\gamma_{t R}(G)$. Therefore $\{f(u), f(v)\} \in\{\{2,2\},\{2,1\},\{2,0\},\{1,1\}\}$.

Now, suppose in addition that $\operatorname{deg}(u)=\operatorname{deg}(v)=1$, and let $f$ be a $\gamma_{t R}(G+u v)$ function such that $\left|V_{f}^{2}\right|$ is as small as possible. Let $w$ and $x$ be the unique neighbours of $u$ and $v$, respectively, noting that possibly $w=x$. Suppose for a contradiction that $f(u)=2$ (without loss of generality). If $f(v)=0$, then $f(w)>0$, otherwise $u$ would be isolated in $G\left[V_{f}^{+}\right]$. Thus, regardless of whether $w=x$ or not, consider the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ defined by $f^{\prime}(u)=f^{\prime}(v)=1$ and $f^{\prime}(y)=f(y)$ for all other $y \in V(G)$. Otherwise, if $f(v) \geq 1$, then clearly $f(w)=0$. Thus,
regardless of whether $w=x$ or not, consider the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ defined by $f^{\prime}(u)=f^{\prime}(w)=1$ and $f^{\prime}(y)=f(y)$ for all other $y \in V(G)$. In either case, $f^{\prime}$ is a $\gamma_{t R^{\prime}}$-function on $G+u v$. However, $\left|V_{f^{\prime}}^{2}\right|<\left|V_{f}^{2}\right|$, contradicting $\left|V_{f}^{2}\right|$ being as small as possible. Hence $f(u) \neq 2$, and thus $f(u)=f(v)=1$.
Proposition 2.3. Given a graph $G$ with no isolated vertices, if $u v \in E(\bar{G})$, then $\gamma_{t R}(G)-2 \leq \gamma_{t R}(G+u v) \leq \gamma_{t R}(G)$.
Proof. Let $G$ be a graph with no isolated vertices. Clearly, adding an edge cannot increase the total Roman domination number; hence the upper bound holds. Now, let $u v \in E(\bar{G})$. Note that when $\gamma_{t R}(G+u v)=\gamma_{t R}(G)$, the lower bound clearly holds. So assume $\gamma_{t R}(G+u v)<\gamma_{t R}(G)$ and let $f$ be a $\gamma_{t R}(G+u v)$-function. By Proposition 2.2, $\{f(u), f(v)\} \in\{\{2,2\},\{2,1\},\{2,0\},\{1,1\}\}$.

First assume $\{f(u), f(v)\} \in\{\{2,2\},\{2,1\},\{1,1\}\}$. Then $f$ is an RD-function of $G$, and the only possible isolated vertices in $G\left[V_{f}^{+}\right]$are $u$ and $v$. Consider the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ defined as follows: If $u$ is isolated in $G\left[V_{f}^{+}\right]$, choose $u^{\prime} \in N_{G}(u)$ and let $f^{\prime}\left(u^{\prime}\right)=1$. Similarly, if $v$ is isolated in $G\left[V_{f}^{+}\right]$, choose $v^{\prime} \in N_{G}(v)$ and let $f^{\prime}\left(v^{\prime}\right)=1$. Let $f^{\prime}(x)=f(x)$ for all other $x \in V(G)$. Now, assume instead that $f(u)=2$ and $f(v)=0$ (without loss of generality). Since $u$ is not isolated in $G\left[V_{f}^{+}\right], f$ is a TRD-function of $G-v$. Consider the function $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ defined as follows: Let $f^{\prime}(v)=1$. Then, if $v$ is isolated in $G\left[V_{f^{\prime}}^{+}\right]$, choose $v^{\prime} \in N_{G}(v)$ and let $f^{\prime}\left(v^{\prime}\right)=1$. Let $f^{\prime}(x)=f(x)$ for all other $x \in V(G)$. In either case, $f^{\prime}$ is a TRD-function of $G$ and $\omega\left(f^{\prime}\right) \leq \gamma_{t R}(G+u v)+2$. Thus $\gamma_{t R}(G) \leq \gamma_{t R}(G+u v)+2$, and hence the lower bound holds.

## 3. $\gamma_{t R}$-edge-critical graphs with large TRD-numbers

We now investigate the $\gamma_{t R}$-edge-critical graphs $G$ which have the largest TRDnumber, namely $|V(G)|$. A subdivided star is a tree obtained from a star on at least three vertices by subdividing each edge exactly once. A double star is a tree obtained from two disjoint nontrivial stars by joining the two central vertices (choosing either central vertex in the case of $K_{2}$ ). The $\operatorname{corona} \operatorname{cor}(G)$ (sometimes denoted by $G \circ K_{1}$ ) of $G$ is obtained by joining each vertex of $G$ to a new endvertex.

Connected graphs $G$ for which $\gamma_{t R}(G)=|V(G)|$ were characterized in [Ahangar, Henning, Samodivkin, and Yero 2016]. There $\mathcal{G}$ was defined as the family of connected graphs obtained from a 4 -cycle $v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$ by adding $k_{1}+k_{2} \geq 1$ vertex-disjoint paths $P_{2}$, and joining $v_{i}$ to the end of $k_{i}$ such paths for $i \in\{1,2\}$. Note that possibly $k_{1}=0$ or $k_{2}=0$. Furthermore, they defined $\mathcal{H}$ to be the family of graphs obtained from a double star by subdividing each pendant edge once and the nonpendant edge $r \geq 0$ times. For $r \geq 0$, we define $\mathcal{H}_{r} \subseteq \mathcal{H}$ as the family of graphs in $\mathcal{H}$ where the nonpendant edge was subdivided $r$ times.

Proposition 3.1 [Ahangar, Henning, Samodivkin, and Yero 2016]. If $G$ is a connected graph of order $n \geq 2$, then $\gamma_{t R}(G)=n$ if and only if one of the following holds:
(i) $G$ is a path or a cycle.
(ii) $G$ is the corona of a graph.
(iii) $G$ is a subdivided star.
(iv) $G \in \mathcal{G} \cup \mathcal{H}$.

Using Proposition 3.1, we characterize connected $n-\gamma_{t R}$-edge-critical graphs as follows.

Theorem 3.2. A connected graph $G$ of order $n \geq 4$ is $n-\gamma_{t R}$-edge-critical if and only if $G$ is one of the following graphs:
(i) $C_{n}, n \geq 4$.
(ii) $\operatorname{cor}\left(K_{r}\right), r \geq 3$.
(iii) a subdivided star of order $n \geq 7$.
(iv) $G \in \mathcal{G}$.
(v) $G \in \mathcal{H}-\mathcal{H}_{0}-\mathcal{H}_{2}$.

Proof. Let $G$ be a connected graph of order $n \geq 4$ with $\gamma_{t R}(G)=n$. First, suppose $G$ is any of the graphs listed in (i)-(v) above. Then, for any $e \in E(\bar{G}), G+e$ is not one of the graphs listed in Proposition 3.1. Therefore $\gamma_{t R}(G+e)<n$ for all $e \in E(\bar{G})$, and thus $G$ is $\gamma_{t R}$-edge-critical.

Otherwise, suppose $G$ is not one of the graphs listed in (i)-(v) above. Note that since $\gamma_{t R}(G)=n, G$ is still listed in Proposition 3.1(i)-(iv). If $G \cong P_{n}: v_{1}, \ldots, v_{n}$, $n \geq 4$, then $G+v_{1} v_{n} \cong C_{n}$ and $\gamma_{t R}(G)=\gamma_{t R}\left(C_{n}\right)=n$. If $G \cong \operatorname{cor}(F)$, where $F$ is not a complete graph of order at least 3, then $\gamma_{t R}(G)=\gamma_{t R}(G+u v)$ for any $u v \in E(\bar{F})$. If $G$ is a subdivided star of order less than 7 , then $G=P_{5}$. In each of these cases, $G$ is clearly not $\gamma_{t R}$-edge-critical.

Now consider $G \in \mathcal{H}$. Let $w_{1}, \ldots, w_{k}$ be the leaves of $G, u_{1}, \ldots, u_{k}$ be their respective support vertices, and $v_{1}, \ldots, v_{m}$ be the path such that $v_{1}$ and $v_{m}$ are the two support vertices in the original double star $S$, labelled so that $w_{1}$ is adjacent, in $S$, to $v_{1}$. Note that $m=r+2$, and therefore $m \geq 2$. If $G \in \mathcal{H}_{0}$, consider the graph $G+v_{2} w_{1}$, and note that $G+v_{2} w_{1} \in \mathcal{G}$. Therefore, by Proposition 3.1, $\gamma_{t R}\left(G+v_{2} w_{1}\right)=n$, and thus $G$ is not $\gamma_{t R}$-edge-critical. Similarly, if $G \in \mathcal{H}_{2}$, consider the graph $G+v_{1} v_{4}$, and note that $G+v_{1} v_{4} \in \mathcal{G}$. Therefore, by Proposition 3.1, $\gamma_{t R}\left(G+v_{1} v_{4}\right)=n$, and again $G$ is not $\gamma_{t R}$-edge-critical.

## 4. $4-\gamma_{t R}$-edge-critical graphs

Before we characterize the graphs $G$ such that $\gamma_{t R}(G)=4$ and $\gamma_{t R}(G+e)=3$ for any $e \in E(\bar{G})$ (that is, the graphs which are $4-\gamma_{t R}$-edge-critical), we present the following result from [Pushpam and Padmapriea 2017] which characterizes the graphs with a total Roman domination number of 3, the smallest possible TRDnumber. Note that while the authors required that $G$ has girth 3, the result actually holds in general for any graph $G$ on at least three vertices, as we now show. A universal vertex of $G$ is a vertex that is adjacent to all other vertices of $G$.

Proposition 4.1. For a graph $G$ of order $n \geq 3$ with no isolated vertices, $\gamma_{t R}(G)=3$ if and only if $\Delta(G)=n-1$, that is, $G$ has a universal vertex.
Proof. Suppose $\gamma_{t R}(G)=3$ and let $f=\left(V_{f}^{0}, V_{f}^{1}, V_{f}^{2}\right)$ be a $\gamma_{t R}(G)$-function. If $V_{f}^{2}=\varnothing$, then $\left|V_{f}^{1}\right|=3$, and thus $n=3$. Since $G$ has no isolated vertices, this implies that $G=K_{3}$ or $P_{3}$, both of which have a universal vertex. Otherwise, assume $\left|V_{f}^{2}\right|=1$ and $\left|V_{f}^{1}\right|=1$. Pick $u, v \in V(G)$ so that $f(u)=1$ and $f(v)=2$. Since $G\left[V_{f}^{+}\right]$has no isolated vertices, $u v \in E(G)$. Furthermore, since $\gamma_{t R}(G)=3$, $f(x)=0$ for all other $x \in V(G)$. Therefore $N_{G}[v]=V(G)$, and thus $v$ is a universal vertex.

Conversely, suppose $G$ has a universal vertex $v$, and take any $u \in N_{G}(v)$. Consider the TRD-function $f: V(G) \rightarrow\{0,1,2\}$ defined by $f(v)=2, f(u)=1$, and $f(x)=0$ for all other $x \in V(G)$. Since $G$ has at least three vertices, $\gamma_{t R}(G)>2$. Therefore, since $\omega(f)=3$, we conclude that $\gamma_{t R}(G)=3$.

A galaxy is defined as the disjoint union of two or more nontrivial stars. The characterization of $4-\gamma_{t R}$-edge-critical graphs follows; note that this class of graphs is exactly the class of $2-\gamma$-edge-critical graphs, as characterized in [Sumner and Blitch 1983].

Theorem 4.2. A graph $G$ with no isolated vertices is $4-\gamma_{t R}$-edge-critical if and only if $\bar{G}$ is a galaxy.
Proof. Let $G$ be a graph of order $n$ with no isolated vertices. Suppose first that $G$ is $4-\gamma_{t R}$-edge-critical. Then for any $e \in E(\bar{G})$, we have $\gamma_{t R}(G+e)=3$, and thus Proposition 4.1 implies that the addition of any edge to $G$ creates a universal vertex. Therefore, for each edge $u v \in E(\bar{G})$, one of $u$ and $v$ has degree $n-2$ in $G$; that is, one of $u$ and $v$ is a leaf in $\bar{G}$. Since each edge of $\bar{G}$ connects a leaf to either a support vertex or another leaf, the components of $\bar{G}$ are nontrivial stars. Moreover, $\bar{G}$ has at least two components, otherwise $G$ has an isolated vertex.

Conversely, suppose $\bar{G}$ is a galaxy. Since $\bar{G}$ has no isolated vertices, $G$ has no universal vertices, and thus, by Proposition 4.1, $\gamma_{t R}(G)>3$. Let $u$ and $v$ be vertices in different components of $\bar{G}$, and define $f: V(G) \rightarrow\{0,1,2\}$ by $f(u)=f(v)=2$ and $f(x)=0$ for all other $x \in V(G)$. Clearly $f$ is a TRD-function on $G$, and hence
$\gamma_{t R}(G)=4$. Since the deletion of any edge in $\bar{G}$ produces an isolated vertex, the addition of any edge to $G$ creates a universal vertex. Therefore, by Proposition 4.1, $\gamma_{t R}(G+e)=3$ for all $e \in E(\bar{G})$, and hence $G$ is $4-\gamma_{t R}$-edge-critical.
Corollary 4.3. If $G$ is a connected ( $n-2$ )-regular graph, then $G$ is $4-\gamma_{t R}$-edgecritical.

Having characterized $4-\gamma_{t R}$-edge-critical graphs, our next result demonstrates the existence of stable graphs with total Roman domination number 4.
Proposition 4.4. If $G$ is an ( $n-3$ )-regular graph of order $n \geq 6$, then $\gamma_{t R}(G)=4$. Moreover, $G$ is stable.
Proof. We prove that $\gamma(G)=2$. Since $G$ is ( $n-3$ )-regular, its complement $\bar{G}$ is 2-regular. If $\bar{G}$ is disconnected, let $u$ and $v$ be vertices in different components of $\bar{G}$. Otherwise, if $\bar{G}$ is connected, then $\bar{G} \cong C_{n}, n \geq 6$, and thus we can choose $u, v \in V(\bar{G})$ such that $d_{\bar{G}}(u, v) \geq 3$. In either case, $N_{\bar{G}}[u] \cap N_{\bar{G}}[v]=\varnothing$. In $G$, $u$ dominates all vertices in $G-N_{\bar{G}}(u)$ and $v$ dominates all vertices in $G-N_{\bar{G}}(v)$. Therefore $\{u, v\}$ dominates $G$, and thus, since $G$ has no universal vertex, $\gamma(G)=2$.

Now, define $f: V(G) \rightarrow\{0,1,2\}$ by $f(u)=f(v)=2$ and $f(y)=0$ for all other $y \in V(G)$. Since $u v \in E(G), f$ is a TRD-function on $G$ and $\omega(f)=4$, so $\gamma_{t R}(G) \leq 4$. Since $G$ has no universal vertex, $\gamma_{t R}(G)>3$ by Proposition 4.1, and thus $\gamma_{t R}(G)=4$, as required. Furthermore, since the addition of any edge to $G$ does not create a universal vertex, it follows from Proposition 4.1 that $\gamma_{t R}(G+e)=\gamma_{t R}(G)$ for all $e \in E(\bar{G})$. Therefore $G$ is stable.

## 5. $\gamma_{t R}$-edge-supercritical graphs

We now consider the graphs $G$ which attain the lower bound in Proposition 2.3 for all $e \in E(\bar{G})$, that is, $\gamma_{t R}$-edge-supercritical graphs. An edge $u v \in E(\bar{G})$ is supercritical if $\gamma_{t R}(G+u v)=\gamma_{t R}(G)-2$. Van der Merwe, Mynhardt, and Haynes [1998a] defined a graph $G$ to be $\gamma_{t}$-edge-supercritical if $\gamma_{t}(G+e)=\gamma_{t}(G)-2$ for all $e \in E(\bar{G})$. We begin with their characterization of $\gamma_{t}$-edge-supercritical graphs.
Proposition 5.1 [Van der Merwe, Mynhardt, and Haynes 1998a]. A graph G is $\gamma_{t}$-edge-supercritical if and only if $G$ is the union of two or more nontrivial complete graphs.

The proof of the previous result relies on the fact that, if $u$ and $v$ are vertices of a graph $G$ with $d(u, v)=2$, then $\gamma_{t}(G)-1 \leq \gamma_{t}(G+u v)$. However, the analogous result does not hold with respect to the total Roman domination number, as we now show. Consider the graph $G=\operatorname{cor}\left(K_{3}\right)$. By Proposition 3.1, $\gamma_{t R}(G)=6$. Consider any two nonadjacent vertices $u$ and $v$ in $G$ such that $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)=3$. Clearly $u v$ is a supercritical edge with $d(u, v)=2$, and thus $d(u, v)=2$ does not always imply that $\gamma_{t R}(G)-1 \leq \gamma_{t R}(G+u v)$.

As a result, the classification of $\gamma_{t R}$-edge-supercritical graphs will be less straightforward than that of $\gamma_{t}$-edge-supercritical graphs. However, it is easy to see that there are no $5-\gamma_{t R}$-edge-supercritical graphs, where 5 is the smallest possible TRDnumber of a $\gamma_{t R}$-edge-supercritical graph, and that the disjoint union of two or more complete graphs of order at least 3 is $\gamma_{t R}$-edge-supercritical.
Proposition 5.2. (i) There are no $5-\gamma_{t R}$-edge-supercritical graphs.
(ii) If $G$ is the disjoint union of $k \geq 2$ complete graphs, each of order at least 3, then $G$ is $3 k-\gamma_{t R}$-edge-supercritical.
Proof. (i) Suppose for a contradiction that $G$ is a 5- $\gamma_{t R}$-edge-supercritical graph. Then $\gamma_{t R}(G+u v)=3$ for any edge $u v \in E(\bar{G})$. However, as in the proof of Theorem 4.2, this implies that $\bar{G}$ is a galaxy, that is, $G$ is $4-\gamma_{t R}$-edge-critical, a contradiction.
(ii) It follows from Proposition 4.1 that $\gamma_{t R}(G)=3 k$. Moreover, joining any two vertices in different components of $G$ results in a graph with TRD-number $3 k-2$.

## 6. 5- $\gamma_{t R}$-edge-critical graphs

We now investigate the graphs which are $5-\gamma_{t R}$-edge-critical. We begin with the following results, which bound $\gamma_{t R}(G)$ in terms of $\gamma_{t}(G)$.

Proposition 6.1 [Ahangar, Henning, Samodivkin, and Yero 2016]. If $G$ is a graph with no isolated vertices, then $\gamma_{t}(G) \leq \gamma_{t R}(G) \leq 2 \gamma_{t}(G)$. Furthermore, $\gamma_{t R}(G)=$ $\gamma_{t}(G)$ if and only if $G$ is the disjoint union of copies of $K_{2}$.

Note that Amjadi, Nazari-Moghaddam, Sheikholeslami, and Volkmann [2017] characterized the trees which attain the upper bound in Proposition 6.1.

Proposition 6.2 [Ahangar, Henning, Samodivkin, and Yero 2016]. Let G be a connected graph of order $n \geq 3$. Then $\gamma_{t R}(G)=\gamma_{t}(G)+1$ if and only if $\Delta(G)=n-1$, that is, $G$ has a universal vertex.

By Proposition 4.1, Proposition 6.2 implies that, if $G$ is a connected graph of order $n \geq 3$, then $\gamma_{t R}(G)=\gamma_{t}(G)+1$ if and only if $\gamma_{t R}(G)=3$. These results lead to the following observation.

Observation 6.3. If $G$ is a connected graph of order $n \geq 3$ such that $\Delta(G) \leq n-2$, then $\gamma_{t}(G)+2 \leq \gamma_{t R}(G) \leq 2 \gamma_{t}(G)$.

We now provide a result characterizing graphs with $\gamma_{t R} \in\{3,4\}$ in terms of their domination and total domination numbers that will be useful in describing $5-\gamma_{t R}$-edge-critical graphs.
Proposition 6.4. If $G$ is a connected graph of order $n \geq 3$, then $\gamma_{t R}(G) \in\{3,4\}$ if and only if $\gamma_{t}(G)=2$. Moreover, $\gamma(G)=1$ when $\gamma_{t R}(G)=3$, and $\gamma(G)=2$ when $\gamma_{t R}(G)=4$.

Proof. Suppose first that $\gamma_{t}(G)=2$. By Proposition 6.1, $2 \leq \gamma_{t R}(G) \leq 4$. Clearly $\gamma_{t R}(G) \neq 2$, since $n \geq 3$. Therefore $\gamma_{t R}(G) \in\{3,4\}$.

Conversely, suppose $\gamma_{t R}(G) \in\{3,4\}$. First, if $\gamma_{t R}(G)=3$, then Proposition 4.1 implies that $G$ has a universal vertex. Therefore $\gamma_{t}(G)=2$ and $\gamma(G)=1$. Otherwise, if $\gamma_{t R}(G)=4$, then Proposition 4.1 implies that $G$ has no universal vertex. Therefore, by Observation 6.3, $\gamma_{t}(G)+2 \leq 4$, and thus $\gamma_{t}(G)=2$. Furthermore, since $\gamma(G) \leq \gamma_{t}(G)$ and $G$ has no universal vertex, $\gamma(G)=2$.

Proposition 6.5. For any graph $G$, if $G$ is $5-\gamma_{t R}$-edge-critical, then $G$ is either $3-\gamma_{t}-$ edge-critical or $G=K_{2} \cup K_{n}$ for $n \geq 3$, in which case $G$ is $4-\gamma_{t}$-edge-supercritical.
Proof. Suppose $G$ is $5-\gamma_{t R}$-edge-critical. By Proposition 6.4, $\gamma_{t}(G)>2$ and $\gamma_{t}(G+e)=2$ for any $e \in E(\bar{G})$. Therefore, by Proposition 2.1, $G$ is either $3-\gamma_{t}{ }^{-}$ edge-critical or 4 - $\gamma_{t}$-edge-supercritical. If $G$ is 4 - $\gamma_{t}$-edge-supercritical, then by Proposition 5.1, $G$ is the union of two or more nontrivial complete graphs. Since $\gamma_{t R}(G)=5$, this implies that $G=K_{2} \cup K_{n}$ for $n \geq 3$.

Note that if we add the condition that $G$ is not $6-\gamma_{t R}$-edge-supercritical, then the above becomes a necessary and sufficient condition. Clearly $G=K_{2} \cup K_{n}$ is $5-\gamma_{t R}$-edge-critical for any $n \geq 3$. Otherwise, if $G$ is $3-\gamma_{t}$-edge-critical, then by Proposition 6.4, $\gamma_{t R}(G)>4$ and $\gamma_{t R}(G+e) \in\{3,4\}$ for any $e \in E(\bar{G})$. By Proposition 6.1, $\gamma_{t R}(G) \leq 6$, and thus, since $G$ is not $6-\gamma_{t R}$-edge-supercritical, $\gamma_{t R}(G)=5$. Hence $G$ is $5-\gamma_{t R}$-edge-critical, as required.

## 7. $\gamma_{t R}$-edge-critical spiders

A (generalized) spider $\operatorname{Sp}\left(l_{1}, \ldots, l_{k}\right), l_{i} \geq 1, k \geq 2$, is a tree obtained from the star $K_{1, k}$ with centre $u$ and leaves $v_{1}, \ldots, v_{k}$ by subdividing the edge $u v_{i}$ exactly $l_{i}-1$ times, $i=1, \ldots, k$. Thus, a spider $\operatorname{Sp}(2, \ldots, 2)$ is a subdivided star. The $u-v_{i}$ paths (of length $l_{i}$ ) are called the legs of the spider, while $u$ is its head. We now investigate the spiders which are $\gamma_{t R}$-edge-critical. Note that when $k=2$, $\operatorname{Sp}\left(l_{1}, \ldots, l_{k}\right) \cong P_{n}$ for $n \geq 3$, which, by Theorem 3.2, is not $\gamma_{t R}$-edge-critical. We begin with two propositions restricting $\gamma_{t R}$-edge-criticality in general graphs, which will be useful in classifying $\gamma_{t R}$-edge-critical spiders.

Proposition 7.1. For a graph $G$ with no isolated vertices, if $G$ has an end-vertex $w$ with support vertex $x$ such that $G[N(x)-\{w\}]$ is not complete, then $G$ is not $\gamma_{t R}$-edge-critical.
Proof. Suppose $u, v \in N_{G}(x)-\{w\}$ such that $u v \in E(\bar{G})$. We claim $\gamma_{t R}(G+u v)=$ $\gamma_{t R}(G)$. Suppose for a contradiction that $\gamma_{t R}(G+u v)<\gamma_{t R}(G)$, and consider a $\gamma_{t R}$-function $f=\left(V_{f}^{0}, V_{f}^{1}, V_{f}^{2}\right)$ on $G+u v$. Note that, since $w$ is an end-vertex, $f(x)>0$. By Proposition 2.2, $\{f(u), f(v)\} \in\{\{2,2\},\{2,1\},\{2,0\},\{1,1\}\}$. Since $u x, v x \in E(G)$ and at least one of $f(u)$ and $f(v)$ is positive, we can assume
without loss of generality that $f(x)=2$. In any case, $f$ is also a TRD-function on $G$, contradicting $\gamma_{t R}(G+u v)<\gamma_{t R}(G)$. Therefore $\gamma_{t R}(G+u v)=\gamma_{t R}(G)$ and $G$ is not $\gamma_{t R}$-edge-critical.

In a tree, the support vertex of a leaf is called a stem. A stem is called weak if it is adjacent to exactly one leaf, and strong if it is adjacent to two or more leaves. A vertex $b$ of a tree such that $\operatorname{deg}(b) \geq 3$ is called a branch vertex. An endpath in a tree is a path from a branch vertex to a leaf, where all of the internal vertices of the path have degree 2. The next result follows immediately from Proposition 7.1.

Corollary 7.2. If $T$ is a $\gamma_{t R}$-edge-critical tree, then $T$ contains no stems of degree at least 3 , and hence no strong stems.

Proposition 7.3. For a graph $G$ with no isolated vertices, if $G$ has two endpaths $v_{0}, v_{1}, \ldots, v_{k}$ and $u_{0}, u_{1}, \ldots, u_{m}$, where $k, m \geq 3$ and $v_{k}$ and $u_{m}$ are leaves, then $G$ is not $\gamma_{t R}$-edge-critical.

Proof. We claim that $\gamma_{t R}\left(G+v_{k} u_{m}\right)=\gamma_{t R}(G)$. Suppose for a contradiction that $\gamma_{t R}\left(G+v_{k} u_{m}\right)<\gamma_{t R}(G)$, and let $f$ be a $\gamma_{t R}$-function on $G+v_{k} u_{m}$. Then, by Proposition 2.2, we may assume $f\left(u_{m}\right)=f\left(v_{k}\right)=1$. Define $f^{\prime}: V(G) \rightarrow\{0,1,2\}$ as follows: If $f\left(v_{k-1}\right)=0$, then clearly $f\left(v_{k-2}\right)=2$ and $f\left(v_{k-3}\right) \geq 1$, so let $f^{\prime}\left(v_{k-1}\right)=f^{\prime}\left(v_{k-2}\right)=1$. Otherwise, let $f^{\prime}\left(v_{k-1}\right)=f\left(v_{k-1}\right)$ and $f^{\prime}\left(v_{k-2}\right)=$ $f\left(v_{k-2}\right)$. Similarly, if $f\left(u_{m-1}\right)=0$, then clearly $f\left(u_{m-2}\right)=2$ and $f\left(u_{m-3}\right) \geq 1$, so let $f^{\prime}\left(u_{m-1}\right)=f^{\prime}\left(u_{m-2}\right)=1$. Otherwise, let $f^{\prime}\left(u_{m-1}\right)=f\left(u_{m-1}\right)$ and $f^{\prime}\left(u_{m-2}\right)=$ $f\left(u_{m-2}\right)$. Finally, let $f^{\prime}(y)=f(y)$ for all other $y \in V(G)$. Clearly $f^{\prime}$ is a TRDfunction on $G$ and $\omega\left(f^{\prime}\right)=\omega(f)$, contradicting $\gamma_{t R}\left(G+v_{k} u_{m}\right)<\gamma_{t R}(G)$. Therefore $\gamma_{t R}\left(G+v_{k} u_{m}\right)=\gamma_{t R}(G)$, and thus $G$ is not $\gamma_{t R}$-edge-critical.

Let $S$ be a spider with $k \geq 3$ legs. In what follows, let $c$ be the head of $S$, and let the $k$ legs be labelled $c, v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}$, where $i \in\{1,2, \ldots, k\}$, in order of increasing length. Let $m=m_{k}$; that is, $m$ is the length of a longest leg of $S$. We begin by determining the TRD-number of spiders.

Proposition 7.4. If $S$ is a spider of order $n$ with $k \geq 3$ legs such that $S$ has y legs of length 2, then

$$
\gamma_{t R}(S)= \begin{cases}n & \text { if } y \geq k-1, \\ n-k+y+1 & \text { if } 1 \leq y<k-1, \\ n-k+2 & \text { if } y=0 .\end{cases}
$$

Proof. Suppose $S$ has $x$ legs of length 1, and consider a $\gamma_{t R}$-function $f$ on $S$ such that $\left|V_{f}^{2}\right|$ is as small as possible. First, suppose $y \geq k-1$. If $y=k$, then $S$ is a subdivided star. Otherwise, if $y=k-1$, then $S$ has exactly one leg that is not of length 2 , and thus either $x=1$ or $x=0$. If $x=1$, then $S$ is the corona of a graph
(specifically, $S=\operatorname{cor}\left(K_{1, k-1}\right)$ ). Otherwise, if $x=0$, then $m=m_{k} \geq 3$, and $S \in \mathcal{H}_{r}$, where $r=m-3$. In any case, by Proposition 3.1, $\gamma_{t R}(S)=n$.

Assume therefore that $y<k-1$. Then $S$ has at least two legs that are not of length 2. Therefore $S$ is not one of the graphs listed in Proposition 3.1, and thus $\gamma_{t R}(S)<n$. Hence there is some vertex $u \in V(S)$ such that $f(u)=2$ and $f(w)=0$ for at least two vertices $w$ adjacent to $u$. Furthermore, since $f$ is a TRD-function, such a vertex $u$ is not isolated in $S\left[V_{f}^{+}\right]$, and thus $\operatorname{deg}(u) \geq 3$. Since $c$ is the only vertex in $S$ with degree at least $3, f(c)=2$. Therefore $c$ Roman dominates each $v_{i 1}$, and we need $f\left(v_{i 1}\right)$ to be positive for at least one $i$ to ensure that $S\left[V_{f}^{+}\right]$has no isolated vertices.

Consider an arbitrary leg $c, v_{i 1}, v_{i 2}, \ldots, v_{i m_{i}}$ of $S$. If $m_{i}=1$, then $f\left(v_{i 1}\right) \in\{0,1\}$ in order for $f$ to totally Roman dominate $c$ and $v_{i 1}$. If $m_{i}=2$, a total weight of 2 on $v_{i 1}$ and $v_{i 2}$ is required in order for $f$ to total Roman dominate $\left\{v_{i 1}, v_{i 2}\right\}$. Since $\left|V_{f}^{2}\right|$ is as small as possible, $f\left(v_{i 1}\right)=f\left(v_{i 2}\right)=1$. Finally, if $m_{i}>2$, by Proposition 3.1 and since $f(c)=2$, a total weight of at least $m_{i}-1$ on $v_{i 1}, \ldots, v_{i m_{i}}$ is required in order for $f$ to totally Roman dominate $c$ and $\left\{v_{i 1}, \ldots, v_{i m_{i}}\right\}$. Moreover, by the choice of $f$, $f\left(v_{i 1}\right) \in\{0,1\}$ and $f\left(v_{i 2}\right)=\cdots=f\left(v_{i m}\right)=1$. Therefore $\omega(f) \geq n-k+y+1$.

Now, if $y>0$, where (say) $m_{j}=2$, then $f\left(v_{j 1}\right)=1$. By minimality and since $c$ is adjacent to $v_{j 1}, f\left(v_{i 1}\right)=0$ for each $i$ such that $m_{i} \neq 2$. Then $\gamma_{t R}(S)=\omega(f)=$ $n-k+y+1$, as required. Otherwise, if $y=0$, then $f\left(v_{i 1}\right)=1$ for some $i$ to ensure that $c$ is not isolated in $S\left[V_{f}^{+}\right]$. By minimality, $f\left(v_{j 1}\right)=0$ for each $j \neq i$. Therefore $\gamma_{t R}(S)=\omega(f)=n-k+2$.

The characterization of $\gamma_{t R}$-edge-critical spiders follows. Our result also shows that a spider of order $n$ is $\gamma_{t R}$-edge-critical if and only if it is $n-\gamma_{t R}$-edge-critical.
Theorem 7.5. A spider $S=\operatorname{Sp}\left(l_{1}, \ldots, l_{k}\right), k \geq 3$, is $\gamma_{t R}$-edge-critical if and only if $l_{i}=2$ for each $i, 1 \leq i \leq k-1$, and $l_{k} \in\{2, m\}$, where $m=4$ or $m \geq 6$.
Proof. Suppose $S$ has order $n$. If $l_{i}=2$ for each $i=1, \ldots, k$, then $S$ is a subdivided star and, by Theorem 3.2, $S$ is $n-\gamma_{t R}$-edge-critical. Now, suppose $S$ has exactly one leg of length $m \neq 2$. If $m=1$, then by Proposition $7.1, S$ is not $\gamma_{t R}$-edge-critical. If $m=3$ or $m=5$, then $S \in \mathcal{H}_{r}$ with $r=0$ or 2, respectively, and thus, by Theorem 3.2, $S$ is not $\gamma_{t R}$-edge-critical. If $m=4$ or $m \geq 6$, then $S \in \mathcal{H}_{r}$ with $r=m-3$, and therefore, by Theorem 3.2, $S$ is $n-\gamma_{t R}$-edge-critical. Finally, suppose $S$ has at least two legs that are not of length 2. Again, by Proposition 7.1, if $S$ has a leg of length 1, $S$ is not $\gamma_{t R}$-edge-critical. Otherwise, assume $S$ has at least two legs of length at least 3. Then, by Proposition 7.3, $S$ is not $\gamma_{t R}$-edge-critical.

## 8. $k-\gamma_{t R}$-edge-critical graphs with minimum diameter

We now consider the minimum diameter possible in a $k-\gamma_{t R}$-edge-critical graph for $k \geq 4$. There are no $\gamma_{t R}$-edge-critical graphs with diameter 1 , as the only graphs with
diameter 1 are nontrivial complete graphs, which are clearly not $\gamma_{t R}$-edge-critical since $E(\bar{G})=\varnothing$. Therefore, the minimum possible diameter for a $\gamma_{t R}$-edge-critical graph is 2. Asplund, Loizeaux and Van der Merwe [2018] constructed families of $3-\gamma_{t}$-edge-critical graphs with diameter 2 . We will show that, for any $k \geq 4$, there exists a $k-\gamma_{t R}$-edge-critical graph of diameter 2 . We first present the following proposition which shows that every graph $G$ without a dominating vertex is a spanning subgraph of a $\gamma_{t R}(G)$-edge-critical graph with the same total Roman domination number, which will be useful in proving our result.

Proposition 8.1. For a graph $G$ with no isolated vertices, if $\gamma_{t R}(G)=k \geq 4$, then $G$ is a spanning subgraph of a $k-\gamma_{t R}(G)$-edge-critical graph.

Proof. Suppose $\gamma_{t R}(G)=k \geq 4$. If $G$ is $k-\gamma_{t R}(G)$-edge-critical, then we are done. Otherwise, there is, by definition, some edge $e_{1} \in E(\bar{G})$ such that $\gamma_{t R}\left(G+e_{1}\right)=$ $\gamma_{t R}(G)$. Let $G_{1}=G+e_{1}$. If $G_{1}$ is $k-\gamma_{t R}(G)$-edge-critical, then we are done. Otherwise, there is some edge $e_{2} \in E\left(\bar{G}_{1}\right)$ such that $\gamma_{t R}\left(G_{1}+e_{2}\right)=\gamma_{t R}\left(G_{1}\right)$. Let $G_{2}=G_{1}+e_{2}$. Continuing in this way, we eventually obtain a graph $G_{i}$ such that for all $e \in E\left(\bar{G}_{i}\right), \gamma_{t R}\left(G_{i}+e\right)<\gamma_{t R}\left(G_{i}\right)$ and $\gamma_{t R}\left(G_{i}\right)=\gamma_{t R}\left(G_{i-1}\right)=\cdots=\gamma_{t R}\left(G_{1}\right)=$ $\gamma_{t R}(G)$. Since $k \geq 4, G_{i}$ is not complete and thus $E\left(G_{i}\right) \neq \varnothing$. Therefore, $G_{i}$ is a $k-\gamma_{t R}(G)$-edge-critical graph, of which $G$ is a spanning subgraph.

Before demonstrating the existence of $k-\gamma_{t R}$-edge-critical graphs of diameter 2 for any $k \geq 4$, we determine the TRD-number of $K_{n} \square K_{m}$, where $n, m \geq 2$. Consider the vertices of $K_{n} \square K_{m}$ as an $n \times m$ matrix, where vertices $v_{i j}$ and $v_{s t}$ are adjacent if and only if $i=s$ or $j=t$. The rows and columns of the matrix form disjoint copies of $K_{m}$ and $K_{n}$, respectively. If $v_{i j}$ and $v_{s t}$ are nonadjacent, then $v_{s j}$ is adjacent to both $v_{i j}$ and $v_{s t}$, and hence $\operatorname{diam}\left(K_{n} \square K_{m}\right)=2$.

Proposition 8.2. If $m$ and $n$ are integers such that $m \geq n \geq 2$, then $\gamma_{t R}\left(K_{n} \square K_{m}\right)=$ $2 n$.

Proof. Let $G=K_{n} \square K_{m}$. To see that $\gamma_{t R}(G) \leq 2 n$, consider the TRD-function $g=\left(V_{g}^{0}, V_{g}^{1}, V_{g}^{2}\right)$ on $G$ where $V_{g}^{1}=\varnothing$ and $V_{g}^{2}=\left\{v_{i 1}: 1 \leq i \leq n\right\}$.

Now, suppose for a contradiction that $\gamma_{t R}(G) \leq 2 n-1$ and consider a TRDfunction $f=\left(V_{f}^{0}, V_{f}^{1}, V_{f}^{2}\right)$ on $G$ with $\omega(f)=2 n-1$. Each vertex $v$ dominates one row and one column of $G$, so if $\left|V_{f}^{2}\right|=x$ (note that $x \leq n-1$ ), then at most $x$ rows and at most $x$ columns are dominated by elements of $V_{f}^{2}$. Let $S$ be the set of vertices undominated by $V_{f}^{2}$. Then $|S| \geq(n-x)(m-x) \geq(n-x)^{2}$. Moreover, $\left|V_{f}^{1}\right|=(2 n-1)-2 x$ since $\omega(f)=2 n-1$ and $\left|V_{f}^{2}\right|=x$.

If $x=n-1$, then $\left|V_{f}^{1}\right|=1$. Since $f$ is a TRD-function and $|S| \geq(n-x)^{2}$, we have $|S|=1$; say $S=\{w\}$. Hence $V_{f}^{1}=\{w\}$. However, $V_{f}^{2}$ does not dominate $w$, and thus $w$ is isolated in $G\left[V_{f}^{+}\right]$, which is a contradiction. Therefore, there is no TRD-function on $G$ with weight $2 n-1$ when $x=n-1$.

Otherwise, if $x<n-1$, then

$$
\begin{aligned}
|S|-\left|V_{f}^{1}\right| & \geq(n-x)^{2}-(2 n-1-2 x) \\
& =x^{2}-2(n-1) x+(n-1)^{2} \\
& =(n-1-x)^{2}>0 .
\end{aligned}
$$

Therefore, the number of vertices undominated by $V_{f}^{2}$ is greater than $\left|V_{f}^{1}\right|$, contradicting $f$ being a TRD-function. Thus there is no TRD-function on $G$ with weight $2 n-1$ when $x<n-1$. We conclude that $\gamma_{t R}(G)=2 n$.
Theorem 8.3. If $k \geq 4$, then there exists a $k-\gamma_{t R}$-edge-critical graph of diameter 2 .
Proof. First, assume that $k$ is even; say $k=2 l$ for some $l \geq 2$. Let $G_{l}=K_{l} \square K_{l}$. By Proposition 8.2, $\gamma_{t R}\left(G_{l}\right)=2 l$, and, by Proposition 8.1, $G_{l}$ is a spanning subgraph of a $k-\gamma_{t R}$-edge-critical graph $G_{l}^{\prime}$. Since $k>3$, Proposition 4.1 implies that $G_{l}^{\prime}$ has no dominating vertex, and hence $2 \leq \operatorname{diam}\left(G_{l}^{\prime}\right) \leq \operatorname{diam}\left(G_{l}\right)=2$.

Now, consider the case where $k$ is odd; say $k=2 l+1$ for some $l \geq 2$. Let $G_{l}^{d}$ be the graph formed by taking $K_{l+1} \square K_{l+1}$ and deleting the vertices in the set $\left\{v_{j 1}:\left\lfloor\frac{l}{2}\right\rfloor+2 \leq j \leq l+1\right\}$. Similarly to $G_{l}, \operatorname{diam}\left(G_{l}^{d}\right)=2$. See Figure 1 .

We claim that $\gamma_{t R}\left(G_{l}^{d}\right)=2 l+1$. To see that $\gamma_{t R}\left(G_{l}^{d}\right) \leq 2 l+1$, consider the following TRD-function on $G_{l}^{d}$ : If $l$ is even, place two 2 's in each of the first $\frac{l}{2}-1$ rows, and one 2 in each of rows $\frac{l}{2}$ and $\frac{l}{2}+1$, such that they span columns 2 through $l+1$. At this point, every vertex in $G_{l}^{d}$ is dominated. However, the 2 's in rows $\frac{l}{2}$ and $\frac{l}{2}+1$ are isolated, so place a 1 in row $\frac{l}{2}$ such that it shares a column with the 2 in row $\frac{l}{2}+1$. Otherwise, if $l$ is odd, place two 2 's in each of the first $\frac{l-1}{2}$ rows, and one 2 in row $\frac{l+1}{2}$, such that they span columns 2 through $l+1$. Similarly to the even case, every vertex in $G_{l}^{d}$ is now dominated. However, the 2 in row $\frac{l+1}{2}$ is isolated, so place a 1 in row $\frac{l-1}{2}$ such that it shares a column with that 2 . In either case, we have a TRD-function on $G_{l}^{d}$ with weight $2 l+1$; hence $\gamma_{t R}\left(G_{l}^{d}\right) \leq 2 l+1$.

Now, suppose for a contradiction that $\gamma_{t R}\left(G_{l}^{d}\right)<2 l+1$, and consider a TRDfunction $f=\left(V_{f}^{0}, V_{f}^{1}, V_{f}^{2}\right)$ on $G_{l}^{d}$ with $\omega(f)=2 l$. We claim that $f\left(v_{j 1}\right)=0$ for all $1 \leq j \leq\left\lfloor\frac{l}{2}\right\rfloor+1$. If $f\left(v_{j 1}\right)=2$ for $x \geq 1$ vertices in column 1 , the undominated vertices in columns 2 through $l+1$ form the graph $K_{l} \square K_{l+1-x}$. By Proposition 8.2, a TRD-function on $K_{l} \square K_{l+1-x}$ requires a weight of $2 \min \{l, l+1-x\}=2(l+1-x)$. However, since $2 x+2(l+1-x)>2 l$, this is impossible. Therefore $f\left(v_{j 1}\right) \neq 2$ for all $1 \leq j \leq\left\lfloor\frac{l}{2}\right\rfloor+1$. If $f\left(v_{j 1}\right)=1$ for $x \geq 1$ vertices in column 1 , the undominated vertices in columns 2 through $l+1$ (that is, those for which $f$ could be assigned a 2) form the graph $K_{l} \square K_{l+1}$. Again by Proposition 8.2, a TRD-function on $K_{l} \square K_{l+1}$ requires a weight of $2 \min \{l, l+1\}=2 l$. However, $x+2 l>2 l$ for $x \geq 1$, so this is also not possible. Therefore, $f\left(v_{j 1}\right)=0$ for all $1 \leq j \leq\left\lfloor\frac{l}{2}\right\rfloor+1$.

As a result, in order to totally Roman dominate the first column, there must be a 2 in each of the first $\left\lfloor\frac{l}{2}\right\rfloor+1$ rows, none of which can be in the first column. That


Figure 1. The graphs $G_{3}$ and $G_{3}^{d}$ with a $\gamma_{t R}$-function.
is, for each $1 \leq s \leq\left\lfloor\frac{l}{2}\right\rfloor+1, f\left(v_{s t}\right)=2$ for some $2 \leq t \leq l+1$. Let $S$ be the set of these vertices. Note that, thus far, we have accounted for a total weight of

$$
2\left(\left\lfloor\frac{l}{2}\right\rfloor+1\right)= \begin{cases}l+2 & \text { if } l \text { is even } \\ l+1 & \text { if } l \text { is odd }\end{cases}
$$

which leaves a weight of $l-2$ if $l$ is even and $l-1$ if $l$ is odd to be assigned. That is, a weight of $2\left(\left\lceil\frac{l}{2}\right\rceil-1\right)$ remains to be accounted for. We now claim that no two vertices in $S$ can be in the same column. If the vertices in $S$ span fewer than $\left\lfloor\frac{l}{2}\right\rfloor+1$ columns, then the vertices which are undominated by $S$ induce a graph containing $K_{[l / 2\rceil} \square K_{[l / 2\rceil}$ as subgraph. If $l=2$, then no weight remains to dominate this vertex, as $2\left(\left\lceil\frac{l}{2}\right\rceil-1\right)=0$. Otherwise, if $l>2$, Proposition 8.2 implies that $\gamma_{t R}\left(K_{\lceil l / 2\rceil} \square K_{\lceil l / 2\rceil}\right)=2\left(\left\lceil\frac{l}{2}\right\rceil\right)$. However, $2\left(\left\lceil\frac{l}{2}\right\rceil\right)>2\left(\left\lceil\frac{l}{2}\right\rceil-1\right)$. In either case, this contradicts $f$ being a TRD-function, and thus no vertices of $S$ share a column.

Therefore, the vertices left undominated by $S$ induce a graph $T \cong K_{[l / 2\rceil} \square K_{[/ / 2\rceil-1}$, with $\left\lceil\frac{l}{2}\right\rceil$ rows and $\left\lceil\frac{l}{2}\right\rceil-1$ columns. Moreover, the vertices in $S$ are all isolated, as none share a row or column. By Proposition 8.2, $\gamma_{t R}(T)=2\left(\left\lceil\frac{l}{2}\right\rceil-1\right)$. Thus the entire remaining weight is required in order to dominate $T$; necessarily, the vertices in $V_{f}^{+}-S$ belong to rows and columns that do not contain vertices in $S$. However, this still leaves the vertices in $S$ isolated, which contradicts $f$ being a TRD-function on $G_{l}^{d}$. Therefore $\gamma_{t R}\left(G_{l}^{d}\right) \geq 2 l+1$ and we conclude that $\gamma_{t R}\left(G_{l}^{d}\right)=2 l+1$. As in the case where $k$ is even, $G_{l}^{d}$ is a spanning subgraph of a $k-\gamma_{t R}$-edge-critical graph with diameter 2.

## 9. Future work

We showed in Section 5 that the disjoint union of two or more complete graphs, each having order at least 3 , is $\gamma_{t R}$-edge-supercritical. We also explained that a proof similar to that of Proposition 5.1 does not work for total Roman domination. Hence we pose the following question.

Question 1. Are the disjoint unions of two or more complete graphs, each having order at least 3 , the only $\gamma_{t R}$-edge-supercritical graphs?

Note that if this is the case, Proposition 6.5 automatically becomes a necessary and sufficient condition for a graph to be 5- $\gamma_{t R}$-edge-critical.

Now consider, for a moment, Roman dominating functions, and suppose a graph $G$ has nonadjacent vertices $u$ and $v$ such that $f(u)=f(v)=0$ for every $\gamma_{R}$-function $f$ on $G$. We claim that $\gamma_{R}(G+u v)=\gamma_{R}(G)$. Suppose $\gamma_{R}(G+u v)<\gamma_{R}(G)$ and let $f$ be a $\gamma_{R}$-function on $G+u v$. Similar to Proposition 2.2, we may assume without loss of generality that $f(u)=2$ and $f(v)=0$, otherwise $f$ is an RD-function on $G$ such that $\omega(f)<\gamma_{R}(G)$. However, the function $f^{\prime}$ defined by $f^{\prime}(v)=1$ and $f^{\prime}(y)=f(y)$ for all other $y \in V(G)$ is a $\gamma_{R}$-function on $G$ such that $f^{\prime}(v)>0$, contrary to our assumption. The situation for total Roman domination is different.

For a graph $G$, we define $u \in V(G)$ to be a dead vertex if every $\gamma_{t R}$-function $f$ on $G$ has $f(u)=0$. Not only do there exist graphs $G$ containing nonadjacent dead vertices $u$ and $v$ such that $\gamma_{t R}(G+u v)<\gamma_{t R}(G)$, but it is possible to find such a graph $G$ with $\gamma_{t R}(G+u w)<\gamma_{t R}(G)$ for every edge $u w \in E(\bar{G})$; that is, every edge in $E(\bar{G})$ incident with the dead vertex $u$ is critical. We define the graph $D_{n}$ below and show that $D_{n}$ is such a graph.

Let $D_{n}$ be the graph composed of $n \geq 2$ copies of $K_{4}-e$ sharing a single central vertex as follows: let $c$ be the central vertex, $w_{1}, \ldots, w_{n}$ be the degree- 2 vertices, and $u_{1}, \ldots, u_{n}$ and $v_{1}, \ldots, v_{n}$ be the remaining vertices (where $u_{i}$ and $v_{i}$ are adjacent for each $i$ ) such that $c, u_{i}, w_{i}, v_{i}, c$ is a 4 -cycle in $D_{n}$ for each $1 \leq i \leq n$. See Figure 2.

Proposition 9.1. If $n \geq 2$, then $\gamma_{t R}\left(D_{n}\right)=2 n+1$. Moreover, $w_{i}$ is a dead vertex for each $1 \leq i \leq n$.

Proof. To see that $\gamma_{t R}\left(D_{n}\right) \leq 2 n+1$, consider the TRD-function $g: V\left(D_{n}\right) \rightarrow$ $\{0,1,2\}$ on $D_{n}$ defined by $g(c)=1, g\left(u_{i}\right)=2$ for $1 \leq i \leq n$, and $g(y)=0$ for all other $y \in V\left(D_{n}\right)$.

We claim that, if $f$ is a TRD-function on $D_{n}$ with $\omega(f) \leq 2 n+1$, then $f(c)=1$. If $f(c)=2$, then the only vertices that remain undominated in $D_{n}$ are $w_{i}$ for $1 \leq i \leq n$. However, since $d\left(w_{i}, w_{j}\right)=4$ for all $i \neq j$, a weight of $2 n$ is required in order to totally Roman dominate these vertices, contradicting $\omega(f) \leq 2 n+1$. If $f(c)=0$, then since $D_{n}-c$ is the disjoint union of $n$ triangles, Proposition 3.1 implies that a weight of $3 n$ is required to totally Roman dominate the remaining vertices, contradicting $\omega(f) \leq 2 n+1$. Therefore $f(c)=1$. Since a weight of at least $2 n$ is required to totally Roman dominate the remaining disjoint union of $n$ triangles, we conclude that $\gamma_{t R}\left(D_{n}\right)=2 n+1$.

Now, let $f$ be any $\gamma_{t R}$-function on $D_{n}$. Then $\omega(f)=2 n+1$ and $f(c)=1$. To dominate each triangle of $D_{n}-c$ with a weight of $2,\left\{f\left(u_{i}\right), f\left(v_{i}\right)\right\}=\{0,2\}$ and $f\left(w_{i}\right)=0$ for each $1 \leq i \leq n$. Hence each $w_{i}$ is a dead vertex.


Figure 2. The graphs $D_{3}$ and $D_{4}$.

The following result shows that, for $n \geq 3$, every edge in $E\left(\bar{D}_{n}\right)$ incident with $w_{i}$ is critical.

Proposition 9.2. If $n \geq 3, i \in\{1, \ldots, n\}$, and $w_{i} v \in E\left(\bar{D}_{n}\right)$, then $\gamma_{t R}\left(D_{n}+w_{i} v\right)<$ $\gamma_{t R}\left(D_{n}\right)$.
Proof. Without loss of generality, consider an edge $w_{1} v \in E\left(\bar{D}_{n}\right)$. Then (without loss of generality) $v \in\left\{w_{2}, u_{2}, c\right\}$. If $v=w_{2}$, define $f: V\left(D_{n}+w_{1} v\right) \rightarrow\{0,1,2\}$ by $f\left(w_{1}\right)=f\left(w_{2}\right)=1, f(c)=f\left(u_{3}\right)=\cdots=f\left(u_{n}\right)=2$, and $f(y)=0$ for all other $y \in V\left(D_{n}\right)$. Otherwise, if $v \in\left\{u_{2}, c\right\}$, define $f: V\left(D_{n}+w_{1} v\right) \rightarrow\{0,1,2\}$ by $f(c)=f\left(u_{2}\right)=f\left(u_{3}\right)=\cdots=f\left(u_{n}\right)=2$ and $f(y)=0$ for all other $y \in V\left(D_{n}\right)$. In either case, $f$ is a TRD-function on $D_{n}+w_{1} v$ and $\omega(f)=2 n$. Therefore, by Proposition 9.1, every edge $w_{i} v \in E\left(\bar{D}_{n}\right)$ is critical.

However, for $n \geq 3$, the graph $D_{n}$ is not $\gamma_{t R}$-edge-critical since (for example) $\gamma_{t R}\left(D_{n}+u_{1} u_{2}\right)=2 n+1$. Furthermore, the graph $D_{2}$ is not $\gamma_{t R}$-edge-critical since (for example) $\gamma_{t R}\left(D_{2}+w_{1} w_{2}\right)=5$. However, adding edges to $D_{n}$ until a $(2 n+1)$ $\gamma_{t R}$-edge-critical graph $D_{n}^{\prime}$ is obtained results in $D_{n}^{\prime}$ having no dead vertices. Hence we pose the following question.

Question 2. Do there exist $\gamma_{t R}$-edge-critical graphs containing dead vertices?
We characterized $\gamma_{t R}$-edge-critical spiders in Theorem 7.5. Finding other classes of $\gamma_{t R}$-edge-critical trees and, indeed, characterizing $\gamma_{t R}$-edge-critical trees, remain open problems.

## References

[Ahangar, Henning, Samodivkin, and Yero 2016] H. A. Ahangar, M. A. Henning, V. Samodivkin, and I. G. Yero, "Total Roman domination in graphs", Appl. Anal. Discrete Math. 10:2 (2016), 501-517. MR Zbl
[Amjadi, Nazari-Moghaddam, Sheikholeslami, and Volkmann 2017] J. Amjadi, S. Nazari-Moghaddam, S. M. Sheikholeslami, and L. Volkmann, "Total Roman domination number of trees", Australas. J. Combin. 69 (2017), 271-285. MR Zbl
[Amjadi, Sheikholeslami, and Soroudi 2018] J. Amjadi, S. M. Sheikholeslami, and M. Soroudi, "Nordhaus-Gaddum bounds for total Roman domination", J. Comb. Optim. 35:1 (2018), 126-133. MR Zbl
[Amjadi, Sheikholeslami, and Soroudi 2019] J. Amjadi, S. M. Sheikholeslami, and M. Soroudi, "On the total Roman domination in trees", Discuss. Math. Graph Theory 39:2 (2019), 519-532. MR Zbl
[Asplund, Loizeaux, and Van der Merwe 2018] J. Asplund, M. Loizeaux, and L. van der Merwe, "A note on total domination edge critical graphs", J. Combin. Math. Combin. Comput. 104 (2018), 245-260. MR Zbl
[Campanelli and Kuziak 2019] N. Campanelli and D. Kuziak, "Total Roman domination in the lexicographic product of graphs", Discrete Appl. Math. 263 (2019), 88-95. MR Zbl
[Chartrand and Lesniak 2016] G. Chartrand and L. Lesniak, Graphs \& digraphs, 6th ed., Chapman \& Hall/CRC, Boca Raton, FL, 2016.
[Haynes, Hedetniemi, and Slater 1998] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of domination in graphs, Monographs and Textbooks in Pure and Applied Mathematics 208, Marcel Dekker, New York, 1998. MR Zbl
[Pushpam and Padmapriea 2017] P. R. L. Pushpam and S. Padmapriea, "On total Roman domination in graphs", pp. 326-331 in Theoretical computer science and discrete mathematics, edited by S. Arumugam et al., Lecture Notes in Comput. Sci. 10398, Springer, 2017. MR Zbl
[Sumner and Blitch 1983] D. P. Sumner and P. Blitch, "Domination critical graphs", J. Combin. Theory Ser. B 34:1 (1983), 65-76. MR Zbl
[Van der Merwe, Mynhardt, and Haynes 1998a] L. C. van der Merwe, C. M. Mynhardt, and T. W. Haynes, "Criticality index of total domination", pp. 67-73 in Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1998), Congressus Numerantium 131, Utilitas Math., Winnipeg, MB, 1998. MR Zbl
[Van der Merwe, Mynhardt, and Haynes 1998b] L. C. van der Merwe, C. M. Mynhardt, and T. W. Haynes, "Total domination edge critical graphs", Util. Math. 54 (1998), 229-240. MR Zbl

Received: 2019-07-23 Accepted: 2019-09-26
chloe.lampman3@gmail.com Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
kieka@uvic.ca Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
sogden@uvic.ca Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada

## involve

msp.org/involve

## INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

## MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

| Colin Adams | Williams College, USA | Robert B. Lund | Clemson University, USA |
| :---: | :---: | :---: | :---: |
| Arthur T. Benjamin | Harvey Mudd College, USA | Gaven J. Martin | Massey University, New Zealand |
| Martin Bohner | Missouri U of Science and Technology, US | SA Mary Meyer | Colorado State University, USA |
| Amarjit S. Budhiraja | U of N Carolina, Chapel Hill, USA | Frank Morgan | Williams College, USA |
| Pietro Cerone | La Trobe University, Australia M | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran |
| Scott Chapman | Sam Houston State University, USA | Zuhair Nashed | University of Central Florida, USA |
| Joshua N. Cooper | University of South Carolina, USA | Ken Ono | Univ. of Virginia, Charlottesville |
| Jem N. Corcoran | University of Colorado, USA | Yuval Peres | Microsoft Research, USA |
| Toka Diagana | Howard University, USA | Y.-F. S. Pétermann | Université de Genève, Switzerland |
| Michael Dorff | Brigham Young University, USA | Jonathon Peterson | Purdue University, USA |
| Sever S. Dragomir | Victoria University, Australia | Robert J. Plemmons | Wake Forest University, USA |
| Joel Foisy | SUNY Potsdam, USA | Carl B. Pomerance | Dartmouth College, USA |
| Errin W. Fulp | Wake Forest University, USA | Vadim Ponomarenko | San Diego State University, USA |
| Joseph Gallian | University of Minnesota Duluth, USA | Bjorn Poonen | UC Berkeley, USA |
| Stephan R. Garcia | Pomona College, USA | Józeph H. Przytycki | George Washington University, USA |
| Anant Godbole | East Tennessee State University, USA | Richard Rebarber | University of Nebraska, USA |
| Ron Gould | Emory University, USA | Robert W. Robinson | University of Georgia, USA |
| Sat Gupta | U of North Carolina, Greensboro, USA | Javier Rojo | Oregon State University, USA |
| Jim Haglund | University of Pennsylvania, USA | Filip Saidak | U of North Carolina, Greensboro, USA |
| Johnny Henderson | Baylor University, USA | Hari Mohan Srivastava | University of Victoria, Canada |
| Glenn H. Hurlbert | Virginia Commonwealth University, USA | Andrew J. Sterge | Honorary Editor |
| Charles R. Johnson | College of William and Mary, USA | Ann Trenk | Wellesley College, USA |
| K. B. Kulasekera | Clemson University, USA | Ravi Vakil | Stanford University, USA |
| Gerry Ladas | University of Rhode Island, USA | Antonia Vecchio | Consiglio Nazionale delle Ricerche, Italy |
| David Larson | Texas A\&M University, USA | John C. Wierman | Johns Hopkins University, USA |
| Suzanne Lenhart | University of Tennessee, USA | Michael E. Zieve | University of Michigan, USA |

## PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US \$195/year for the electronic version, and $\$ 260 /$ year ( $+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

## PUBLISHED BY

- mathematical sciences publishers


## nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

# involve 2019 vol. 12 no. 8 

On the zero-sum group-magicness of cartesian products1261Adam Fong, John Georges, David Mauro, Dylan Spagnuolo,John Wallace, Shufan Wang and Kirsti WashThe variable exponent Bernoulli differential equation ..... 1279Karen R. Ríos-Soto, Carlos E. Seda-Damiani and AlejandroVÉLEZ-SANTIAGO
The supersingularity of Hurwitz curves ..... 1293Erin Dawson, Henry Frauenhoff, Michael Lynch, AmethystPrice, Seamus Somerstep, Eric Work, Dean Bisogno and RachelPries
Multicast triangular semilattice network
Angelina Grosso, Felice Manganiello, Shiwani Varal and Emily Zhu1307
Edge-transitive graphs and combinatorial designs ..... 1329
Heather A. Newman, Hector Miranda, Adam Gregory and Darren A. Narayan
A logistic two-sex model with mate-finding Allee effect ..... 1343
Elizabeth Anderson, Daniel Maxin, Jared Ott and Gwyneth Terrett
Unoriented links and the Jones polynomial ..... 1357Sandy Ganzell, Janet Huffman, Leslie Mavrakis, KaitlinTademy and Griffin Walker
Nonsplit module extensions over the one-sided inverse of $k[x]$ ..... 1369Zheping Lu, Linhong Wang and Xingting Wang
Split Grothendieck rings of rooted trees and skew shapes via monoid ..... 1379representations
David Beers and Matt SzCzesny
On the classification of Specht modules with one-dimensional summands ..... 1399
Aubrey Piper Collins and Craig J. Dodge
The monochromatic column problem with a prime number of colors ..... 1415
Loran Crowell and Steve Szabo
Total Roman domination edge-critical graphs1423Chloe Lampman, Kieka (C. M.) Mynhardt and Shannon Ogden


[^0]:    MSC2010: 05C69.
    Keywords: Roman domination, total Roman domination, total Roman domination edge-critical graphs.
    Lampman was supported by an Undergraduate Student Research Award from the Natural Sciences and Engineering Research Council of Canada. Mynhardt was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. Ogden was supported by a Science Undergraduate Research Award from the University of Victoria.

