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This paper extends a result of James to a combinatorial condition on partitions for
the corresponding Specht module to have a summand isomorphic to the unique
one-dimensional F6-module over fields of characteristic 2. The work makes
use of a recursively defined condition to reprove a result of Murphy and prove a
new result for self-conjugate partitions. Finally we present a Python script which
utilizes this work to test Specht modules for a one-dimensional summand.

1. Introduction

Specht modules are crucial to understanding the representation theory of the symmet-
ric group; see [James 1978; James and Kerber 1981]. Gwendolen Murphy [1980]
classified the decomposable Specht modules which correspond to hook partitions.
Dodge and Fayers [2012] produced the first new examples of decomposable Specht
modules since Murphy’s work. More recently, Donkin and Geranios [2018] used
analogous modules for the general linear groups and applied the Schur functor in
order to find even broader families of decomposable Specht modules. Further work
on the question has been addressed in the Iwahori–Hecke algebra in [Speyer 2014;
Speyer and Sutton 2018].

Murphy additionally classified the Specht modules corresponding to hook parti-
tions which have a one-dimensional summand.

Theorem 1.1 [Murphy 1980, Theorem 5.5]. Let λ = (n− r, 1r ) and F be a field
of characteristic 2. Then there exists a nonzero F6n-module M such that Sλ ∼=
S(n)⊕M if and only if n is odd, r is even, and

(n−1
r

)
is odd.

This theorem was a consequence of determining the endomorphism ring of
Specht modules corresponding to hook partitions. In this paper we attempt to
address the question of one-dimensional summands in the spirit of [Dodge and
Fayers 2012] by constructing split exact sequences of F6n-modules.
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In Section 2, we present the foundational definitions as well as construct the
Specht modules in the style of [James 1978]. In Section 3, we work through the con-
sequences of James’s theorem [1978, Theorem 24.4] concerning HomF6n (S

(n), Sλ).
Utilizing this work we describe conditions sufficient for the Specht module to
decompose as desired (Theorem 3.5). While this final sufficient condition is
expressed as a sum of a recursively defined finite sequence, we can use it to
provide a new proof of Murphy’s result. Additionally in Section 4 we make use
of Theorem 3.5 and introduce the notion of the directed graph of a partition in
order to prove Specht modules corresponding to self-conjugate partitions cannot
have a one-dimensional summand. Finally in Section 5 we present Python [van
Rossum 2001] algorithms designed to apply Theorem 3.5 to determine which Specht
modules have a one-dimensional summand.

2. Preliminaries and notation

For any positive integer n, let 6n denote the symmetric group on n letters, and
F6n denote the group algebra of 6n over F. This paper builds greatly upon the
foundations found in [James and Kerber 1981; James 1978], adopting much of the
notation and constructions.

2A. Compositions, partitions, and Young diagrams. We say λ= (λ1,λ2,λ3, . . . )∈

NN
0 is a partition of n, and write λ ` n, if

∑
λi = n and for all i , λi ≥ λi+1. For a

partition λ of n, the Young diagram of λ, denoted by [λ], is the set

[λ] := {(i, j) ∈ N×N | j ≤ λi }.

Each of the elements in the Young diagram is referred to as a node. We call the set

Rλ(i)= {(i, j) | 1≤ j ≤ λi } ⊆ [λ]

the i-th row of [λ] and
Cλ( j)= {(i, j) | 1≤ i ≤ λ′j }

the j-th column of [λ]. Given a partition λ ` n, we define the conjugate of λ,
denoted by λ′, as the unique partition such that

[λ′] = {(i, j) ∈ N×N | ( j, i) ∈ [λ]}.

2B. Tableau. For a partition λ of n, if t : [λ]→{1, 2, . . . , n} is a bijection, we call t
a λ-tableau. Let T(λ) denote the set of all λ-tableaux. For a partition λ, a λ-tableau t
is called row standard if for (i, j), (i, k) ∈ [λ] with j < k, then t (i, j) < t (i, k). We
define column standard similarly. Moreover t is standard if it is both row standard
and column standard and T0(λ) will denote the set of standard λ-tableaux. We call
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Rt(i)= t[Rλ(i)] the set of entries in the i-th row of t . Similarly, Ct( j)= t[Cλ( j)]
is the set of entries in the j-th column of t .

Since each element σ ∈ 6n is a bijection on the set {1, 2, 3, . . . , n}, there is a
6n-action on T(λ) defined by σ t = σ ◦ t . From this action, we can define two
significant subgroups of 6n given a λ-tableau t . Define the row stabilizer of t ,
denoted by Rt , to be the subset of 6n which fixes the sets Rt(i). Similarly define
the column stabilizer of t , denoted by Ct , to be the subset of 6n which fixes the
sets Ct( j). We define an equivalence relation on T(λ) by t ∼ s if and only if there
exists π ∈ Rt such that π t = s. We will use X (λ) to denote the set of equivalence
classes of T(λ) and call an equivalence class {t} ∈ X (λ) a λ-tabloid. Notice that
since there is a well-defined action of 6n on T(λ) we can define an action of 6n

on X (λ) by σ {t} = {σ t} for all σ ∈6n and {t} ∈ X (λ).
Lastly we will make use of a dominance relation on the set of tabloids for a fixed

composition λ, using the notation of [James 1978, Definition 3.11]. For {t} ∈ X (λ)
we let mxy(t)=|{t (i, j)≤ x | i ≤ y}|; that is mxy(t) is the number of entries less than
or equal to x in the first y rows of {t}. Using this notation, we define the relation G
on X (λ) by {s} G {t} if and only if mxy(s)≤ mxy(t) for all positive integers x, y.

2C. Permutation modules and Specht modules. Define Mλ to be the free vector
space over F generated by the set X (λ). Additionally since X (λ) is the basis of Mλ,
we can define an F6n-action on Mλ by extending the 6n-action on X (λ) linearly.
We will call Mλ with this module action the permutation module associated to λ.

Let t ∈ T(λ). Then we define κt ∈ F6n by

κt :=
∑
σ∈Ct

(sgn σ)σ,

where sgn : 6n → {1,−1} is the signature function on the symmetric group. So
for any t ∈ T(λ), we can define the element in Mλ called the polytabloid of t by
et := κt {t}. Hence we can construct a submodule of Mλ called the Specht module,
denoted by Sλ, which we define explicitly by

Sλ := Span({et | t ∈ T(λ)})⊆ Mλ.

The following example describes two Specht modules which can be constructed for
any positive integer n and will be a central to the focus of this paper.

Example 2.1. The Specht module S(n) for F6n is one-dimensional and for all
v ∈ Sλ and σ ∈ 6, we have σv = v. Alternatively, the Specht module S(1

n) is a
one-dimensional F6n-module, again spanned by any appropriate polytabloid. For
all w ∈ S(1

n) and σ ∈6n

σw =

{
w if σ is an even permutation,
−w if σ is an odd permutation.
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For all n, S(n) and S(1
n) form a complete list of the isomorphism classes of the

one-dimensional modules of F6n .

We conclude this section by stating several significant results concerning Specht
modules that are relevant to our investigation.

Theorem 2.2. Let λ ` n.

(2.2.1) [James 1978, Proposition 4.5] Sλ is a cyclic F6n-module generated by
every polytabloid.

(2.2.2) [James 1978, Theorem 8.4] The set {et | t ∈ T0(λ)} is a basis for Sλ.

(2.2.3) [James 1978, Theorem 8.15] Let (Sλ)∗ denote the dual of Sλ. Then (Sλ)∗ ∼=
Sλ
′

⊗ S(1
n).

(2.2.4) [James 1978, Corollary 13.18] Suppose F has characteristic 2. Then Sλ is
indecomposable.

The basis in (2.2.2) is often referred to as the standard basis of Sλ. The poly-
tabloids will become very relevant to our discussion, in particular understanding
which tabloids appear with nonzero coefficient in certain polytabloids, and so we
introduce the following notation. If s, t ∈T0(λ) we say t produces s and write t→ s
if there exists π ∈ Ct and σ ∈ Rs such that s = σπ t . Note using this definition we
see that s appears with nonzero coefficient in et if and only if t→ s. In order to
further understand which standard tableaux produces other standard tableaux, we
introduce the following results.

Theorem 2.3. Let t be a λ-tableau and s, t ∈ T0(λ).

(2.3.1) [James 1978, Lemma 8.13] If t→ s then {s} G {t}.

(2.3.2) [James and Kerber 1981, Lemma 1.5.6] Suppose x, y appear in the same
column of t . If t→ s then x and y appear in different rows of s.

3. F6n-module homomorphisms

Noting (2.2.4), we will assume F is a field of characteristic 2 for the remainder of
the paper, and hence S(n)∼= S(1

n). Therefore there is a unique one-dimensional F6n-
module up to isomorphism, namely S(n). Next we will introduce a theorem of James
which will be fundamental to the remaining work of this paper. To this end, for λ`n,
let ld(λ) be the unique integer such that 2ld−1

≤ λd+1 < 2ld . Using this notation we
state the following theorem of James, specifically for the case when p = 2.

Theorem 3.1 [James 1978, Theorem 24.4 (p=2)]. Suppose that F is a field
of characteristic 2 and λ = (λ1, λ2, . . . , λs) is a partition of n. If λd ≡ −1
(mod 2ld (λ)) for all 1 ≤ d < s, then Hom(S(n), Sλ) is one-dimensional; otherwise
dim Hom(S(n), Sλ)= 0.
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Recall that when F is a field of characteristic 2, we have S(n) ∼= S(1
n). Moreover

we note that for all F6n-modules M, we have M ⊗ S(n) ∼= M. Thus when F is a
field of characteristic 2, (2.2.3) gives us (Sλ)∗ ∼= Sλ

′

⊗ S(n) ∼= Sλ
′

. Hence from the
previous theorem we have the following corollary.

Corollary 3.2. Suppose that F is a field of characteristic 2, λ ` n, and λ′ =
(λ′1,λ

′

2, . . . ,λ
′
t). Then dim Hom(Sλ, S(n)) = 1 if and only if λ′e ≡ −1 (mod 2le(λ

′))

for all 1≤ e < t .

Proof. First note the following isomorphisms of homomorphism spaces:

Hom(Sλ, S(n))∼= Hom(Sλ, S(1
n))∼= Hom((S(1

n))∗, (Sλ)∗)∼= Hom(S(n), Sλ
′

).

Hence the corollary follows from Theorem 3.1. �

3A. Composition of module homomorphisms. We can combine Theorem 3.1 and
Corollary 3.2 to motivate the following definition about partitions under considera-
tion.

Definition 3.3. Let λ= (λ1, λ2, . . . , λs) and λ′ = (λ′1, λ
′

2, . . . , λ
′
t). We say that λ

is Lucas perfect if λd ≡−1 (mod 2ld (λ)) for all 1≤ d < s and λ′e ≡−1 (mod 2le(λ
′))

for all 1≤ e < t .

In order to further our discussion, let us consider an arbitrary Lucas perfect parti-
tion of n, λ. We may fix nonzero F6n-module homomorphisms iλ : S(n)→ Sλ and
pλ : Sλ→ S(n). Our goal will be to understand the composition pλ ◦ iλ : S(n)→ S(n).
To that end, we first explore the image of iλ expressed as a linear combination of
polytabloids. Let v ∈ S(n) be nonzero. Since Sλ⊂Mλ, we may fix a{t} ∈ F such that

iλ(v)=
∑
{t}∈X (λ)

a{t}{t}.

Now let σ ∈6 be arbitrary. Observe by reindexing the λ-tabloids,

σ−1
( ∑
{t}∈X (λ)

a{t}{t}
)
=

∑
{t}∈X (λ)

a{σ t}{t}.

Additionally iλ(v)= iλ(σ−1v)= σ−1iλ(v), so∑
{t}∈X (λ)

a{t}{t} =
∑
{t}∈X (λ)

a{σ t}{t}.

Since X (λ) is a basis for Mλ it follows that a{t} = a{σ t} for all σ . Moreover since
6n acts transitively on X (t), we conclude that

iλ(v)= a
∑
{t}∈X (λ)

{t}.
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Moreover since iλ 6= 0, we know a 6= 0. To understand the composition pλ ◦ iλ,
we will be making use of the image of a polytabloid under pλ. To that end, we
will focus on expressing iλ(v) as a linear combination of polytabloids. From our
observations of iλ, we note ∑

{t}∈X (λ)

{t} ∈ Sλ.

Therefore by (2.2.2), we may fix xt ∈ F such that∑
t∈T0(λ)

xt et =
∑
{s}∈X (λ)

{s}. (3-1)

Ideally we would be able to determine a closed formula for the coefficients xt . For
now we will settle on developing a recursive formula. To assist with this task, let ρ
be the linear transformation defined by

ρ({s})=
{
{s} if {s} is standard,
0 if {s} is not standard.

Therefore ρ is a linear projection from Mλ to the span of {{t} | t ∈ T0(λ)}. We note
by (2.3.1) and (2.2.2) that {ρ(et) | t ∈ T0(λ)} is linearly independent. By applying
ρ to (3-1), we have ∑

t∈T0(λ)

xtρ(et)=
∑

s∈T0(λ)

{s}. (3-2)

Since both {et | t ∈ T0(λ)} and {ρ(et) | t ∈ T0(λ)} are linearly independent sets,
(3-1) and (3-2) have unique solutions and therefore the same solution sets. Using
these observations we prove the solution satisfies the following condition.

Lemma 3.4. If λ ` n is Lucas perfect and X t = {s ∈ T0(λ) | s→ t and s 6= t}, then

xt = 1+
∑
s∈X t

xs

is the unique solution to ∑
t∈T0(λ)

xt et =
∑
{s}∈X (λ)

{s}.

Proof. It follows from Theorem 3.1 that (3-1) has a unique solution. Thus we
complete the proof by demonstrating the solution proposed by the lemma satisfies
(3-2). Suppose t ∈ T0(λ), and define the sets

X t = {s ∈ T0(λ) | s→ t and s 6=t},

Yt = {s ∈ T0(λ) | t→s and s 6=t},

W (λ)= {(u, v) | u ∈ T0(λ), v ∈ Yt } = {(u, v) | v ∈ T0(λ), u ∈ Xv}.
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Using this notation it follows that ρ(et)= {t}+
∑

s∈Yt
{s}. Therefore∑

t∈T0(λ)

xtρ(et)=
∑

t∈T0(λ)

xt

(
{t}+

∑
s∈Yt

{s}
)
=

∑
t∈T0(λ)

xt {t}+
∑

t∈T0(λ)

∑
s∈Yt

xt {s}.

Now observe ∑
t∈T0(λ)

∑
s∈Yt

xt {s} =
∑

(t,s)∈W (λ)

xt {s} =
∑

s∈T0(λ)

∑
t∈Xs

xt {s}.

Therefore by reindexing we have∑
t∈T0(λ)

xtρ(et)=
∑

s∈T0(λ)

xs{s}+
∑

s∈T0(λ)

∑
t∈Xs

xt {s}

=

∑
s∈T0(λ)

((
1+

∑
t∈Xs

xt

)
{s}+

∑
t∈Xs

xt {s}
)
=

∑
s∈T0(λ)

{s}. �

Now we will use the work thus far to demonstrate how understanding the solution
to (3-1) can be used to answer our question of decomposability.

Theorem 3.5. Let λ be a Lucas perfect partition of n such that λ 6= (n), (1n),
and let the coefficients xt ∈ F be as in Lemma 3.4. Then there exists a nonzero
F6n-module M such that Sλ ∼= S(n)⊕M if and only if

∑
t∈T0(λ)

xt 6= 0.

Proof. Fix nonzero F6n-module homomorphisms pλ : Sλ→ S(n) and iλ : S(n)→ Sλ.
Since S(n) is a simple F6n-module, pλ and iλ span their respective homomorphism
spaces, and Sλ is not one-dimensional, Sλ is decomposable with summand isomor-
phic to S(n) if and only if pλ ◦ iλ 6= 0. Let {r} be the unique tabloid in M (n)

= S(n).
Notice for all t, t ′ ∈ T(λ), we have pλ(et)= pλ(et ′)= α{r} for some α 6= 0 since
6n acts transitively on the polytabloids and as the identity on S(n). To complete the
proof we need only to observe if

iλ({r})= β
∑
{s}∈X (λ)

{s} = β
∑

t∈T0(λ)}

xt et

for some nonzero β ∈ F then

pλ ◦ iλ({r})= αβ
( ∑

t∈T0(λ)

xt

)
{r}.

Hence pλ ◦ iλ 6= 0 if and only if
∑

t∈T0(λ)
xt 6= 0. �

It is worth noting that this result has a simpler interpretation. Since we know the
coefficients of tabloids in polytabloids are either 1 or 0 in characteristic 2, it follows
that the xt are either 0 or 1. The sum of coefficients in Theorem 3.5 is congruent to
the number of nonzero coefficients modulo 2. Hence we can say for a Lucas perfect
partition, the Specht module is decomposable with a one-dimensional summand if
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and only if the sum of all tabloids can be expressed as a sum of an odd number of
standard polytabloids. In fact we do not need to insist in expressing the sum using
standard polytabloids, but rather any polytabloids.

3B. New proof of Murphy’s result. Our work thus far allows us to provide a new
proof of the result of Murphy, Theorem 1.1. First we will need a quick lemma
concerning hook partitions.

Lemma 3.6. Let λ= (n− r, 1r ) be a hook partition. Then for all t ∈ T0(λ),

X t = {s | s→ t and s 6=t} =∅.

Proof. Let t be an arbitrary standard λ-tableau. Assume for contradiction there is a
nonidentity element π ∈ Ct such that {π t} = {s} for some s ∈ T0(λ). Suppose x is
the largest integer not fixed by π . Let y = π−1(x) and z = π(x), so y, z < x by
our assumption of x . Since the first column is the only one with multiple entries,
x, y, z ∈ Ct(1). We will consider two cases.

Case 1: Suppose y = 1. Then 1 is not fixed by π . So 1 ∈ Rπ t( j) for j > 1; thus
π t is not row equivalent to a standard tableau. So we have reached a contradiction.

Case 2: Suppose y 6= 1. Then y ∈ Rt(i) and x ∈ Rt( j) with 1 < i < j . Hence
π(y) = x ∈ Rπ t(i) and π(x) = z ∈ Rπ t( j) with 1 < i < j . Hence π t is not row
equivalent to a standard tableau and we again have reached a contradiction. �

In order to reproduce Murphy’s result suppose λ = (n − r, 1r ). First we note
that if n is even or r is odd then λ or λ′ is not Lucas perfect, so Sλ does not have
S(n) as a summand by Theorem 3.5. Now it suffices to consider the case when n is
odd, r even, and 0< r < n, so λ is Lucas perfect. Notice that a standard tableau is
uniquely determined by the choice of r entries not appearing in the first row; thus
|T0(λ)| =

(n−1
r

)
, since the entries can be any subset of {2, 3, . . . , n} of size r . Now

by Lemmas 3.6 and 3.4 we have a solution to (3-1), xt = 1 for all t ∈ T0(λ) since
X t =∅. Therefore ∑

t∈T0(λ)

xt =

(n−1
r

)
.

Hence Murphy’s result follows from Theorem 3.5.

4. The directed graph of λ

Let 0λ be the graph whose vertex set is T0(λ). The graph 0λ has a directed edge
from t to s if and only if t→ s and t 6= s. To illustrate the definition we will construct
the graph 0(4,3) in Figure 1 using the notation of [James 1978, Definition 3.6] to
represent a tableau t by a Young diagram where t (i, j) is the (i, j)-node of [λ]. We
will define a path γ on 0λ to be a sequence γ = (t1, t2, . . . , tl), such that ti → ti+1
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1 2 3 4
5 6 7

1 3 4 6
2 5 7

1 2 4 7
3 5 6

1 2 3 7
4 5 6

1 3 5 7
2 4 6

1 3 4 5
2 6 7

1 2 3 6
4 5 7

1 3 5 6
2 4 7

1 2 3 5
4 6 7

1 2 5 7
3 4 6

1 2 4 5
3 6 7

1 2 4 6
3 5 7

1 2 5 6
3 4 7

1 3 4 7
2 5 6

Figure 1. The directed graph of (4, 3).

and ti 6= ti+1 for 1≤ i < l. If γ = (t1, t2, . . . , tl) we will say γ has length l−1 and
terminates at tl . We consider γ = (t1) to be a path on 0λ of length zero. Let Pλ

be the set of all paths on 0λ and �t = {γ ∈ Pλ | γ terminates at t}. We note that
{�t | t ∈ T0(λ)} partitions Pλ. Using this notation we discover that |�t | satisfies a
familiar relationship.

Lemma 4.1. Let λ ` n and X t = {s | s→ t and s 6=t}. If

�t = {γ ∈ Pλ | γ terminates at t}

then
|�t | = 1+

∑
s∈X t

|�s |.

Proof. Let γ = (t1, t2, . . . , tl−1, t) ∈�t −{(t)}. Define F :�t −{(t)}→
⋃

s∈X t
�s

by F(γ )= (t1, t2, . . . , tl−1). We will complete the proof by demonstrating that F
is a bijection. If F(γ )= (t1, t2, . . . , tl−1)= F(γ ′) for γ, γ ′ ∈�t −{(t)} then γ =
(t1, t2, . . . , tl−1, t)= γ ′. If τ = (t1, t2, . . . , tl−1, tl) for some tl 6= t such that tl→ t ,
then γ = (t1, t2, . . . , tl−1, tl, t) ∈�t and F(γ )= τ . Therefore F is a bijection. �

Through Lemma 3.4, we establish an important connection between the directed
graph of λ and our question of S(n) appearing as a submodule Sλ. We summarize
this fact with the following theorem.

Theorem 4.2. Suppose λ` n is Lucas perfect. Then there exists an F6n-module M
such that Sλ⊕M if and only if |Pλ| is odd.
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Proof. Observe that xt ≡ |�t | (mod 2) is a solution to (3-1) by Lemmas 3.4 and 4.1.
Moreover

|Pλ| =
∑
T0(λ)

|�t | ≡
∑
T0(λ)

xt (mod 2).

Therefore the result follows immediately from Theorem 3.5. �

4A. Self-conjugate partitions. We say a partition λ is self-conjugate if λ= λ′. For
the remainder of the section we will assume that λ is self-conjugate and Lucas
perfect. In this circumstance, we are able to define an involution on T(λ). Suppose
t ∈ T(λ), and define t̄ ∈ T(λ) by t̄(i, j) := t ( j, i) for all (i, j) ∈ [λ]. Since the
action of 6n is relevant to our discussion we note that σ t = σ t̄ . From this fact we
can conclude the following lemma.

Lemma 4.3. For t, s ∈ T0(λ), if s→ t , then t̄→ s̄.

Proof. Suppose there exists σ ∈ Cs and π ∈ Rσ s = Rt such that πσ s = t . Then
πσ s̄ = πσ s = t̄ . So σ−1π−1 t̄ = s̄; moreover π−1

∈ Cs̄ and σ−1
∈ Rt̄ . �

This lemma allows us to induce an involution on Pλwhere if γ=(t1, t2, . . . , tl)∈Pλ

then γ̄ = (t̄l, t̄l−1, . . . , t̄1)∈ Pλ. Further, we wish to demonstrate that this involution
fixes no paths. In order to prove this, we will need the following corollary of (2.3.2).

Corollary 4.4. Suppose λ ` n > 1 is self-conjugate. Then for all t ∈ T(λ), we have
t 6→ t̄ .

Proof. Let λ ` n > 1 be self-conjugate. Then (2, 1), (1, 2) ∈ [λ]. Let a = t (1, 1)
and b = t (2, 1). Since a, b are in the same column of t , they are in the same row
of t̄ . Thus t 6→ t̄ by (2.3.2). �

Now we have the tools needed to prove that the involution on Pλ fixes no
elements.

Lemma 4.5. Suppose λ ` n > 1 is self-conjugate and γ ∈ Pλ. Then γ 6= γ̄ .

Proof. Let γ = (t1, t2, . . . , tl). Assume for the sake of contradiction that γ = γ̄ .
We will consider two cases.

Case 1: Assume γ has odd length. Then l is even and tl/2+1 = t̄l/2; thus tl/2→ t̄l/2,
which contradicts Corollary 4.4.

Case 2: Assume γ has even length. Then s is odd and t(l+1)/2 = t̄(l+1)/2, which is
impossible. �

Finally we can conclude the following result for self conjugate partitions.

Theorem 4.6. Suppose λ ` n > 1 is a self-conjugate partition. Then there does not
exist a nonzero F6n-module M such that Sλ ∼= S(n)⊕M.

Proof. By Lemma 4.5 there is an involution on the finite set Pλ with no fixed points;
hence |Pλ| is even. Therefore the theorem follows from Theorem 4.2. �
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5. Computing the sum of polytabloid coefficients

In this section, we present an algorithm to compute the sum of the polytabloid
coefficients described in Lemma 3.4. For the remainder of the section fix a particular
Lucas perfect partition λ of n. For simplicity of notation, we define m = |T0(λ)|

to be the dimension of the Specht module S(λ). Let t1, . . . , tm be an enumeration
of all standard λ-tableaux which preserves the dominance order, that is, {tj } G {tk}
only if k < j . Next, for the sake of convenience, we adopt the notation

X j = X tj = {s ∈ T0(λ) | s→tj and s 6=tj }.

Additionally for 1≤ j ≤ m, let Z j = {t1, t2, . . . tj } be the set of the first j standard
tableaux under our chosen ordering, using the convention that Z0 =∅.

Define the m× (m+ 1) matrix V = [v0, v1, v2, . . . , vm
] by

vi
j = 1+

∑
s∈X j∩Zi

xs

for all 0≤ i ≤m and 1≤ j ≤m. Since Z0=∅ we have that v0
j = 1 for all 1≤ j ≤m.

Also if ti → tj and i 6= j then ti B tj and hence i < j . So we conclude for k ≥ j ,
X j ∩ Zk = X j . Therefore

vm
j = 1+

∑
s∈Z j

xs = xtj .

Hence the sum of the coefficients of vm will be congruent to the sum of polytabloid
coefficients from Theorem 3.5. In this final section we develop the algorithm to
compute vm

j for all 1 ≤ j ≤ m in order to compute the sum of those coefficients.
To this end, observe if i = j or ti 6→ tj then X j ∩ Zi = X j ∩ Zi−1, so vi

j = v
i−1
j .

Additionally if i 6= j and ti→ tj , then i < j and X j ∩ Zi = (X j ∩ Zi−1)∪{ti }. Thus
for all 1≤ i ≤ m,

vi
j = 1+

∑
s∈X j∩Zi

xs = xti + 1+
∑

s∈X j∩Zi−1

xs

=

(
1+

∑
s∈X i

xs

)
+

(
1+

∑
s∈X j∩Zi−1

xs

)
= vi−1

i + vi−1
j

since X i∩Zi−1= X i . We summarize our observations by noting for all 1≤ i, j ≤m,

vi
j ≡

{
vi−1

i + vi−1
j (mod 2) if ti → tj and i 6= j,

vi−1
j (mod 2) otherwise.

We can now see that in order to develop an algorithm which will compute the desired
vectors, it is necessary for our algorithm to determine if t→ s for all t, s ∈ T0(λ).
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5A. Algorithm for testing the production of tabloids from polytabloids. For λ`n,
let t, s ∈ T0(λ) be such that {s} G {t}. By definition, t→ s if and only if there exist
π ∈ Ct and σ ∈ Rs such that σπ t = s. If such a π ∈ Ct exists, the image of t (i, j)
under π is uniquely determined as t (i0, j), where t (i, j) ∈ Rs(i0). The algorithm
defined below will attempt to build the permutation π , defining it by necessity.
It is possible that such a function does not exist, depending on the shape of λ.
Additionally even if such a function exists, it may not define a bijection. The
following algorithm tests to see if a permutation π can be defined.

Python Algorithm 5.1.

def produces(t, s):
is_mapped_to = {}
for val in t.vals:
# For each positive integer less than n, attempt to find
# the necessary image for that integer.

(i, j), (i0, j0) = t.coords_of(val), s.coords_of(val)
# Identify the column of t and row of s containing
# the current value.
try:

target = t[i0][j]
# Identify the necessary image of value by the function.

except IndexError:
# Return False since the target node is not in the
# young diagram, hence the function cannot be defined.
return False

if is_mapped_to.get(target):
# If the target is already an image of a previous value,
# the function cannot be a bijection, so we return False.

return False
is_mapped_to[target] = True
# After identifying the target for the value, record
# that the target has been used.

return True

The function produces(t, s) returns True if and only if the desired bijection π ∈Ct

exists, and hence t → s. Now we can use our observations and this function to
write an algorithm which will compute the desired sum of polytabloid coefficients.

5B. Algorithm to sum polytabloid coefficients. We note that produces(t, s) is
computationally demanding. This is not surprising as determining which s are
produced from t is inherently tied to generating the coefficients of the polytabloid.
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In an effort to be more computationally efficient we note since vi−1
i +v

i−1
j ≡ vi−1

j ≡

vi
j (mod 2) whenever vi−1

i ≡ 0 (mod 2), we have vi
≡ vi−1 (mod 2). Thus it is not

necessary to determine if ti → tj for such i . Hence our final algorithm will not
evaluate produces(ti , tj ) in these cases.

Python Algorithm 5.2.

def sum_of_coefficients(standard_tableaux):
# standard_tableaux contains a list of all standard tableaux
# for a fixed partition lambda of n, ordered with respect to
# the dominance relation, with the least dominant first.
standard=standard_tableaux[::-1]
# this creates a second list of standard tableaux with
# the order reversed, so most dominant is first.
v = [1] * len(standard)
# Define initial vector
for i, t in enumerate(standard_tableaux):
if v[i] == 0:
# Skip the evaluation of produce function since the
# entry is congruent to 0. The next vector in the
# sequence is congruent to the current vector.

continue
for j, s in enumerate(standard_tableaux[:i]):
# Create the next vector in the sequence adjusting

if produces(t, s):
# If the corresponding tableau produces the
# second, adjust the vector entry accordingly,
# otherwise leave it the same.
v[j] = (v[j] + 1) % 2

return sum(v) % 2

6. Conclusions

Using Python Algorithm 5.2, we are invoking Theorem 3.5 in order to determine
if a particular Specht module has a one-dimensional summand. We exhausted the
computational power available to us evaluating Lucas perfect partitions up to n= 19
excluding the partitions of the form (n) and (1n). Table 1 records the output of
our sum_of_coefficients() function for various partitions. We note in our results
that the partitions corresponding to the Specht module having a one-dimensional
summand were previously known Specht modules corresponding to hook partitions.
Our results again confirm Murphy’s result (Theorem 1.1) for these partitions.
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n λ 6

5 (3,1,1) 0
7 (3,1,1,1,1) 1
7 (5,1,1) 1
8 (3,3,2) 0
9 (3,1,1,1,1,1,1) 0
9 (5,1,1,1,1) 0
9 (7,1,1) 0
9 (3,3,3) 0

11 (3,1,1,1,1,1,1,1,1) 1
11 (5,1,1,1,1,1,1) 0
11 (7,1,1,1,1) 0
11 (9,1,1) 1
13 (3,1,1,1,1,1,1,1,1,1,1) 0
13 (5,1,1,1,1,1,1,1,1) 1
13 (7,1,1,1,1,1,1) 0
13 (3,3,3,1,1,1,1) 0
13 (9,1,1,1,1) 1
13 (11,1,1) 0
13 (7,3,3) 0
15 (3,1,1,1,1,1,1,1,1,1,1,1,1) 1
15 (5,1,1,1,1,1,1,1,1,1,1) 1

n λ 6

15 (7,1,1,1,1,1,1,1,1) 1
15 (9,1,1,1,1,1,1) 1
15 (11,1,1,1,1) 1
15 (13,1,1) 1
17 (3,3,3,1,1,1,1,1,1,1,1) 0
17 (11,3,3) 0
17 (9,1,1,1,1,1,1,1,1) 0
17 (11,1,1,1,1,1,1) 0
17 (7,1,1,1,1,1,1,1,1,1,1) 0
17 (7,3,3,1,1,1,1) 0
17 (13,1,1,1,1) 0
17 (5,1,1,1,1,1,1,1,1,1,1,1,1) 0
17 (15,1,1) 0
17 (3,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0
19 (3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 1
19 (17,1,1) 1
19 (5,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 0
19 (15,1,1,1,1) 0
19 (7,1,1,1,1,1,1,1,1,1,1,1,1) 0
19 (13,1,1,1,1,1,1) 0
19 (9,1,1,1,1,1,1,1,1,1,1) 0
19 (11,1,1,1,1,1,1,1,1) 0

Table 1. The partitions which are not hook partitions are noted in bold.

We see that in the collection of partitions within our computational limits, there
are very few such nonhook partitions. Moreover a handful of these partitions are
self-conjugate, so based on Theorem 4.6, we know these partitions would not
have a one-dimensional summand. Perhaps with additional computational power
or a more refined algorithm, we may discover a nonhook Specht module with a
one-dimensional summand. It is worth noting that such an example would be the
first decomposable Specht module associated to a partition that is not 2-quotient
separated (see [James and Mathas 1996, Section 2] and [Dodge and Fayers 2012,
Section 8.2]) ever discovered.
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