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Let R be the associative k-algebra generated by two elements x and y with
defining relation yx = 1. A complete description of simple modules over R is
obtained by using the results of Irving and Gerritzen. We examine the short exact
sequence 0→U→ E→V→ 0, where U and V are simple R-modules. It shows
that nonsplit extension only occurs when both U and V are one-dimensional, or,
under certain condition, U is infinite-dimensional and V is one-dimensional.

1. Introduction

In this short note, we study nonsplit extensions of simple modules over the asso-
ciative algebra R = k{x, y}/〈yx − 1〉 over a base field k of characteristic 0. The
algebra R is also known as the one-sided inverse of the polynomial algebra k[x] and
appeared in [Bavula 2010; Gerritzen 2000; Jacobson 1950; Irving 1979]. Note that

y(1− xy)= (1− xy)x = 0.

The algebra R is not a domain, and Z(R)= k. As a k-vector space R has basis

{x i y j
| i, j = 0, 1, 2, . . .}.

Moreover, R admits the involution η : x 7→ y and y 7→ x . Hence, the left and right
algebraic properties of R are the same.

Jacobson [1950] gave a faithful irreducible representation of R as follows. Let S
be the infinite-dimensional k-vector space with the basis {e1, e2, . . .} and let R act
on S by assigning

xen = en+1, n > 0,
yen = en−1, n > 1,
ye1 = 0.

It was proved by Bavula [2010] and Gerritzen [2000] that there is only one iso-
morphic class of infinite-dimensional simple R-modules. Note that there is an
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algebra monomorphism R→ Endk(k[x]) such that x 7→ x and y 7→ H−1 d
dx , where

H ∈ Endk(k[x]) is given by H( f )= d
dx (x f ) for any f ∈ k[x]. In particular,⊕

i≥0

kx i (1− xy)∼= k[x]

is a simple and faithful left R-module, where the left R-module structure on k[x] is
via the algebra map R→ Endk(k[x]) discussed above. Following [Bavula 2010],
R contains a subring which is canonically isomorphic to the ring (without identity)
of infinite-dimensional matrices. Let

F =
⊕
i, j≥0

k Mi j ∼= M∞(k),

where Mi j = x i (1 − xy)y j can be identical to the matrix units of M∞(k). In
particular, we have

x ∼


0
1 0

1 0
...

...

 , y ∼


0 1

0 1
0
...
...

 . (1)

As a left R-module,

F =
⊕
i, j≥0

kx i (1− xy)y j ∼=
⊕
i≥0

(⊕
t≥0

kx t x i (1− xy)yi
)
∼=

⊕
i≥0

k[x]

is a direct sum of infinitely many simple R-modules. Hence R is neither left nor right
noetherian. Similarly, we see that there is an ascending chain of left annihilators
in R which is not stable. Then R is neither left nor right Goldie. Moreover, F is
equal to the ideal of R generated by 〈1− xy〉. Since F2

= F , lann(F) and rann(F)
are both zero, we have F is an essential left and right ideal of R, which equals the
socle of left and right R-module R. Hence F is contained in any nonzero ideal of
R and it follows that the set of proper (two-sided) ideals of R is

{0, 〈1− xy〉, 〈1− xy, f (x)〉},

where f (x) is a monic polynomial in k[x] which is not a monomial. In particular,
the ideals of R satisfy the ascending chain condition.

It follows from [Bavula 2010; Gerritzen 2000; Irving 1979] that the prime ideals
are given by

Spec(R)= {0, 〈1− xy〉, 〈1− xy, f (x)〉},

where f (x) is a monic irreducible polynomial in k[x] which is not a monomial. In
particular, 〈1−xy, f (x)〉 are the maximal ideals of R. Therefore simple R-modules
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are isomorphic to k[x] or k[x±1
]/〈 f (x)〉. When k is algebraically closed, the simple

R-modules are either one-dimensional or infinite-dimensional.
A discussion of how Jategaonkar’s main lemma and a theorem of Stafford apply

to this nonnoetherian R is given in Section 3.

2. Nonsplit extensions of simple R-modules

Throughout k is an algebraically closed field with char(k) = 0. All modules are
left modules. Then simple R-modules are isomorphic to k[x] or k[x±1

]/〈x − λ〉
for λ ∈ k×. When a simple module is one-dimensional, i.e., isomorphic to k as
a vector space, the x-action is multiplication by a scalar λ, and the y-action is
multiplication by its inverse λ−1. We denote such a simple R-module by kλ. It is
clear that kλ1

∼= kλ2 as simple R-modules for any λ1, λ2 ∈ k× if and only if λ1 = λ2.
We consider the R-module extension E with the short exact sequence (s.e.s.)

0→U → E→ V → 0 (2)

of R-modules U and V. It is clear that E is isomorphic to U⊕V, as k-vector spaces.
The R-action on E is then given by the ring homomorphism

ρδ : r 7→
(
α(r) δ(r)

0 β(r)

)
,

where
α : R→ Endk(U ) and β : R→ Endk(V )

are ring homomorphisms, and δ(r) is a k-linear map in Homk(V,U ) such that

δ(r1r2)= α(r1)δ(r2)+ δ(r1)β(r2)

for any r1, r2 ∈ R. In particular,

α(y)δ(x)+ δ(y)β(x)= δ(yx)= δ(1).

Since ρδ(1) must be the identity matrix, we have δ(1)= 0. Therefore,

α(y)δ(x)+ δ(y)β(x)= 0. (3)

That is, given α and β, the map δ is uniquely determined by the pair of k-linear
maps δ(x), δ(y) ∈ Homk(V,U ) satisfying the compatibility condition (3). If δ is
the zero mapping, then E ∼=U ⊕V. Let Eδ and Eδ′ be two module extensions of U
by V, equipped with ring homomorphisms ρδ and ρδ′ . Then Eδ ∼= Eδ′ if and only if
there is a k-vector space isomorphism f : Eδ→ Eδ′ such that f ◦ρδ(r)= ρδ′(r)◦ f .
Note that R has the k-basis {x i y j

| i, j = 0, 1, 2, . . .}. Therefore, it is sufficient to
verify ρδ(x)= f −1

◦ ρδ′(x) ◦ f and ρδ(y)= f −1
◦ ρδ′(y) ◦ f .
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Now consider another R-module extension E ′ with the s.e.s.

0→U ′→ E ′→ V ′→ 0 (4)

of R-modules U ′ and V ′. We say that the two s.e.s. (2) and (4) are equivalent if
there is an R-module isomorphism f : E→ E ′ such that the restriction of f on U
yields an isomorphism from U to U ′.

We focus on the R-module extension E of a simple R-module U by another
simple R-module V. We start with the case when V is infinite-dimensional. It
is shown in the following lemma that the s.e.s in this case is always split. This
result can be directly derived from Bavula’s proof that the infinite-dimensional
simple R-module k[x] is projective. We include an alternative proof without using
projectivity.

Lemma 2.1. Suppose 0→ U → Eδ → V → 0 is an s.e.s., where U and V are
simple R-modules and dimk(V )=∞. Then the s.e.s. is always split.

Proof. Let {b0, b1, b2, . . .} be a basis of V such that y and x are left and right shift
operators, respectively. As vector spaces, Eδ ∼=U ⊕ V. Consider the element

a := b0− xδ(y)b0

of Eδ. It is clear that a ∈ Eδ \U . Then the left cyclic submodule Ra of Eδ is
distinct from 0 and U. For any element r ∈ R, we have

ra = δ(r)b0+β(r)b0− r xδ(y)b0.

Hence ra ∈ Ra ∩U only if β(r)b0 = 0, that is, r = sy for some s ∈ R. But

ya = yb0− yxδ(y)b0 = δ(y)b0+β(y)b0− δ(y)b0 = 0.

That is, Ra ∩U = 0. Then Ra ⊕U = Eδ since Eδ/U ∼= V is simple. Therefore
Eδ ∼=U ⊕ V as left R-modules. �

The next case deals with the module extension when U is infinite-dimensional
and V is one-dimensional.

Lemma 2.2. Let U and U ′ be two infinite-dimensional simple R-modules, kλ and
kλ′ be two one-dimensional R-modules for nonzero scalars λ and λ′. Suppose Eδ
and Eδ′ are two R-module extensions with the respective s.e.s.

0→U → Eδ→ kλ→ 0 and 0→U ′→ Eδ′→ kλ′→ 0.

Then Eδ ∼= Eδ′ if and only if λ = λ′ and δ′(x) = cδ(x) for some nonzero c ∈ k. In
this case the two s.e.s. are equivalent if and only if Eδ ∼= Eδ′ . As a consequence, Eδ
(resp. Eδ′) is nonsplit if and only if δ 6= 0 (resp. δ′ 6= 0).
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Proof. We will fix a basis {e0, e1, e2, . . . , d} for both Eδ and Eδ′ as k-vector spaces,
where {e0, e1, e2, . . .} is a basis of U (and U ′) such that y and x are left and right
shift operators, respectively. For any r ∈ R, we can identify the map δ(r), under
the fixed basis, with an infinite-dimensional vector

〈δ(r)0, δ(r)1, δ(r)2, . . .〉

with only finitely many nonzero components. Note that α(y)δ(x)+ δ(y)β(x)= 0,
where β(x)= λ and y is the upper diagonal line matrix given in (1). It follows that

δ(y)i = λ−1δ(x)i+1 for i ≥ 1. (5)

A similar result for δ′(x) and δ′(y) holds. Suppose that m is the smallest integer
such that δ(y)i = δ′(y)i = 0 for any i > m. Consequently, δ(x)i = δ′(x)i = 0 for
any i > m+ 1.

Suppose that f is an R-module isomorphism Eδ′→ Eδ; that is, f is a k-vector
space isomorphism such that both ρδ(x) f = fρδ′(x) and ρδ(y) f = fρδ′(y). We
will obtain necessary conditions on f through its images on the basis elements of
the selected basis. Let

f (e0)= ae0+ a1e1+ a2e2+ · · ·+ a′d

for some a′, ai ∈ k, i = 1, 2, . . . , where only finitely many ai ’s are nonzero. First,

f ◦ ρδ′(y)(e0)= 0,

ρδ(y) ◦ f (e0)=
∑
i≥0

(ai+1+ a′δ(y)i )ei +
1
λ

a′d.

Hence, a′ = ai = 0 for all i = 1, 2, . . . , and so f (e0)= ae0. Moreover,

f (e1)= f (xe0)= x f (e0)= x(ae0)= ae1

implies f (e1)= ae1. Inductively, f (ei )= aei for some a 6= 0 and all i ≥ 0. Next,
suppose that

f (d)= b0e0+ b1e1+ b2e2+ · · ·+ bd,

where b 6= 0, bi ∈ k for i ≥ 0, and only finitely many bi ’s are nonzero. Then

ρδ(y) ◦ f (d)=
∑
i≥0

bi+1ei +
∑
i≥0

bδ(y)i ei + λ
−1bd,

f ◦ ρδ′(y)(d)=
∑
i≥0

(
aδ′(y)i +

1
λ′

bi

)
ei +

1
λ′

bd.

Thus, we have

λ= λ′, bi+1+ bδ(y)i = aδ′(y)i + λ−1bi for i ≥ 0.
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Since δ(y)i = δ′(y)i = 0 for any i > m, we have bi+1 = λ
−1bi for any i > m. But

only finitely many bi ’s are nonzero; it then follows inductively that

bm+1 = bm+2 = · · · = 0.

Hence, we have the m+ 1 relations

bδ(y)m = aδ′(y)m + λ−1bm,

bi+1+ bδ(y)i = aδ′(y)i + λ−1bi for i = 0, 1, . . . ,m− 1.
(6)

Similarly, we have

ρδ(x) ◦ f (d)=
∑
i≥1

bi−1ei +
∑
i≥0

bδ(x)i ei + λbd,

f ◦ ρδ′(x)(d)=
∑
i≥0

(aδ′(x)i + λ′bi )ei + λ
′bd.

Note that δ(x) j = δ
′(x) j = 0 for any j > m+ 1. It then follows that

bδ(x)0 = aδ′(x)0+ λb0,

bm + bδ(x)m+1 = aδ′(x)m+1,

bi−1+ bδ(x)i = aδ′(x)i + λbi for i = 1, 2, . . . ,m.

(7)

Combining the relations (5) and (7), we have

bδ(y)m − aδ′(y)m =−λ−1bm,

bδ(y)i − aδ′(y)i = bi+1− λ
−1bi for i = 0, 1, . . . ,m− 1.

From (6), we have

bδ(y)m − aδ′(y)m = λ−1bm,

bδ(y)i − aδ′(y)i = λ−1bi − bi+1 for i = 0, 1, . . . ,m− 1.

Hence, bi = λbi+1 for 0≤ i ≤ m− 1 and bm = 0. Thus, b0 = b1 = · · · = bm = 0.
Therefore, f (ei )= aei and f (d)= bd for some nonzero scalars a, b ∈ k and all

i ≥ 0. Such a k-vector space isomorphism is an R-module isomorphism if and only
if δ′(x)= b

a δ(x) for the nonzero scalars a, b ∈ k or equivalently, δ′(r)= b
a δ(r) for

any r ∈ R.
Therefore, any module extension Eδ such that Eδ/U ∼= kλ is nonsplit if and only

if δ(x) 6= 0. Let Eδ and Eδ′ be nonsplit extensions such that

0→U → Eδ→ kλ→ 0 and 0→U ′→ Eδ′→ kλ′→ 0.

Then Eδ ∼= Eδ′ if and only if λ = λ′ and δ′(x) = cδ(x) for some nonzero scalar
c ∈ k. Observe that the isomorphism f from Eδ to Eδ′ yields an isomorphism from
U to U ′. Therefore, the two s.e.s. are equivalent if and only if Eδ ∼= Eδ′ . �



NONSPLIT MODULE EXTENSIONS OVER THE ONE-SIDED INVERSE OF k[x] 1375

Now we can state our main result.

Theorem 2.3. Suppose 0→ U → Eδ → V → 0 is an s.e.s. where U and V are
simple R-modules and Eδ is associated with the k-linear map δ in Homk(V,U ).
Let λ, λ′ be nonzero scalars:

(i) If dim(V )=∞, the s.e.s. is always split.

(ii) If dim(U )=∞ and V = kλ, the s.e.s. is nonsplit if and only if δ 6= 0. Any such
two s.e.s. are equivalent if and only if λ= λ′ and the infinite vectors δ(x) and
δ′(x) are proportional.

(iii) If U = kλ and V = kλ′ are both one-dimensional, then the s.e.s. is nonsplit only
if δ 6= 0 and λ= λ′. Any such two nonsplit s.e.s. are equivalent if and only if
the submodules U are the same.

Proof. The first two cases are proved in Lemmas 2.1 and 2.2. We only need
to consider the case when U and V are both one-dimensional. Suppose the two
modules U and V are uniquely determined by nonzero scalars λ and λ′. Let

0→ kλ→ Eδ→ kλ′→ 0

be an s.e.s. Then δ is uniquely determined by δ(x) since δ(y) = −(λλ′)−1δ(x).
Moreover, ρδ(y) is the inverse matrix of ρδ(x). Note that the 2× 2 matrix ρδ(x)
is similar to ρ0(x) if and only if λ 6= λ′. Hence, the s.e.s. is always split if λ 6= λ′,
whether or not δ = 0. Therefore, the nonsplit case occurs when δ 6= 0 and λ= λ′.
Consider two nonsplit s.e.s.

0→ kλ→ Eδ→ kλ→ 0 and 0→ kγ → Eδ′→ kγ → 0,

with nonzero δ and δ′. It is easy to see, by a linear transformation, that the two
nonsplit s.e.s. are equivalent if and only if Eδ ∼= Eδ′ if and only if the nonzero
scalars λ and γ are equal. Thus, there is only one, up to equivalence, nonsplit s.e.s.
0→ kλ→ Eδ→ kλ→ 0 for each one-dimensional simple R-module kλ. �

3. Closing discussion

Let A be an associative ring. Recall a left (respectively, right) module M over A is
called torsion-free if for any nonzero element m in M there is some r ∈ A such that
rm 6= 0 (respectively, mr 6= 0). Two prime ideals P and Q of an associative ring A
are linked, denoted as P Q, if there is an ideal I of A such that (P∩Q)> I ≥ P Q
and (P ∩ Q)/I is nonzero and torsion-free both as a left A/P-module and a right
A/Q-module. The graph of links of A is a directed graph whose vertices are prime
ideals of A, with an arrow from P to Q whenever P  Q. The vertex set of each
connected component is called a clique.
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Jategaonkar’s main lemma [1986] states that if M is a (right) module over a
noetherian ring A with a nonsplit short exact sequence 0→U→ M→ V → 0 and
corresponding annihilators Q = annA(U ) and P = annA(V ), then exactly one of
the following two alternatives occurs: (i) P < Q and P M = 0; (ii) P  Q.

Now let 0→U→ Eδ→ V→ 0 be a nonsplit short exact sequence, where U and
V are simple R-modules. Suppose Q= annR(U ) and P= annR(V ) are the affiliated
primes. When dim U =∞ and V ∼= kλ, we have Q = (0) and P = 〈1− xy, x −λ〉.
There is no link between P and Q, and P 6< Q. When U ∼= V ∼= kλ, we have
Q = P = 〈1− xy, x − λ〉. There is no link between P and Q, and P 6< Q. This
suggests that the noetherianess is necessary in the assumptions of Jategaonkar’s
main lemma.

On the other hand, [Stafford 1987, Corollary 3.13] states that all cliques of prime
ideals in any noetherian ring are countable. When k is algebraically closed, the
prime ideals of R are (0), F = 〈1− xy〉, and Pλ = 〈1− xy, x − λ〉, where λ ∈ k×.
One can check that

F = F2
= F ∩ Pλ = F Pλ = PλF = Pλ ∩ Pλ′ = PλPλ′

whenever λ 6= λ′. Moreover, Pλ/P2
λ
∼= (x − λ)/(x − λ)2 as in k[x±1

]. Hence the
cliques in the graph of links are

F, (0), Pλ,
��

Pλ′ .
��

This suggests that all cliques of R are countable.
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