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The Jones polynomial is an invariant of oriented links with n ≥ 1 components.
When n = 1, the choice of orientation does not affect the polynomial, but for
n > 1, changing orientations of some (but not all) components can change the
polynomial. Here we define a version of the Jones polynomial that is an invariant
of unoriented links; i.e., changing orientation of any sublink does not affect the
polynomial. This invariant shares some, but not all, of the properties of the Jones
polynomial.

The construction of this invariant also reveals new information about the
original Jones polynomial. Specifically, we show that the Jones polynomial of a
knot is never the product of a nontrivial monomial with another Jones polynomial.

1. Introduction

Jones’ original construction [1985] of the polynomial VL = VL(t) ∈ Z[t1/2, t−1/2
]

was through the skein relation

t−1VL− − tVL+ = (t
1/2
− t−1/2)VL0,

where L+, L− and L0 are three oriented links that are identical except inside a ball
that contains respectively, a positive crossing, a negative crossing, and two uncrossed
strands. It is easy to see that when L is a knot (i.e., a link of one component), the
polynomial VL(t) is unchanged by reversing the orientation on L , since crossing
signs are preserved by such a change in orientation.

For links of more than one component, however, the Jones polynomial may
change depending on the choice of orientation for each component. The Hopf link
is the simplest example. The oriented Hopf link with linking number +1 has Jones
polynomial −t1/2

− t5/2, but reversing the orientation of one component gives us
−t−5/2

− t−1/2. A complete list of oriented links up to nine crossings, together with
their polynomials can be found in [Doll and Hoste 1991].
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Based on the skein-relation definition, it is a surprising result that a change in
orientation of some components of L simply multiplies VL by a power of t . Let
L = M ∪ N be an oriented link with components M1, . . . ,Mr , N1, . . . , Ns , and
write L N =M∪−N for the link formed by reversing the orientations on N1, . . . , Ns .
Morton [1986] proved that

VL(t)= t3λVL N (t),

where λ is the linking number of M with N, defined as

λ= lk(M, N )=
∑
i, j

lk(Mi , Nj ).

A much simpler proof using Kauffman’s bracket polynomial construction of the
Jones polynomial appears below.

Recall [Kauffman 1988] the bracket polynomial 〈L〉 ∈ Z[A, A−1
] is defined

recursively: 〈 〉
= A

〈 〉
+ A−1〈 〉

,

〈©L〉 = (−A2
− A−2)〈L〉,

〈©〉 = 1.

The bracket polynomial is invariant under Reidemeister moves R2 and R3, but not
under move R1. Define X L(A) = (−A3)−w〈L〉, where w = w(L) is the writhe
(sum of all crossing signs) of L , to obtain a link invariant. Under the change of
variables A= t−1/4, we have X L(A)= VL(t). We will often write d =−A2

− A−2;
thus 〈©L〉 = d〈L〉.

Now it is clear that changing the orientations of some components of L multiplies
the Jones polynomial by a power of t , since only the writhe (but not the bracket
polynomial) is affected by such a change. Using the notation above, if L = M ∪ N,
then the crossing signs that change to produce L N are the ones that involve some
crossing of component Mi with component Nj . Since the linking number of M
with N involves precisely the same crossings, we have

w(L N )= w(L)− 2
∑

(crossing signs of Mi with Nj )

= w(L)− 4 · lk(M, N ).

Thus
VL(t)= X L(A)= (−A3)−w(L)〈L〉

= (−A3)−4·lk(M,N )−w(L N )〈L〉

= (−A)−12·lk(M,N )(−A3)−w(L N )〈L〉

= (A4)−3λX L N (A)= t3λVL N (t),

confirming Morton’s result.
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Given an unoriented link of n components, there may be up to 2n−1 associated
Jones polynomials for the links obtained by choosing an orientation for each
component. (Note: it is not up to 2n, since changing all orientations does not affect
the Jones polynomial.) None of these is a natural choice to be the Jones polynomial
of the unoriented link since there is no preferred orientation. In the next section we
define a version of the Jones polynomial that is an invariant of unoriented links.

2. The Jones polynomial for unoriented links

We begin by defining the self-writhe of a link diagram.

Definition 1. For a link diagram L with components K1, . . . , Kn , we define the
self-writhe of L , denoted by ψ(L), to be the sum of the writhes of each component
of L , ignoring the other components when computing each writhe. That is,

ψ(L)=
n∑

j=1

w(K j ).

Equivalently, the self-writhe can be defined as the sum of the signs of those crossings
of L for which both the under and over strands are from the same component.

Reidemeister moves affect the self-writhe exactly as they do the writhe. Both are
invariant under moves R2 and R3. This is because the two crossings involved in
move R2 are of opposite sign regardless of orientation, and the crossing signs εi are
unchanged by R3 moves regardless of orientations and components. See Figure 1.
Under move R1, both the writhe and self-writhe change by ±1, since move R1
always involves a single component of the link. See Figure 2.

Unlike the writhe, however, the self-writhe of a link L is independent of the
choice of orientations of the components of L . This is because changing the
orientation of a component K of L does not affect the writhe of K , and hence does
not affect ψ(L).

Figure 1. Crossing signs and Reidemeister moves.

Figure 2. Crossing signs and move R1.
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Thus we can define UL(A)= (−A3)−ψ 〈L〉. This modified Jones polynomial is an
invariant for the same reason that X L(A) is: both 〈L〉 and ψ(L) are invariant under
moves R2 and R3, and 〈L〉 changes by a factor of (−A3)±1 with each R1 move.

But since ψ(L) is unaffected by changing orientations of any components of L ,
the polynomial UL(A) is also unaffected by such changes. We can thus make the
same change of variables A = t−1/4 to obtain WL(t) ∈ Z[t1/2, t−1/2

], noting that
WL(t)=UL(A).

Definition 2. Let L be an unoriented link with self-writhe ψ . The Laurent polyno-
mial UL(A)= (−A3)−ψ 〈L〉 (or equivalently WL(t)) for any choice of orientation
of components of L is the unoriented Jones polynomial of L . We will refer to
UL(A) as the U -polynomial of L .

3. Properties of the unoriented Jones polynomial

For knots we have WK (t)= VK (t) since w(K )=ψ(K ). Thus we will examine the
properties of the unoriented Jones polynomial for links of at least two components.
Jones [1985] established that if the link L has an odd number of components, then
VL(t) is a Laurent polynomial over the integers; if the number of components of
L is even then VL(t) is

√
t times a Laurent polynomial. WL(t) does not share

these properties. For example, if L is the Hopf link, then WL(t)=−t−1
− t , since〈 〉

=−A4
− A−4, and ψ

( )
= 0.

On the other hand, if L is link 52
1 (Figure 3), then ψ(L)=w(L)=−1, regardless

of orientation. Therefore,

WL(t)= VL(t)= t−7/2
− 2t−5/2

+ t−3/2
− 2t−1/2

+ t1/2
− t3/2.

There are two different oriented links corresponding to 73
1 (Figure 3), both of which

have integral exponents for the original Jones polynomials, but the unoriented Jones
polynomial is

t−5/2
− t−3/2

+ 4t−1/2
− 3t1/2

+ 4t3/2
− 3t5/2

+ 3t7/2
− t9/2.

For the remainder of this paper we use A as the indeterminate. This is simply to
avoid fractional exponents.

Figure 3. Links 52
1 and 73

1.
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Figure 4. L#M.

Some properties of the Jones polynomial do carry over to UL(A). Let L∗ denote
the mirror image of L .

Proposition 3. UL∗(A)=UL(A−1).

Proof. This follows immediately from Definition 2, since ψ(L)=−ψ(L∗). �

Theorem 4. If L and M are links, then UL#M =ULUM .

Proof. Observe that for diagrams L and M , the self-writhe of L#M is just ψ(L)+
ψ(M). Now take diagrams for L , M and L#M as in Figure 4. Let〈 〉

= p1

〈 〉
+ p2

〈 〉
and

〈 〉
= q1

〈 〉
+ q2

〈 〉
,

where p1, p2, q1 and q2 are polynomials in A. Then we have 〈L〉 = p1+ p2d , and
〈M〉 = q1+ q2d . Moreover,

〈L#M〉 =
〈 〉
= p1

〈 〉
+ p2

〈 〉
= p1q1

〈 〉
+ p1q2

〈 〉
+ p2q1

〈 〉
+ p2q2

〈 〉
= p1q1+ p1q2d + p2q1d + p2q2d2.

Thus,

UL#M(A)= (−A3)−ψ(L#M)(p1q1+ p1q2d + p2q1d + p2q2d2)

= (−A3)−ψ(L)(−A3)−ψ(M)(p1+ p2d)(q1+ q2d)

=UL(A)UM(A). �

When two links have the same number of components, their U -polynomials are
related algebraically. Specifically, if L and L ′ are both n-component links, then
U (L)−U (L ′) is divisible by a certain fixed polynomial C(A), independent of L ,
L ′ and n. Equivalently, we may say U (L) and U (L ′) are equal in the quotient ring
Z[A, A−1

]/〈C(A)〉. For convenience, we will write U (L)≡U (L ′) (mod C(A)).

Theorem 5. Let L and L ′ be two links with the same number of components. Then
UL(A)≡UL ′(A) (mod A6

− 1).

Proof. Suppose L and L ′ are two links that differ by a crossing change. We will
show that UL(A)−UL ′(A) is divisible by A6

−1. Since any link can be transformed
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Figure 5. Two links that differ by a crossing change.

by crossing changes to any other link with the same number of components, the
theorem follows.

Draw L and L ′ as the numerator closures of tangles that differ by a crossing as in
Figure 5. Take the self-writhes of L and L ′ to be ψ and ψ ′ respectively. Therefore
ψ ′ will equal ψ , ψ+2, or ψ−2, depending on the orientation of the strands in the
crossing change, and whether they are from the same component. We compute
UL(A)−UL ′(A). Write 〈 〉

= p1

〈 〉
+ p2

〈 〉
,

where p1 and p2 are polynomials in A. Then〈 〉
= A

〈 〉
+ A−1

〈 〉
= Ap1

〈 〉
+ Ap2d

〈 〉
+ A−1 p1

〈 〉
+ A−1 p2

〈 〉
,

〈L〉 = Ap1+ Ap2d + A−1 p1d + A−1 p2

= p1(A+ A−1d)+ p2(Ad + A−1)

= p1(−A−3)+ p2(−A3),

UL(A)= (−A3)−ψ [p1(−A−3)+ p2(−A3)].

Similarly,
〈L ′〉 = p1(−A3)+ p2(−A−3),

UL ′(A)= (−A3)−ψ
′

[p1(−A3)+ p2(−A−3)].

Since ψ ′ ∈ {ψ,ψ + 2, ψ − 2}, either

UL(A)−UL ′(A)= (−A3)−ψ [p1(−A−3
+ A3)− p2(A3

− A−3)]

= (−1)−ψ(A3)−ψ−1(p1− p2)(A6
− 1),

or
UL(A)−UL ′(A)= (−A3)−ψ p2(−A3

+ A−9)

= (−A3)−ψ−3 p2(A6
+ 1)(A6

− 1),
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or
UL(A)−UL ′(A)= (−A3)−ψ p1(−A−3

+ A9)

= (−A3)−ψ−1 p1(A6
+ 1)(A6

− 1). �

Corollary 6. Let L be a link with n components. Then UL(1)= (−2)n−1.

Proof. Let©n be the unlink of n components. Then

U©n (A)= dn−1
= (−A2

− A−2)n−1.

Therefore by Theorem 5, we can write UL(A)= (A6
−1)q(A)+ (−A2

− A−2)n−1,
where q is some polynomial in A. Thus UL(1)= (−2)n−1. �

Theorem 5 establishes that A6
−1 divides the difference of any two U -polynomials

of links with the same number of components. However, A6
− 1 does not appear to

be the highest-degree such polynomial. In all examples known to the authors, the
difference is a multiple of A8

− A6
− A2

+ 1, which equals (A6
− 1)(A2

− 1). We
conjecture this is always the case.

Conjecture 7. Let L and L ′ be two links with the same number of components.
Then UL(A)≡UL ′(A) (mod A8

− A6
− A2

+ 1).

We prove Conjecture 7 for links of three or fewer components.

Theorem 8. Let L and L ′ be two n-component links, where n ≤ 3. Then UL(A)≡
UL ′(A) (mod A8

− A6
− A2

+ 1).

Proof. It is shown in [Ganzell 2014] that when L is a knot (i.e., n = 1), then
X L(A)− X L ′(A) (and hence UL(A)−UL ′(A)) is always divisible by A16

− A12
−

A4
+ 1, which equals (A8

− A6
− A2

+ 1)(A8
+ A6

+ A2
+ 1).

For n = 2, we proceed as follows. It is proved in [Murakami and Nakanishi
1989] that the link L can be transformed into the link L ′ by 1-moves (Figure 6) if
and only if L and L ′ have the same number of components and the pairwise linking
numbers of the components of L equal those of L ′. That is, if L = K1 ∪ · · · ∪ Kn

and L ′ = K ′1∪· · ·∪K ′n′ , then L can be transformed into L ′ by 1-moves if and only
if n = n′ and lk(Ki , K j )= lk(K ′i , K ′j ) for 1≤ i < j ≤ n. In this case we say L and
L ′ are 1-move equivalent. Thus every 2-component link is 1-move equivalent to a
link of the form in Figure 7, where k ∈ Z is the linking number.

Figure 6. 1-move.
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Figure 7. L2k , a 2-component link with linking number k.

It is shown in [Ganzell 2014] that two links that differ by a sequence of 1-moves
have bracket polynomials that are congruent mod A8

− A6
− A2

+ 1 (in fact mod
A16
−A12

−A4
+1). Since1-moves do not affect the self-writhe, the U -polynomials

are also congruent mod A8
− A6
− A2
+1. Now, let L2k be the link in Figure 7. We

will show that 〈L2k〉−〈©©〉 is also a multiple of A8
− A6
− A2
+1. Thus every 2-

component link has bracket polynomial congruent to 〈©©〉 (mod A8
−A6
−A2
+1).

Since L2k has self-writhe equal to 0, this will complete the proof.
We first compute 〈L2k〉. We have〈 〉

= p1

〈 〉
+ p2

〈 〉
,

where p1 = A2k and p2 =
∑2k

m=1
(2k

m

)
A2k−2mdm−1. Now observe that

2k∑
m=0

(2k
m

)
A2k−2mdm

=

2k∑
m=0

(2k
m

)
A2k−2m(−A2

− A−2)m

=

2k∑
m=0

(2k
m

)
A2k−m(−A− A−3)m = [(−A− A−3)+ A]2k

by the binomial theorem. The last expression simplifies to A−6k . Therefore p2 =

(A−6k
− A2k)/d , and

〈L2k〉 = A2kd +
A−6k
− A2k

d

=
A2k(A4

+ 2+ A−4)+ A−6k
− A2k

−A2− A−2

=
−A2k+6

− A2k+2
− A2k−2

− A−6k+2

A4+ 1
.

Thus,

〈L2k〉− 〈©©〉 =
−A2k+6

− A2k+2
− A2k−2

− A−6k+2

A4+ 1
+ A2

+ A−2

=
A8k+4

+ A8k
+ A8k−4

− A6k+4
− 2A6k

− A6k−4
+ 1

−A6k−2(A4+ 1)
. (1)
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Figure 8. A 3-component link with linking numbers k1, k2, k3.

Let N (A) be the numerator of (1). Since

A8
− A6

− A2
+ 1= (A+ 1)2(A− 1)2(A2

+ A+ 1)(A2
− A+ 1),

we must show that N (A) has these factors. (Actually, we only need to prove that 1
and −1 are double roots, since we have already established Theorem 5. But it is
not hard to show directly.) Rewrite N (A) in the form

N (A)= (A8k+4
+ A8k

+ A8k−4)− (A6k+4
+ A6k

+ A6k−4)− (A6k
− 1).

Observe that

A8k+4
+ A8k

+ A8k−4
= A8k−4(A4

− A2
+ 1)(A2

+ A+ 1)(A2
− A+ 1),

A6k+4
+ A6k

+ A6k−4
= A6k−4(A4

− A2
+ 1)(A2

+ A+ 1)(A2
− A+ 1),

and

A6k
− 1= (A2

+ A+ 1)(A2
− A+ 1)

6k−6∑
m=0

(Am+2
− Am).

It remains to show that (A+ 1)2 and (A− 1)2 are factors of N (A). It is straight-
forward to verify that 1 and −1 are both roots of N (A) and of the derivative N ′(A),
completing the proof for 2-component links.1

The proof for n = 3 is similar. Observe that every 3-component link is 1-move
equivalent to a link of the form in Figure 8. Define

q(k)=
k∑

m=1

( k
m

)
Ak−2mdm−1,

so that 〈 〉
= Ak

〈 〉
+ q(k)

〈 〉
.

1Note that N (A) must also be divisible by A4
+ 1, since bracket polynomials are Laurent

polynomials. We can see this directly by writing N (A) = (A8k
+ A8k−4) − (A6k+4

+ A6k) −

(A6k
+ A6k−4)+ (A8k+4

+ 1). The first three binomials are multiples of A4
+ 1, and A8k+4

+ 1=
(A4
+ 1)(A8k

− A8k−4
+ A8k−8

− · · ·+ 1).
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Then if L is the link in Figure 8, we have

〈L〉 = A2k1+2k2+2k3d2

+ A2k1+2k2q(2k3)d + A2k1+2k3q(2k2)d + A2k2+2k3q(2k1)d

+ A2k1q(2k2)q(2k3)+ A2k2q(2k1)q(2k3)+ A2k3q(2k1)q(2k2)

+ q(2k1)q(2k2)q(2k3)d,

and we must verify that 〈L〉 − 〈©©©〉 is divisible by A8
− A6

− A2
+ 1. The

proof is tedious but elementary, and follows the same outline as for 2-component
links. �

Corollary 9. For n-component links L , L ′ with n ≤ 3, the U-polynomial of L
can never be a nontrivial monomial times the U-polynomial of L ′. That is, if
UL ′(A)= r AkUL(A), then r = 1 and k = 0.

Proof. Let p(A) = A8
− A6

− A2
+ 1, so that UL(A)−UL ′(A) = p(A)g(A) for

some Laurent polynomial g. Now suppose UL ′(A)= r AkUL(A). Then

UL(A)− r AkUL(A)= p(A)g(A). (2)

Setting A = 1, we obtain

(−2)n−1
− r(−2)n−1

= 0

from Corollary 6. Thus r = 1.
Differentiating (2) with respect to A and setting r = 1, we obtain

(1− Ak)U ′L(A)− k Ak−1UL(A)= p′(A)g(A)+ p(A)g′(A).

Again, setting A = 1 produces

kUL(A)= 0.

Thus k = 0. �

Corollary 9 does not hold for the original Jones polynomial. Example 10 below,
shows a pair of 2-component links whose Jones polynomials do not satisfy the
conclusion of the corollary. However, since the U -polynomial for a knot is iden-
tical to the original Jones polynomial, Corollary 9 does apply. Hence, the Jones
polynomial of a knot cannot be the product of a nontrivial monomial with another
Jones polynomial.

Example 10. In [Eliahou et al. 2003], examples are given of n-component links
(for n ≥ 2) that have the same Jones polynomial as©n . The link in Figure 9 (left)
is the first of an infinite family of such links. Those examples all have w = ψ = 0,
and therefore satisfy UL =U©n . Other examples are given in that paper of links
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Figure 9. Links with UL =U©n .

whose Jones polynomial has the form tkdn−1, as in Figure 9 (right). These links
have ψ = 0, and as a result, U (A)= dn−1.
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