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We investigate the structure of the code graph of a multicast network that has a
characteristic shape of an inverted equilateral triangle. We provide a criterion that
determines the validity of a receiver placement within the code graph, present
invariance properties of the determinants corresponding to receiver placements
under symmetries, and provide a complete study of these networks’ receivers and
required field sizes up to a network of four sources. We also improve on various
definitions related to code graphs.

1. Introduction

A communication network is a collection of directed links connecting transmit-
ters, switches, and receivers, whose underlying structure can be mathematically
represented by a directed graph G = (V, E) as introduced in [Ahlswede et al. 2000].
Koetter and Médard [2003] studied the network code design as an algebraic problem
that depends on the structure of the underlying graph. They made a connection
between a given network information flow problem and an algebraic variety over
the closure of a finite field.

In particular, a multicast network is an error-free network with unit-capacity
channels represented by a directed acyclic graph and with the communication
requirement that every receiver demands the message sent by every source. Treating
the messages as elements of some large enough finite field Fq , it is known that
linear network coding suffices to transmit the maximal number of messages.

Code graphs condense the information in a choice of edge-disjoint paths of a
multicast network based on the coding points, i.e., edges which are “bottlenecks”
where messages are combined in linear network coding. Under this framework,
linear network coding is reduced to assigning vectors to vertices in the code graph
with independence conditions based on receivers. The triangular semilattice net-
works are then a family of code graphs embedded in the integer lattice restricted to
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nonnegative coordinates of some maximum 1-norm with edges between adjacent
lattice points directed towards the origin.

This paper is organized as follows. In Section 2, we refer briefly to and im-
prove upon coding points, code graphs, and Fq-labelings of code graphs; these
are discussed in detail in [Anderson et al. 2017]. We then present a result with
regards to determinants in the Fq -labeling. In Section 3, we introduce a type of code
graph called the triangular semilattice network. We discuss receiver placements and
invariance of the minors corresponding to receiver placements under symmetries.
From this general study, we shift to a complete study of triangular semilattice
networks with up to four sources in Section 4.

2. Coding points and code graphs

In this work, we represent a multicast network by a directed acyclic graph G= (V, E)
with a set S ⊂ V of sources, i.e., vertices without incoming edges, and a set R⊂ V
of receivers, i.e., vertices without outgoing edges. Each directed edge is a unit
capacity noise-free communication channel over a finite field Fq . We further assume
that the edge mincut between each source and each receiver is at least 1 and the
overall mincut between the set of sources and each receiver is at least the number of
sources. Together with the assumption of coordination at source level and with the
requirement that every receiver R ∈R gets the message from every source S ∈S, the
network is equivalent to a multicast network as defined in [Ahlswede et al. 2000].

If R consists of a single receiver, the communication requirement is satisfied
by a routing solution if and only if |S| ≤ mincut(S, R) as a result of Menger’s
theorem, which states that the edge mincut(S, R) is equal to the maximum number
of edge-disjoint paths between the source set S and the receiver R [Anderson
et al. 2017]. In the case of multiple receivers where |S| ≤minR∈R mincut(S, R),
Ahlswede et al. [2000] first showed that a network coding solution exists; later it
was found that a linear network coding solution over a finite field Fq exists when q
is sufficiently large [Li et al. 2003]; in particular, q ≥ |R| was found to be sufficient
[Jaggi et al. 2005]. Interested readers may also refer to [Médard and Sprintson
2011] for a complete algebraic proof showing that q > |R| is sufficient.

To condense the information about these receiver requirements, we consider the
corresponding code graph of a multicast network. Anderson et al. [2017] explain
coding points of a network as the bottlenecks of the network where the linear
combinations occur. More formally:

Definition 2.1. Let G be the underlying directed acyclic graph of a multicast network
and for each R ∈R let PR = {PS,R | S ∈ S} be a set of edge-disjoint paths, where
PS,R denotes a path from S to R. A coding point of G is an edge e = (v, v′) ∈ E
such that:
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• There are distinct sources S, S′ ∈ S and distinct receivers R, R′ ∈R such that
e appears in both PS,R ∈ PR and PS′,R′ ∈ PR′ .

• The parents of v in PS,R and PS′,R′ are distinct.

Definition 2.2. A coding-direct path in G from v1 ∈ V to v2 ∈ V is a path from v1 to
v2 that does not pass through any coding point in G, except possibly in the first edge.

Note that coding points are dependent on the choices of edge-disjoint paths to
each receiver. With G = (V, E,S,R, {PR | R ∈R}) we denote a multicast network
with chosen sets of edge-disjoint paths from the sources to each receiver. For a
given multicast network, Anderson et al. [2017] define the code graph as a directed
graph with labeled vertices that preserves the essential information of the network:

Definition 2.3. Let G = (V, E,S,R, {PR | R ∈R}) be a multicast network and let
Q be its set of coding points. Let the code graph 0 = 0(G) be the vertex-labeled
directed acyclic graph constructed as follows:

• The vertex set of 0 is S ∪Q. Given a vertex v of 0, the corresponding source
or coding point in G is called the G-object of v.

• The edge set of 0 is the set of all ordered pairs of vertices of 0 such that there
is a coding-direct path in G between the corresponding G-objects.

• Each vertex v of 0 is labeled with a subset Lv ⊆R. A receiver R ∈R is in Lv
if and only if there is a coding-direct path in G from the G-object of v to R.

In general, Anderson et al. [2017] present the following proposition that attempts
to outline the properties of a code graph:

Proposition 2.4. For any code graph 0 = 0(G), we have that:

• 0 is an acyclic graph.

• Every vertex in 0 either has in-degree 0, in which case its G-object is a source,
or it has in-degree at least 2, in which case its G-object is a coding point.

• For each R ∈R, the set of vertices VR = {v ∈ V | R ∈ Lv} has cardinality |S|,
and there are |S| vertex-disjoint paths from the sources to this set corresponding
to the original |S| edge-disjoint paths.

The networks we consider in this work will satisfy these properties. Nonethe-
less, the condition on the in-degree of a coding point seems to require additional
constraints. In Figure 1, the code graph construction only produces one edge to the
bottom coding point.

Figure 2 represents a slight modification of this construction and shows that
taking a set of paths with the minimum number of coding points is insufficient to
guarantee that the in-degree of every coding point is at least 2. For simplicity, edges
between sources and receivers are omitted.
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(a) The network. (b) Paths to R1. (c) Paths to R2. (d) Code graph.

Figure 1. Convoluted choice of paths.

S1 S2

R1 R2

S3 S4

R3 R4

Figure 2. Bottom coding point has in-degree 1 when taking paths
analogous to the above.

Anderson et al. [2017] also provide a criterion to determine when a labeled
network is a code graph:

Proposition 2.5. Let 0 = (V, E) be a vertex-labeled, directed acyclic graph where
each vertex v is labeled with a finite set Lv. Let S := {v ∈ V | v has in-degree 0},
Q := V \S, and R=

⋃
v∈V Lv. Suppose:

• The in-degree of every vertex in Q is at least 2.

• For each R ∈R, the set VR = {v ∈ V : R ∈ Lv} has |S| vertices.

• For each R ∈ R there is a set 5R = {πS,R | S ∈ S} of vertex-disjoint paths
where every vertex and edge of 0 is contained in some πS,R .
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(a) The code graph. (b) Paths to R1. (c) Paths to R2.

Figure 3. Insufficiency of modification of Proposition 2.5.

Then 0 is the code graph for a reduced multicast network whose sources, coding
points, and receivers are in one-to-one correspondence with the elements of S, Q,
and R, respectively.

In Figure 3, we find that the condition that a single choice of vertex-disjoint
paths using all edges and vertices may be insufficient to guarantee that a graph is a
code graph of some multicast network. In this case, the bottom node cannot act as
a coding point as the two paths to it originate from the same source. One can note
that the edge between the coding points can be avoided completely when instead
taking the path directly from the second source to the bottom coding point as the
path to R1.

Note that it is still insufficient to require that all choices of vertex-disjoint paths
{5R}R∈R use all edges/vertices. Consider Figure 4 below, which has only the
shown vertex-disjoint paths but for which the bottom vertex cannot be a coding
point. Further in this paper, we will require various receiver placements which will
ensure that the formed labeled directed acyclic graphs are code graphs.

There exists extensive literature, e.g., [Koetter and Médard 2003; Médard and
Sprintson 2011; Sun et al. 2015], that follows the approach of assigning edge
transfer coefficients or vertex transfer matrices directly to the multicast network.
Fragouli and Soljanin [2006] introduced (as coding vectors) and Anderson et al.
[2017] expanded on the concept of Fq -labelings of code graphs, which allow us to
focus on the linear dependence and independence conditions of a single matrix.

R2
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R1 R2
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R1 R2

R1

R1 R2

R2

R1 R2

R1

R1 R2

R2

R1

(a) The code graph. (b) Paths to R1. (c) Paths to R2.

Figure 4. Only one choice of paths (but not a code graph).
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Definition 2.6. Let G = (V, E,S,R, {PR | R ∈ R}) be a multicast network and
0 = (V, E) be its corresponding code graph. Each v ∈ V is labeled with a set of
receivers Lv ⊆R. Let VR = {v ∈ V | R ∈ Lv}. An Fq -labeling of 0 is an assignment
of elements of F

|S|
q to the vertices of 0 satisfying:

• The vectors assigned to the source nodes of the code graph are linearly inde-
pendent and without loss of generality they can be chosen to be the standard
basis.

• The vectors assigned to vertices labeled with a common receiver are linearly
independent.

• The vector assigned to a coding point Q ∈ V is in the span of vectors assigned
to the tails of the directed edges terminating at Q.

We call the |S| × |V | matrix consisting of the vectors of the Fq-labeling, an Fq-
labeling matrix of 0.

Anderson et al. [2017] note that the capacity of G is achievable over Fq if and
only if there exists an Fq -labeling of 0. With this, it suffices to examine properties
of code graphs as opposed to complete networks. In this paper, we study the
solvability of a multicast network over various finite fields upon the addition of
receiver placements.

Definition 2.7. Let G = (V, E,S,R, {PR | R ∈ R}) be a multicast network and
0 = (V, E) be its corresponding code graph and R ∈ R. We call the set VR =

{v ∈ V | R ∈ Lv} a receiver placement of R and a vertex v ∈ VR a label of R or
more generally, a receiver label. The determinant of a receiver placement of R is
the maximal minor of the Fq -labeling matrix of 0 with columns corresponding to
its labels.

Since a set of vectors forming a square matrix is linearly independent if and only
if the matrix’s determinant is nonzero, we examine the structure of the determinants
of receiver placements. In particular, to assist in determining if such an Fq -labeling
matrix exists, we will consider the matrix over Fq [α(u,v) : (u, v) ∈ E] formed by
assigning the standard basis to the sources and variable linear combinations of the
parents’ vectors; i.e., if Nu is the vector in the Fq -labeling matrix corresponding to
a vertex u ∈ V, for some v ∈Q, we would consider the vector

∑
u:(u,v)∈E α(u,v) ·Nu .

Definition 2.8. Let S = {S1, . . . , Sn} and VR be a receiver placement, i.e., VR =

{R(1), . . . , R(n)} ⊂ V. We introduce the following notation:

• πi, j denotes a path from Si to R( j).

• 5R,σ = {πi,σ (i) | i ∈ [n]} for some σ ∈ Sn , where [n] = {i}ni=1 and Sn is the
symmetric group of degree n, is a set of paths matching the sources to the
receiver-labeled vertices
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• 9R = {5
( j)
R,σ | σ ∈ Sn, j ∈ [mσ ]}, where mσ is the number of paths, possibly 0,

for this given matching of sources to receiver-labeled vertices, consists of all
sets of paths from the sources to the receiver-labeled vertices.

• 8R ={5R,σ =5
( j)
R,σ ∈9R | j ∈ [mσ ], πi,σ (i) are vertex-disjoint} consists of all

sets of vertex-disjoint paths from the sources to the receiver-labeled vertices.

Note that the σ corresponding to 5R,σ is well-defined and unique as we have
n sources and n labels, but for a given σ , the set 5R,σ is not necessarily unique —
it may not even exist. In a slight abuse of notation, we will also write (u, v) ∈5R,σ

to denote that (u, v) ∈ πi,σ (i) for some πi,σ (i) ∈5R,σ .

Proposition 2.9. Let S1, . . . , Sn denote the sources in a code graph with the
Fq-labeling matrix denoted by N. Given a receiver placement of R, i.e., VR =

{R(1), . . . , R(n)}, we have

det(NR)=
∑

5R,σ∈8R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v) ∈ Fq [α(u,v) : (u, v) ∈ E],

where NR is the submatrix of N corresponding to R(1), . . . , R(n) and α(u,v) is the
transfer coefficient, also called channel gain, corresponding to the edge (u, v)
and Fq [α(u,v) : (u, v) ∈ E] is the multivariate polynomial ring where variables
correspond to the transfer coefficients.

This proposition says that the minor corresponding to a receiver placement in
an Fq -labeling matrix can be calculated by the sum over the sets of vertex-disjoint
paths to the receiver-labeled vertices of the product of the transfer coefficients
corresponding to the edges in any of those paths. In other words, sets including
vertex-intersecting paths do not affect the minor.

We first show the following property about the set 9R\8R of sets of paths with
vertex-intersecting paths.

Lemma 2.10. There is a matching of 9R\8R without fixed points, meaning a
bijective map µ :9R\8R→9R\8R with µ ◦µ= id and µ(5R,σ ) 6=5R,σ for all
5R ∈9R\8R such that for µ(5R,σ )=5

′

R,σ ′

sign(σ )=− sign(σ ′) and
∏

(u,v)∈5R,σ

α(u,v) =
∏

(u,v)∈µ(5R,σ )

α(u,v).

Proof. Let5R,σ ∈9R\8R be arbitrary and let sources Si , S j be the minimum (i, j)
(under lexicographic ordering) such that πi,σ (i) and π j,σ ( j) intersect at some vertex.
Let x be the first vertex at which these paths intersect. Furthermore, let πl,x ⊆πl,σ (l)

denote the subset of the path πl,σ (l) going from Sl to x and πx,σ (l) ⊆ πl,σ (l) denote
the subset of the path πl,σ (l) going from x to R(σ (l)) for l = i, j .
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We define µ(5R,σ )= {π
′

k,σ ′(k) : k ∈ [n]}, where

σ ′(k)=


σ(k) if k 6= i, j,
σ ( j) if k = i,
σ (i) if k = j

and π ′k,σ ′(k) =


πk,σ (k) if k 6= i, j,
πi,x ∪πx,σ ( j) if k = i,
π j,x ∪πx,σ (i) if k = j.

Note that this µ satisfies the desired properties:

• Clearly there is no µ(5R,σ ) = 5R,σ since necessarily distinct portions of the
paths from two sources are swapped to get µ(5R,σ ).

• µ ◦µ(5R,σ ) =5R,σ as the minimum (i, j) and first vertex of intersection are
the same for 5R,σ and µ(5R,σ ), so applying µ again simply swaps the swapped
portion back to the original paths, returning µ(µ(5R,σ )) to 5R,σ .

• This is bijective since by the above, µ is its own inverse.

• We have that sign(σ ) = − sign(σ ′) as σ ′ = τi, j ◦ σ (where τi, j denotes the
transposition of i, j , which fixes all other elements).

•
∏
(u,v)∈5R,σ

α(u,v) =
∏
(u,v)∈µ(5R,σ )

α(u,v) as both sets of paths use exactly the
same edges with the same multiplicity by definition. �

We now turn to the proof of the proposition:

Proof of Proposition 2.9. Note that by the definition of determinant

det(NR)=
∑
ρ∈Sn

sign(ρ)
n∏

i=1

(NR)i,ρ(i),

where we note that ρ(i) determines at which receiver a path ends and i determines
from which source a path originates. As such, based on the line graph (like in
Kschischang’s argument in Appendix C [Médard and Sprintson 2011]), we see that
an entry of the matrix is the sum over the paths from Si to R(ρ(i)) of the product
over the edges of the transfer coefficients, so

(NR)i,ρ(i) =
∑

πi,ρ(i) a path

∏
(u,v)∈πi,ρ(i)

α(u,v),

where πi,ρ(i) is any path from Si to R(ρ(i)). Now expanding
∏n

i=1(NR)i,ρ(i), which
is the product over the sources of the sums over different paths from that source
to the desired receiver and thus the sum over the different sets of paths from the
sources to the receivers of the product over those paths, we get

n∏
i=1

(NR)i,ρ(i) =

n∏
i=1

( ∑
πi,ρ(i) a path

( ∏
(u,v)∈πi,ρ(i)

α(u,v)

))
=

∑
5R,σ∈9R :σ=ρ

( ∏
(u,v)∈5R,σ

α(u,v)

)
,
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so by the uniqueness of σ for a given 5R,σ , we have

det(NR)=
∑
ρ∈Sn

sign(ρ)
∑

5R,σ∈9R :σ=ρ

( ∏
(u,v)∈5R,σ

α(u,v)

)
=

∑
5R,σ∈9R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v)

Now the only difference between our current expression for det(NR) and the desired
expression is that the set of paths 5R,σ for the determinant might not be vertex-
disjoint. But as a result of the matching in Lemma 2.10, we have∑

5R,σ∈9R\8R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v) =
∑

{5R,σ ,µ(5R,σ )}⊆9R\8R

0= 0,

making
det(NR)=

∑
5R,σ∈8R

sign(σ )
∏

(u,v)∈5R,σ

α(u,v)

as desired. �

Corollary 2.11. The number of terms in det(NR) is the number of sets of vertex-
disjoint paths from S1, . . . , Sn to R(1), . . . , R(n).

This follows from Proposition 2.9.

Corollary 2.12. For a receiver placement VR , the α(u,v)-degree of det(NR) has
degree at most 1.

This follows by noting that since the paths are vertex-disjoint, any edge can be
traversed at most once among a set of paths. Therefore the corresponding variable
can only appear once in a monomial corresponding to some path.

3. Triangular semilattice network

We now introduce and discuss properties of the triangular semilattice network, a
code graph with a structure that visually resembles an inverted equilateral triangle.
We then seek to add receiver placements to require a greater minimum field size.

Definition 3.1. Let a triangular semilattice code graph On of length n for n ∈N\{0}
be a code graph with underlying directed acyclic graph given by the vertex and
edge sets

V ={(x, y)∈Z2
| x, y≥ 0, x+y< n},

E ={((x+1, y), (x, y)) | 0≤ x+y< n−1}∪{((x, y+1), (x, y)) | 0≤ x+y< n−1}.

For 1 ≤ i ≤ n, we call the set of vertices {(a, b) | a+ b = n− i} the i-th level,
where the first level is called the top level and the n-th level is called the bottom
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(a) Definition of O3. (b) Enumeration of the vertices.

Figure 5. Representation of a triangular semilattice code graph O3

with vertex enumeration.

level. We enumerate the vertices in increasing order of level and then increasing
order of the x-coordinate within the level.

We may refer to the triangular semilattice network of length n as any network
with associated code graph On .

Figure 5 showsO3 without receiver labels but with the enumeration of the vertices.
Later in this work, we will often identify vertices with the value in this enumeration.

Definition 3.2. Let the left-side refer to the n vertices in the On with x-coordinate
equal to 0. Similarly the right-side refers to the n vertices with y-coordinate equal
to 0. We collectively refer to these as the sides.

Note that embedding On as above, the left side corresponds with vertices without
left children and the right side corresponds with vertices without right children.

Valid receiver placements. We introduce some more definitions and lemmas to
help us prove the characterization of valid receiver placements, meaning labeled
vertices distributed such that there is a choice of disjoint paths between sources and
labeled vertices.

Definition 3.3. A k-triangle in a triangular semilattice network On is a subgraph
isomorphic as a directed graph to a triangular semilattice network Ok . We call k the
length of a k-triangle.

We will drop k if the length of the triangle is clear from the context. Note that
length can also be defined via the length of the longest path between any two vertices
in the triangle (also considering number of vertices for length) or the number of
vertices along the top of the triangle.

Definition 3.4. Given a receiver placement of R, a k-triangle is overcrowded if
there are at least k+ 1 labels among its vertices. It is crowded if there are exactly
k labels. A k-triangle is distributed if no triangle contained in it is overcrowded.

Definition 3.5. The extension of a k-triangle is the (k+1)-triangle containing the
original k-triangle and all parents of the vertices in the k-triangle.



MULTICAST TRIANGULAR SEMILATTICE NETWORK 1317

1

5

8

10

9

7

3 4

6

2

Figure 6. A graph with no overcrowded 3-triangles but an over-
crowded 2-triangle.

Remark 3.6. It is insufficient to just consider (n−1)-triangles for the distributed
property. Consider the network in Figure 6, where the receiver-labeled vertices
are shown in gray. Note that there are three labels in a 2-triangle, making it not
distributed but there are not four labels in a 3-triangle.

Definition 3.7. We say that two vertices a and b are consecutive if they share a
child. A sequence a1, . . . , ak of distinct vertices has consecutive vertices if ai and
ai+1 are consecutive for every i = 1, . . . , k− 1. A vertex c is between a and b if
there is a sequence of consecutive vertices with extremals a and b containing c.

Intuitively, consecutive vertices are “next to” each other on the same level of the
network.

Definition 3.8. For two distinct vertices a, b on the same level, we say that a is to
the left of b (equivalently that b is to the right of a) if its value in the enumeration
is less than (greater than) that of b.

Definition 3.9. For a vertex a to the left of some vertex b on some i-th level, we
say some vertex c is trapped between a and b if the vertex is in the level i + 1 and
it is between a’s right child and b’s left child; see Figure 7.

Lemma 3.10. Let On be a distributed triangular semilattice network with a se-
quence of consecutive vertices where each vertex is contained in a crowded triangle.
Then, there is a crowded triangle containing all vertices in this sequence.

Proof. We induct on the length of the sequence. If there is just one such vertex, we
are done.

On two consecutive vertices x and y, we have a crowded k-triangle corresponding
to x which may intersect a crowded l-triangle corresponding to y (where k, l are

Figure 7. The thickly outlined vertices are trapped between the
two filled-in vertices.
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some lengths). Note that if the intersection has length i ≥ 0, it has at most i labels
or we have a contradiction. In that case, consider the triangle of length k + l − i
containing the two crowded triangles; note that it contains at least the labels in the
k-triangle and l-triangle, which by inclusion/exclusion have at least k+ l − i labels
combined. By assumption, a (k+ l − i)-triangle must have at most k+ l − i labels,
so we have equality, thus forming a crowded triangle.

Now for our inductive step, assume the result for m ≥ 2 and consider m + 1
consecutive vertices contained in crowded triangles. By the inductive hypothesis,
we have some crowded l-triangle containing the first m vertices. We can then apply
the case for two vertices to the m-th vertex (with the crowded l-triangle) and the
(m+1)-th vertex (with some crowded k-triangle) to get some crowded j-triangle
containing all m+ 1 vertices (where j, k, l are some lengths). �

Lemma 3.11. Let On be an distributed triangular semilattice network with t > 1
labels in the top level. Then, there are t − 1 unlabeled vertices in the second level
such that upon labeling them, the bottom (n−1)-triangle is distributed.

Proof. Let L be the leftmost labeled vertex in the top level. Note that it suffices
to show that iteratively, for every top-level labeled vertex v 6= L , we can label a
previously unlabeled vertex trapped by u, the rightmost labeled vertex to the left
of v, and v such that the bottom (n−1)-triangle is distributed.

We prove the claim by contraposition: Assume that at some point, there exists a
labeled vertex v 6= L in the top level such that we create an overcrowded triangle in
the bottom (n−1)-triangle for every such labeling. Then, we show that there was
originally an overcrowded triangle in the network. In particular, we claim that if
every labeling creates an overcrowded triangle, every vertex trapped by v and the
previous labeled vertex u is in some crowded triangle. Each of the labeled trapped
vertices forms a crowded 1-triangle. Moreover, by assumption, upon labeling each
of the unlabeled trapped vertices, it is in a k-triangle with at least k + 1 labeled
vertices. Without that added label, we thus have at least k labeled vertices in a k-
triangle. If we have more than k labels in this k-triangle, we arrive at a contradiction;
otherwise, we have a crowded triangle. We can then apply Lemma 3.10 to get a
crowded l-triangle containing all of the trapped vertices. From there, we can extend
the triangle to the first level to include u and v as in Definition 3.5, getting l + 2
labels in an (l+1)-triangle in the original graph. �

Theorem 3.12. Given a triangular semilattice network On , a labeling VR of n ver-
tices corresponding to some receiver R is valid, meaning that there are vertex-
disjoint paths to the vertices labeled by VR from the sources if and only if the
network is distributed.

Proof. We first show the forward direction. Fix a valid receiver placement and a
triangle of length k. Consider the set Sk of the vertices corresponding to the labels
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in the triangle. Note that the mincut from the sources to the set Sk is at most k,
since the top level of the triangle is a cut of size k. As such, by Menger’s theorem,
there are at most k vertex-disjoint paths to the set Sk , and thus, at most k labels in
the triangle.

We now show the other direction by induction on n. The base cases of n = 1, 2
are trivial. Now assume the result for n ≥ 2. Consider a triangular semilattice
network On+1 and a receiver placement satisfying the desired property. As there are
at most n labels in the bottom triangle of length n, there must be at least one label
in the top level. We call the leftmost label L and match the remaining n vertices in
the top level with the next level as follows.

If there is only one label in the top level, we can iteratively match/biject all
vertices in the first level, from left to right, to the leftmost unmatched vertex in the
next level — in particular, we match the vertices to the left of L with their right child
and those to the right of L with their left child. Applying the inductive hypothesis
to the bottom n-triangle, we can extend the n vertex-disjoint paths from the second
level to the receivers to begin at the sources via the matching. With {L}, we then
have our n+ 1 vertex-disjoint paths to the labels.

Otherwise there are at least two labels in the top level. By Lemma 3.11, we
have a matching of the labeled vertices in the top level to some trapped vertices in
the next level. Note that if we enumerate the top level’s vertices as a1, . . . , an+1

and the second level’s vertices as b1, . . . , bn , a vertex ai has children bi−1, bi if
i −1, i ∈ [n]. Now, we match each remaining unlabeled vertex in the top level with
an unmatched child as follows:

• We can match any consecutive vertices a1, . . . , am up to L (exclusive) by matching
ai with bi for i = 1, . . . ,m. None of those bi have been matched as they are not
trapped by any two labeled vertices.

• We can match any consecutive vertices at , . . . , an+1 after the rightmost labeled
vertex in the top level by matching ai+1 with bi for i = t−1, . . . , n. Again we note
that none of these bi are trapped by any two labeled vertices.

• For the unlabeled vertices ar , . . . , as between two labeled vertices u and v in the
top level, we match these to {br−1, . . . , bs}\{bp}, where bp is the vertex matched
to v. For 1< r ≤ i ≤ p, we match ai with bi−1 and for p< i ≤ s, we match ai with bi .

Note that this process creates a bijection between vertices. Within a section (between
the trapped vertices or at the ends), the process is clearly injective. Across the
consecutive sections, we reach a label at position a j where the furthest right vertex
the left section matches to is b j−1 (and sections further left match to vertices further
left) and the furthest left vertex the right section matches to is b j .

Finally, by our inductive hypothesis, we have vertex-disjoint paths from the
sources/top level of the bottom n-triangle to the labels originally there and those
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added by Lemma 3.11. The set of vertex-disjoint paths in the original (n+1)-triangle
is then as follows. Every label in the top level is just a path with a single vertex. For
every other label in a lower level, we extend the path found in the bottom n-triangle
via the matching with the unlabeled sources that we just found. This is vertex-
disjoint as there are no intersections in the top level and the paths when restricted to
the bottom n-triangle are either empty or are as found in the inductive hypothesis. �

We can further locate some receiver placements with well-understood determi-
nants. Previously we denoted transfer coefficients using α(u,v), where (u, v) ∈ E .
Henceforth we use α(i)j for the transfer coefficients of the triangular semilattice
network On for i ∈ [|On−1|], where |On−1| is the number of vertices in On−1 and thus
the bottom (n−1)-triangle of On , and j ∈ [2]. Here, α(i)1 is the transfer coefficient
of the edge between vertex i+n and its left parent and α(i)2 is the one between i+n
and its right parent.

Proposition 3.13. Let VR be a receiver placement in a triangular semilattice net-
work On consisting of exactly one label per level, where each label is along the sides
of the network, and let VR′ be the reflected receiver placement, meaning that its
labels are the remaining side labels together with the bottom one. Then

det(NR) det(NR′)=±
∏

i∈[|On−1|], j∈[2]

α
(i)
j .

Proof. We prove this by induction on the length n of the triangular semilattice
network On . This is trivial in the case of O1, as there are no variables. In the case
of O2, we either take the right source and the bottom vertex — for a determinant
of α(1)2 — or the left source and the bottom vertex — for a determinant of α(1)1 , and
we have the product is then α(1)1 α

(1)
2 , as desired.

Now consider the triangular semilattice network On+1 for n ∈ N, n ≥ 2, where
we fix a receiver placement such that we have a label in each level along the sides.
Let NR be the submatrix corresponding to this receiver placement. Consider

L =


1 α(1)1 0 · · · 0
0 α(1)2 α(2)1 · · · 0
...

...
. . .

...

0 0 0 · · · α(n)2

 or L i, j =


1 if i = j = 1,
α( j−1)

1 if i + 1= j ≥ 2,
α( j)

2 if i = j ≥ 2
0 otherwise,

T =


0 α(1)1 0 · · · 0
0 α(1)2 α(2)1 · · · 0
...

...
. . .

...

1 0 0 · · · α(n)2

 or Ti, j =


1 if i = n and j = 1,
α( j−1)

1 if i + 1= j ≥ 2,
α( j)

2 if i = j ≥ 2
0 otherwise.
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Extending to the field of fractions Fq(α
(i)
j | i ∈ [|On|], j ∈ [2]), note that L−1

corresponds to the basis change taking the leftmost label and the second level
and T−1 corresponds to the basis change taking the rightmost label and the sec-
ond level. Further note that det(L) =

∏n
i=1 α

(i)
2 and det(T ) = ±

∏n
i=1 α

(i)
1 . To

calculate det(NR), it suffices to calculate det(L L−1 NR) = det(L) det(L−1 NR) or
det(T T−1 NR) = det(T ) det(T−1 NR). Now after the basis change (using L if we
picked the top left label and T if we picked the top right label), the label’s structure
of the bottom n-triangle is identical to that of a triangular semilattice network On .

Further note that the basis-changed matrix N R = L−1 NR or T−1 NR is in the
block matrix form

N R =

(
1 0
0 N ′R

)
,

where N ′R is the matrix corresponding to the bottom n labels in On . Expanding
by minors, we have det(N R)= det(N ′R). By inductive hypothesis we have that
det(N ′R) is a monomial where the product of this determinant and that corresponding
to the reflection of the bottom n labels is a monomial with all transfer coefficients
in On . As switching between the leftmost top label and the rightmost top label
swaps between L and T, combining this with the bottom n-triangle for the original
determinants, we get the desired result. �

As a consequence we obtain that a receiver placement VR for a triangular semi-
lattice network On defined as in Proposition 3.13 is a valid receiver placement
for any choice of triangular semilattice network of length n and there exists an
Fq -labeling with nonzero transfer coefficients for any finite field Fq . As such, for the
rest of the paper we consider the triangular semilattice network On to be equipped
with two receivers: the left-side and the right-side receivers, meaning the receivers
with placements {(0, n− 1), . . . , (0, 0)} and {(n− 1, 0), . . . , (0, 0)} respectively as
defined in Definition 3.2.

Invariance under symmetries of receiver placements. In this section we study
properties of minors of Fq -labelings from receiver placements. We will show that
the property of having an Fq -labeling for a receiver placement implies the existence
of an Fq -labeling for any receiver placement that is obtained from the original from
either rotation or reflection with respect to the underlining graph of the network.

Definition 3.14. Let On be defined as in Definition 3.1. Then, the map ρ : V → V
defined as ρ(x, y) = (n − 1 − x − y, x) and the map σ : V → V defined as
σ(x, y) = (y, x) are bijections of the set of vertices with ρ3

= id and σ 2
= id

respectively.

Roughly speaking, ρ represents a counterclockwise rotation of the vertices,
whereas σ represents a reflection. These two maps can be naturally extended
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(a) VR receiver placement. (b) Vρ(R) receiver placement. (c) Vσ(R) receiver placement.

Figure 8. Receiver placements of the 3-semilattice.

to subsets of vertices. We are going to use these maps prevalently on receiver
placements, meaning that the directed structure of the network is not going to change.
Let VR={v∈V | R∈ Lv} be a receiver placement; then Vρ(R) :={ρ(v)∈V | R∈ Lv}
and Vσ(R) := {σ(v) ∈ V | R ∈ Lv} are two others receiver placements. Figure 8
provide examples for the 3-semilattice network.

Theorem 3.15. Let VR be a receiver placement for a triangular semilattice net-
work On . The following hold:

(1) Vρ(R) and Vσ(R) are valid if and only if VR is valid.

(2) If On is equipped with the side receivers, there exists an Fq-labeling for On

with valid receiver placements Vρ(R) or Vσ(R) if and only if there exists an
Fq -labeling for On with the valid receiver placement VR .

Proof. By Theorem 3.12, the receiver placement VR is valid if the triangular
semilattice network On with the labels in VR is distributed. It is evident that being
distributed is a property of the labeled network which is preserved by rotation or
reflection of the labels. So it holds that Vρ(R) and Vσ(R) are valid if and only if VR

is valid.
Let N be an Fq-labeling of the triangular semilattice network On with side

receivers. Let VS , V` and Vr in V refer to the placements of the sources, the left
receiver and the right receiver respectively. It holds that

Vρ(`) = Vr and Vρ(r)= VS, (1)

Vσ(`) = Vr and Vσ(S)= VS . (2)

Let VR be a valid receiver placement and let N be an Fq-labeling. Let Nv denote
the column of N corresponding to vector v ∈ V and NT denote the submatrix of
N with columns indexed by T ⊆ V. Let Nρ be the matrix defined by the relation
Nρ
v := Nρ−1(v). Up to a multiplication of an invertible |S| × |S| matrix, Nρ is an

Fq -labeling of On with side receivers and receiver placement Vρ(R). In fact, by (1),
Nρ
S , Nρ

` , Nρ
r and Nρ

Vρ(R) are invertible since, up to reordering of the columns, they
correspond to matrices Nr , NS , N` and NVR . Similar reasoning works for the
reflection map σ . �
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Figure 9. The triangular semilattice network O4.

4. Complete study of triangular semilattice network up to four sources

We now will demonstrate various properties relating to the receiver placements and
minimum field sizes required to solve the Fq-labeling conditions for the triangle
semilattice network on small lengths.

The triangular semilattice networks O2 and O3. The 2-semilattice has three differ-
ent valid receiver placements and is trivially solvable over F2. Note that it is the
code graph for the butterfly network.

The 3-semilattice has 17 different valid receiver placements. Excluding the
receiver placement corresponding to the three corner nodes, all valid receiver
placements have one term in their associated minors. Therefore, any choice of
receiver placements that does not include the receiver placement corresponding to
the three corner nodes is solvable over F2 by assigning all of the variables a value
of 1. When receiver placements are chosen to include those receiver placements
along the left-side, along the right-side, and corresponding to the three corner nodes,
F2 will cause one associated minor to equal zero, so the minimum field size over
which the network is solvable is F3.

The triangular semilattice network O4. The triangular semilattice network O4, see
Figure 9, has 150 possible receiver placements. Through exhaustion, we know that
F5 is sufficient forO4 to be solvable when all 150 receiver placements are considered.
We consider O4 together with the side receivers and we find the solvability of the
network by increasing its receivers.

Proposition 4.1. The semilattice network O4 together with any two receivers is
solvable over Fq for q ≤ 3.

Proof. First recall that having {1, 5, 8, 10} and {4, 7, 9, 10} as receiver placements
forces every transfer coefficient of O4 to be nonzero as shown in Proposition 3.13.
Moreover, let VR be a receiver placement; then, from Corollary 2.11, det(NR) ∈

Fq [α
(i)
j | i ∈ [6], j ∈ [2]] is a multivariate polynomial with at most three terms.

Let [i, j] for 1 ≤ i ≤ j ≤ 3 represents the number of terms of the minors
corresponding to the two further receivers, where we assume i ≤ j without loss of
generality. We are going to prove the theorem by working through the different cases.
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Case 1: [1, 1], [1, 3], [3, 3]: The minors all have odd numbers of terms and by
setting all variables to 1 over F2, the value of every minor is then 1.

Case 2: [1, 2], [2, 2]: Setting all variables to 1 over F3, the value of the 1-term
minor would be 1 and the value of the 2-term minor(s) would be 2.

Case 3: [2, 3]: This case is not solvable over F2 since then the 2-term minor is 0.
We prove that this case is solvable over F3 by contradiction; assume that for every
evaluation point a= (a(i)j | i ∈ [6], j ∈ [2]) ∈ F12

3 without zero entries at least one
of the minors is zero.

Since all transfer coefficients must be nonzero, without loss of generality we can
denote the minors as A+ B and C + D+ E , where A, B and C, D, E are terms
with no common factor respectively. In the following, swapping a nonzero value
a ∈ F3 corresponds to taking the value 2a ∈ F3.

(i) Let a∈ F12
3 be such that (A+ B)(a)= (C+D+E)(a)= 0 and α(i)j be a variable

in C + D+ E . Define a′ ∈ F12
3 to be equal to a except for a(i)j , which is swapped;

then (C + D + E)(a′) 6= 0. If the same α(i)j appears in A+ B as well, we have
(A+ B)(a′) 6= 0, a contradiction. If no variable in C + D+ E appears in A+ B,
instead define a′ ∈ F12

3 from a by swapping two values of it corresponding to some
variable in A+ B and to some variable in C + D+ E independently to again get
(C + D+ E)(a′) 6= 0, (A+ B)(a′) 6= 0, a contradiction.

(ii) Let instead for all a ∈ F12
3 exactly one of (A+ B)(a) and (C + D+ E)(a) be 0.

Note that all variables in A+ B must appear in C + D+ E ; assume for the sake
of contradiction that there is some variable α(i)j which appears in A+ B which does
not appear in C + D+ E . Then, if (A+ B)(a)= 0 and (C + D+ E)(a) 6= 0, the
evaluation point a′ ∈ F12

3 defined from a by swapping the value of a(i)j produces
(A+ B)(a′) 6= 0 and (C+ D+ E)(a′) 6= 0, a contradiction. If (C+ D+ E)(a)= 0,
(A+ B)(a) 6= 0, then taking a′ ∈ F12

3 defined from a by swapping the value of a(i)j
produces (A+ B)(a′)= 0, (C + D+ E)(a′)= 0, again a contradiction of item (i).
This proves that all variables in A+ B must appear in C + D+ E .

Let a ∈ F12
3 be such that (A+ B)(a)= 0 and (C + D+ E)(a) 6= 0. Then if a′ is

obtained by a by swapping one of the values corresponding to a variable contained
in A+ B, then (A+ B)(a′) 6= 0 and (C + D+ E)(a′)= 0.

Without loss of generality we can focus on the case where a ∈ F12
3 is such that

(A+ B)(a) 6= 0 and (C + D+ E)(a)= 0.

• Consider now the case where there exists a variable α(i)j which appears in C+D+E
but not in A+ B and define a′ ∈ F12

3 from a by swapping the value of a(i)j . Then,
(A+ B)(a′) 6= 0 and (C + D+ E)(a′) 6= 0, a contradiction.

• Consider instead the case where A+ B and C + D + E share the same set of
variables. Let a∈ F12

3 be a root of C+D+E . As each swap changes whether A+B
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is nonzero, if a′ ∈ F12
3 is obtained from a by swapping the values of two distinct

variables α(i1)
j1 , α(i2)

j2 contained in C + D+ E , we get back to (C + D+ E)(a′)= 0.
Indeed, either the distinct variables appear in the same terms or they partition the
terms. Note that two such variables α(i1)

j1 , α
(i2)
j2 partitioning the terms exist since we

cannot have everything sharing the same terms by assumption. Then, we are able
to partition all variables as to whether they share a term with α(i1)

j1 or α(i2)
j2 , so we

can represent our sum in the form of C+C+ E . This is impossible as the minor is
formed by a sum of the product of transfer coefficients over different sets of paths,
while the repetition of C corresponds to a repeated set of paths. �

We can also characterize some sets of receivers in the 4-semilattice which require
a larger field size.

Proposition 4.2. There exists a choice of three receivers of the semilattice network
O4 which is not solvable over Fq for q ≤ 3 but it is over F4.

Proof. We prove that there is no evaluation point a ∈ F12
q without zero entries for

q=2, 3 such that the minors related to receiver placements {2, 5, 7, 10}, {2, 4, 9, 10},
{1, 4, 5, 10} are simultaneously nonzero. It holds that

det(N{2,5,7,10})= α
(1)
1 α

(2)
2 α

(3)
2 α

(4)
2 α

(6)
1 +α

(1)
1 α

(2)
2 α

(3)
2 α

(5)
1 α

(6)
2 = A+ B,

det(N{2,4,9,10})= α
(1)
1 α

(2)
2 α

(4)
1 α

(5)
1 α

(6)
1 +α

(1)
1 α

(3)
1 α

(4)
1 α

(5)
2 α

(6)
1 = C + D,

det(N{1,4,5,10})= α
(1)
2 α

(2)
2 α

(4)
2 α

(6)
1 +α

(1)
2 α

(2)
2 α

(5)
1 α

(6)
2 +α

(1)
2 α

(3)
1 α

(5)
2 α

(6)
2

= α
(1)
2

(A+ B)(C + D)− AD

(α
(1)
1 )2α

(2)
2 α

(3)
2 α

(4)
1 α

(5)
1 α

(6)
1

.

It is enough to show at least one of the three polynomials of the forms A+ B,
C+D and (A+B)(C+D)− AD evaluate to zero. Over F2, note that (A+B)(a)=
1+ 1 = 0. Over F3, if either (A + B)(a) = 0 or (C + D)(a) = 0, we are done.
Otherwise, if there exists a ∈ F12

3 such that (A+ B)(a) 6= 0 and (C + D)(a) 6= 0,
then A(a)= B(a) and C(a)= D(a). It follows that

((A+ B)(C + D)− AD)(a)= ((2A)(2D))(a)− (AD)(a)= (AD− AD)(a)= 0.

A solution over F4=F2/(a2
+a+1) for O4 with receiver placements {2, 5, 7, 10},

{2, 4, 9, 10} and {1, 4, 5, 10} is

a= (1, a+ 1, a+ 1, a+ 1, a, a, a+ 1, a+ 1, a, 1, a, a) ∈ F12
4 . �

By exhaustive search, there exist 324 choices of three receiver placements (fixing
the sides) that require a minimum field size of F4 to be solved. Also through
exhaustive search, we know that any selection of up to five receiver placements is
solvable over F4 or a smaller finite field.
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Proposition 4.3. There exists a choice of six receivers of the semilattice network
O4 which is not solvable over Fq for q ≤ 4 but it is over F5.

Proof. We prove that there is no evaluation point a ∈ F12
q without zero entries for

q ≤ 4 such that the minors related to receiver placements

{1, 2, 4, 9}, {1, 3, 4, 8}, {2, 5, 7, 10}, {1, 4, 8, 9}, {1, 4, 5, 10}, {1, 3, 4, 10}

are simultaneously nonzero. It holds that

det(N{1,2,4,9})= α
(2)
2 α

(5)
1 +α

(3)
1 α

(5)
2 = A+ B,

det(N{1,3,4,8})= α
(1)
2 α

(4)
1 +α

(2)
1 α

(4)
2 = C + D,

det(N{2,5,7,10})= α
(1)
1 α

(2)
2 α

(3)
2 α

(4)
2 α

(6)
1 +α

(1)
1 α

(2)
2 α

(3)
2 α

(5)
1 α

(6)
2 = E + F,

det(N{1,4,8,9})= α
(1)
2 α

(2)
2 α

(4)
1 α

(5)
1 +α

(1)
2 α

(3)
1 α

(4)
1 α

(5)
2 +α

(2)
1 α

(3)
1 α

(4)
2 α

(5)
2

= (A+ B)(C + D)− AD,

det(N{1,4,5,10})= α
(1)
2 α

(2)
2 α

(4)
2 α

(6)
1 +α

(1)
2 α

(2)
2 α

(5)
1 α

(6)
2 +α

(1)
2 α

(3)
1 α

(5)
2 α

(6)
2

= α
(1)
2
(A+ B)(E + F)− B E

α
(1)
1 α

(2)
2 α

(3)
2 α

(5)
1

,

det(N{1,3,4,10})= α
(1)
2 α

(4)
1 α

(6)
1 +α

(2)
1 α

(4)
2 α

(6)
1 +α

(2)
1 α

(5)
1 α

(6)
2

=
(C + D)(E + F)−C F

α
(1)
1 α

(2)
2 α

(3)
2 α

(4)
2

.

The cases of q = 2, 3 follow from Proposition 4.2 by just considering A+ B,
C+D, (A+ B)(C+D)− AD. Let F4 = F2/(a2

+ a+ 1) and a ∈ F12
4 be such that

(A+ B)(a) 6= 0, (C + D)(a) 6= 0 and (D + E)(a) 6= 0. Since a is not a zero of
A,C, E , we can normalize the sums

(A+ B)(a)= A(a)(1+ b′),

(C + D)(a)= C(a)(1+ d ′),

(E + F)(a)= E(a)(1+ f ′),

where b′, d ′, f ′ ∈ F∗4. It also holds that

((A+ B)(C + D)− AD)(a)
(AC)(a)

= (1+ b′)(1+ d ′)− d ′ = 1+ b′+ b′d ′,

((A+ B)(E + F)− B E)(a)
(AE)(a)

= (1+ b′)(1+ f ′)− b′ = 1+ f ′+ b′ f ′,

((C + D)(E + F)−C F)(a)
(C E)(a)

= (1+ d ′)(1+ f ′)− f ′ = 1+ d ′+ d ′ f ′.
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If any of 1+b′, 1+d ′, 1+ f ′ are 0, then we are done. Otherwise if all of 1+b′, 1+d ′,
1+ f ′ are nonzero, then b′, d ′, f ′ ∈ {a, a+ 1}, and by the pigeonhole principle we
have that two of them are equal. Without loss of generality, let b′= d ′; then note that

1+ b′+ b′d ′ = 1+ b′+ (b′)2 = 0

by the field equation, which implies

((A+ B)(C + D)− AD)(a)= 0.

A solution over F5 for O4 with receiver placements {1, 2, 4, 9}, {1, 3, 4, 8},
{2, 5, 7, 10}, {1, 4, 8, 9}, {1, 4, 5, 10} and {1, 3, 4, 10} is

a= (1, 4, 3, 1, 1, 4, 4, 1, 4, 3, 3, 2) ∈ F12
5 . �

We have also found that there exist 8748 choices of six receiver placements that
are solvable over minimum field size of F5.

Valid receiver placements and field sizes’ implementations. Valid receiver place-
ments for triangular semilattice networks On for n up to 9 were calculated based on
Theorem 3.12 using Python and SML (see Table 1).

To calculate whether a set of receiver placements is solvable for a given field
size, we first calculate the minors corresponding to the receiver placements and
multiply them together to get a polynomial f . As in the proof of the linear network
coding theorem in [Médard and Sprintson 2011], we have a nonzero solution for
all of these minors if and only if f has a nonzero root. This is also true if and only
if the remainder of f modulo (xq

i − xi | i ∈ [n]) in Fq is nonzero [Geil et al. 2008,
Proposition 2]. The largest possible minimum field size required for any set of
receiver placements for O4 and O5 has been computed implementing this method
on MAGMA [Bosma et al. 1997].

length valid invalid total

1 1 0 1
2 3 0 3
3 17 3 20
4 150 60 210
5 1848 1155 3003
6 29636 24628 54264
7 589362 594678 1184040
8 14032452 16227888 30260340
9 389622192 496540943 886163135

Table 1. Number of valid receiver placements.
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