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We study when Hurwitz curves are supersingular. Specifically, we show that
the curve Hn;` WX

nY `CY nZ`CZnX ` D 0, with n and ` relatively prime, is
supersingular over the finite field Fp if and only if there exists an integer i such
that pi � �1 mod .n2 � n`C `2/. If this holds, we prove that it is also true
that the curve is maximal over Fp2i . Further, we provide a complete table of
supersingular Hurwitz curves of genus less than 5 for characteristic less than 37.

1. Introduction

In 1941, Deuring defined the basic theory of supersingular elliptic curves. Super-
singular curves are useful in error-correcting codes called Goppa codes. They also
have potential applications to quantum resistant cryptosystems.

In this paper we determine a condition for supersingularity of Hurwitz curves
Hn;` when n and ` are relatively prime. In particular we show that every super-
singular Hurwitz curve Hn;` is maximal over some finite field. We also provide a
classification of supersingular Hurwitz curves with genus less than 5 over fields with
characteristic less than 37 and find some restrictions on the genera of Hurwitz curves.

2. Background information

We first define the Hurwitz curve and the Fermat curve. Next we define the zeta
function of a curve. From the zeta function we compute the normalized Weil
numbers which we use to study supersingularity. We must also state the Hasse–Weil
bound in order to define maximality and minimality.

2A. The Hurwitz curve and the Fermat curve. Let n, `, and d be positive integers.
Let F be a field.
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Definition 2.1 (Hurwitz curve Hn;`). The Hurwitz curve Hn;` over F is given by
the projective equation

Hn;` WX
nY `CY nZ`

CZnX `
D 0:

Throughout this paper, set mD n2�n`C`2. The Hurwitz curve Hn;` has genus

g D
mC 2� 3 gcd .n; `/

2

and is smooth when the characteristic p of F is relatively prime to m.

Definition 2.2 (Fermat curve Fd ). The Fermat curve of degree d over F is given
by the projective equation

Fd W U
d
CV d

CW d
D 0:

The Fermat curve Fd has genus 1
2
.d � 1/.d � 2/ and is smooth when the

characteristic p of F does not divide d . Note that the Hurwitz curve Hn;` is covered
by the Fermat curve of degree mD n2� n`C `2; see Section 3B for more details.

2B. Zeta function. Let Fq be a finite field of cardinality q, where q is a power of
a prime p. For a curve C defined over Fq , denote the number of points on C by
#C.Fq/. For extensions of Fq , define Ns D #C.Fqs /.

Definition 2.3 (zeta function). The zeta function of a curve C=Fq is the series

Z.C=Fq;T /D exp
� 1X

sD1

NsT s

s

�
: (1)

Rationality of the zeta function for curves was proven by Weil [1948a; 1949]. In
particular, Weil showed that the zeta function can be written as

Z.C=Fq;T /D
L.C=Fq;T /

.1�T /.1� qT /
: (2)

The L-polynomial, L.C=Fq;T / 2 ZŒT �, has degree 2g [Ireland and Rosen 1990,
p. 152]:

L.C=Fq;T /D 1CC1T C � � �CC2gT 2g: (3)

The L-polynomial of a curve C over Fq with genus g factors in CŒT � as

L.C=Fq;T /D

2gY
iD1

.1�˛iT /:

Furthermore, j˛i j D
p

q for each 1 � i � 2g [Ireland and Rosen 1990, p. 155].
The normalized Weil numbers (NWNs) are the normalized reciprocal roots of the
L-polynomial.
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Definition 2.4 (normalized Weil numbers). The Weil numbers of C=Fq are the
reciprocal roots ˛i of L.C=Fq;T / for 1� i � 2g. The normalized Weil numbers
are the values ˛i=

p
q for 1� i � 2g.

Remark 2.5. If f˛1; : : : ; ˛2gg are the normalized Weil numbers over Fq , then
f˛i

1
; : : : ; ˛i

2g
g are the normalized Weil numbers over Fqi .

The coefficients of L.C=Fq;T / follow a pattern. For k 2 N, we denote the set
of partitions of k by par.k/ and the length of a partition  by len. /.

Lemma 2.6. In (3) for 0� k � 2g, the coefficient Ck has the form

Ck D

X
2par.k/

Q
j2 Nj=j

len. /!
�

k�1X
iD0

�
Ci

k�iX
�D0

q�
�
:

Proof. Equation (1) can be expanded using the Taylor series of the exponential
function

Z.C=Fq;T /D

1X
iD0

.N1T C .N2=2/T
2C � � �C .N2g=.2g//T 2g/i

i !
:

Collecting terms up through T 3 gives a pattern to follow:

Z.C=Fq;T /

D 1C .N1/T C

�
N2

2
C

N 2
1

2

�
T 2
C

�
N3

3
C

N1N2

2
C

N 3
1

6

�
T 3
C � � � : (4)

The key step is to recognize that the subscripts on the Nj are the partitions of k.
The coefficient on T k can be written asX

2par.k/

Q
j2 Nj=j

len. /!
:

Equation (2) gives a simplified version of Z.C=Fq;T /. Using the Taylor series
for each of the denominator terms as well as (3) yields the expansion

Z.C=Fq;T /

D .1CC1T C � � �CC2gT 2g/.1CT CT 2
C � � � /.1C qT C q2T 2

C � � � /: (5)

Expanding and collecting terms, the coefficients on T k are given by
k�1X
iD0

�
Ci

k�iX
jD0

qj

�
CCk :

Setting (4) and (5) equal and comparing coefficients gives a linear system allowing
one to solve for Ck in terms of the values of Ns . �
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2C. The Newton polygon and supersingularity. Fix a curve C=Fq with associated
L-polynomial L.C=Fq;T /.

Definition 2.7 (supersingularity). The curve C is supersingular if all its normalized
Weil numbers are roots of unity.

Another way to check if C is supersingular is with its Newton polygon.

Definition 2.8 (normalized valuation on Fpr ). Let nDplk be an integer with p−k.
We denote the normalized Fpr -valuation of n by valpr .n/D l=r and the prime-to-p
part of n by np D k. If nD 0, we say valpr .0/D1.

Definition 2.9 (Newton polygon). Fix a curve C=Fpr with L-polynomial in the
form of (3). The Newton polygon of C=Fpr is the lower convex hull of the points
f.i; valpr .Ci// j 0� i � 2gg.

Remark 2.10. Because C0 D 1 for every curve C=Fpr , the Newton polygon will
always have initial point .0; 0/. Likewise the final coefficient of L.C=Fpr ;T /

is always C2g D prg. For this reason the Newton polygon always has terminal
point .2g;g/.

From Remark 2.10, we can see that the Newton polygon of a curve C over Fpr

is always a union of line segments on or below the line y D 1
2
x with increasing

slopes.

Remark 2.11. A curve C=Fq is supersingular if and only if its Newton polygon is
a line segment with slope 1

2
.

2D. Minimality and maximality. As a consequence of the Weil conjectures, the
number of points on a curve C=Fq is controlled by the Hasse–Weil bound:

1C q� 2g
p

q � #C.Fq/� 1C qC 2g
p

q:

The Hasse–Weil bound for curves was proven by Weil [1948a].

Definition 2.12 (minimal). A curve C=Fq is minimal if

#C.Fq/D 1C q� 2g
p

q:

Definition 2.13 (maximal). A curve C=Fq is maximal if

#C.Fq/D 1C qC 2g
p

q:

Remark 2.14 [Weil 1948a, p. 22; 1948b, p. 69]. The curve C is maximal over Fq

if and only if all its normalized Weil numbers are �1 over Fq , and it is minimal
over Fq if and only if all its normalized Weil numbers are 1 over Fq .

In the following remark, we use the notation that �k is the primitive k-th root of
unity e2� i=k. Notice that there is a power s such that �s

k
D�1 if and only if k is

even.
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Lemma 2.15. Let C be a supersingular curve over Fq . Suppose the normalized
Weil numbers of C=Fq are of the form �

t1

k1
; : : : ; �

t2g

k2g
. Assume gcd.ki ; ti/D 1. The

curve C is maximal over Fqr if and only if

� there exists s � 1 and bi odd such that ki D 2s.bi/,

� and r is an odd multiple of 2s�1 lcm.b1; : : : ; bn/.

Proof. Assume C is maximal over Fqr . By Remark 2.14, the curve C is maximal
over Fqr if and only if �rti

ki
D�1 for all i . Consequently, ki is even for all i . Thus

ki D 2si bi for some positive integer si and odd integer bi . The condition �rti

ki
D�1

for all i implies that there exists an s such that s D si for all i and r is an odd
multiple of 2s�1 lcm.b1; : : : ; bn/.

For the converse, the conditions imply that the normalized Weil numbers of C

over Fqr are all �1. �

3. Curve maps and covers

3A. Aoki’s curve. Let ˛ D .a; b; c/ 2 N3 with aC bC c Dm. Note that S3, the
symmetric group on three letters, acts on ˛ by permuting the coordinates. For � 2S3

we denote the action by ˛�. We say two triples ˛D .a1; a2; a3/ and ˇD .b1; b2; b3/

are equivalent, denoted by ˛ � ˇ, if there exist elements t 2 .Z=m/� and � 2 S3

such that

.a1; a2; a3/� .tb�.1/; tb�.2/; tb�.3// mod m:

Aoki [2008a; 2008b] studied curves of the form

D˛ W v
m
D .�1/cua.1�u/b:

He provides the following conditions for when D˛ is supersingular.

Theorem 3.1 [Aoki 2008b, Theorem 1.1]. The curve D˛ is supersingular over Fpr

if and only if at least one of the following conditions holds:

� pi ��1 mod m for some i .

� ˛D .a; b; c/� .1;�pi ;pi�1/ for some integer i such that dDgcd.pi�1;m/>1

and pj ��1 mod .m=d/ for some integer j .

3B. Covers of Hn;` by Fm. In Section 2A, we noted that the Hurwitz curve Hn;`

is covered by the Fermat curve Fm, where mD n2� n`C `2. On an affine patch
the Fermat and Hurwitz curves are given by the equations

Fm W u
m
C vm

C 1D 0;

Hn;l W x
ny`Cyn

Cx` D 0:
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Then the following covering map is provided by [Aguglia et al. 2001, Lemma 4.1]:

� W Fm!Hn;`; .u; v/ 7! .unv�l ;ulvn�l/:

Furthermore, it is known that Fm is supersingular over Fp if and only if pi �

�1 mod m for some integer i [Shioda and Katsura 1979, Proposition 3.10]. See
also [Yui 1980, Theorem 3.5]. In [Tafazolian 2010, Theorem 5] it is shown that
Fm is maximal over Fp2i if and only if pi ��1 mod m.

Remark 3.2. If X!Y is a covering of curves defined over Fpr , then the normalized
Weil numbers of Y=Fpr are a subset of the normalized Weil numbers of X=Fpr ;
see [Serre 1985].

Thus when a covering curve is supersingular (or maximal or minimal) the curve
it covers is as well.

3C. A birational transformations. Bennama and Carbonne [1997] show that Hn;`

is isomorphic to a curve with affine equation

y0m D x0�.x0� 1/ (6)

via the following variable change. Suppose 1 � ` < n and gcd.n; `/ D 1. Then
there exist integers � and ı such that 1 � � � `, 1 � ı � n� 1, and n� � ı`D 1.
Let �D ın� �.n� `/ and mD n2� n`C `2. The birational transformation is�

x D .�x0/�ı..�1/�y0/n;

y D .�x0/�� ..�1/�y0/`
and

�
x0 D�x`y�n;

y0 D .�1/�x�y�ı:

Equation (6) is very similar to the equation for D˛ that Aoki studied but there
are small differences. The following argument shows that these can be reconciled.
Consequently, this variable change can be used to apply Aoki’s results to Hurwitz
curves.

Notice that (6) is divisible by .x0�1/ while Aoki studied curves whose equation
contains a .1�x0/ factor. Aoki requires that aC bC c Dm so the exponent on the
negative sign is important. Inspecting (6) we see that m will always be odd since
.n; `/D 1. Consequently, this negative sign is not an issue. Since m is always odd
we can replace v with �v. This choice allows us to pick cDm�a�b. Then bD 1

and aD �.

4. Supersingular Hurwitz curves

We arrive at explicit conditions on supersingularity for Hn;` when n and ` are
relatively prime. We use results from [Bennama and Carbonne 1997; Aoki 2008a]
to accomplish this. We will be using affine equations for the Hurwitz curve in this
section.
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Lemma 4.1. If n and ` are relatively prime then xny`CynCx` D 0 is supersin-
gular over Fp if and only if at least one of the following conditions holds:

(1) There exists i 2 Z>0 such that pi ��1 mod m. (In this case the Fermat curve
covering the Hurwitz curve is maximal over Fp2i .)

(2) There exists i 2 Z>0 with d D .pi � 1;m/ > 1 such that

.ı.n� `/C `� � 1; 1;�.ı.n� `/C `�//� .1;�pi ;pi
� 1/

and pj ��1 mod .m=d/ for some integer j .

Proof. We use the variable substitution from [Bennama and Carbonne 1997] to
apply Aoki’s results to Hurwitz curves. We use the substitutions

mDn2
�n`C`2; aD�Dı.n�`/C`��1; bD1; cDm�.ı.n�`/C`�/: (7)

Combining these with Aoki’s results completes the proof. �

Remark 4.2. If n and ` are relatively prime, then n and ` are relatively prime to
n2� n`C `2.

Theorem 4.3. Suppose n and ` are relatively prime and mD n2� n`C `2. Then
Hn;` is supersingular over Fp if and only if pi � �1 mod m for some positive
integer i .

Proof. If pi � �1 mod m for some positive integer i , then Fm is supersingular
over Fp by [Shioda and Katsura 1979, Proposition 3.10]. Recall from Section 3B
that Fm covers Hn;`. Thus Hn;` is supersingular over Fp by Remark 3.2.

Suppose Hn;` is supersingular over Fp. By Lemma 4.1 it is enough to show
condition (2) in Lemma 4.1 cannot happen. We begin by simplifying it using the
substitution � D .1C `ı/=n and reducing modulo m to show that condition (2)
is equivalent to .`=n� 1; 1;�`=n/ � .1;�pi ;pi � 1/ for some i such that d D

.pi � 1;m/ > 1 and pj ��1 mod .m=d/ for some integer j . Recall that ˛ � ˛0

if ˛ D t˛0� for some t 2 .Z=m/� and � 2 S3. We will show that pi � 1 and m are
relatively prime. We label the three coordinates of .`=n� 1; 1;�`=n/ as .a; b; c/
and the three coordinates of .1;�pi ;pi � 1/ as .A;B;C /.

The proof will address six cases accounting for the orbit of .A;B;C / under the
action of S3. In each case we will show that gcd.pi � 1;m/D 1. Specifically, we
show d D 1 by taking these congruences modulo d . By Remark 4.2 we know that
n�1 exists modulo m and modulo d . Finally, note that `=n is relatively prime to d .

� .a; b; c/� t.A;B;C / mod m: Comparing c and tC yields

�
`

n
� t.pi

� 1/ mod m:

Consequently, `=n� 0 mod d . Therefore, d D 1.
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� .a; b; c/� t.B;A;C / mod m: Comparing a with tB and b with tA yields

`

n
� 1��tpi mod m; 1� t mod m:

Substituting we have `=n� pi � 1 mod m. Reducing modulo d produces `=n�

0 mod d , thus d D 1.

� .a; b; c/� t.A;C;B/ mod m: Comparing b and tC yields

�
`

n
� t.pi

� 1/ mod m:

This is identical to the first case.

� .a; b; c/� t.C;B;A/ mod m: Comparing a and tC yields

`

n
� 1� t.pi

� 1/ mod m:

Thus `=n�1� 0 mod d . Recall by the definition of m and selection of d , we have
d j .n2 � n`C `2/. Hence, d divides 1� `=nC .`=n/2. We conclude d j .`=n/;
thus d D 1.

� .a; b; c/� t.C;A;B/ mod m: Comparing b with tA and c with tB yields

1� t mod m;
`

n
� tpi mod m:

This case is completed as in the previous case.

� .a; b; c/� t.B;C;A/ mod m: Comparing b with tC yields

1� t.pi
� 1/ mod m:

Modulo d this reduces to 1� 0 mod d . Therefore, d D 1. �

Remark 4.4. There is a family of Hurwitz-type curves with affine equations
Ca1;a2;n1;n2

W xn1ya1 C yn2 C xa2 D 0. Set ı D a1a2 � a2n2 C n1n2. When
qDpr is coprime to ı, the curve Ca1;a2;n1;n2

is Fq-covered by the Fermat curve Fı
of degree ı. Tafazolian and Torres [2017, Theorem 2.9] showed that under certain
numerical conditions the statements

� the Fermat curve Fı is maximal over Fq2 ,

� the Hurwitz-type curve C1;a2;n1;n2
is maximal over Fq2 ,

� and qC 1� 0 mod ı

are all equivalent.
The Hurwitz-type curve C`;`;n;n is the Hurwitz curve Hn;`. Thus in the case that

` D a1 D a2 and n D n1 D n2, Theorem 4.3 generalizes [Tafazolian and Torres
2017, Theorem 2.9].
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Remark 4.5. Consider the family of curves with affine equations

Na1;a2;n1;n2
W xn1ya1 C k1yn2 C k2xa2 D 0

over Fpr with k1; k2 2 .Fq/
�, n1 � a1, n1C a1 > a2, n1C a1 > n2, if n1 D a1

then n2 � a2, and p− gcd.a1; a2; n1; n2/. Set d D gcd.a1; a2; n1; n2/ and ı as in
Remark 4.4. Recall the definition of np in Definition 2.8. With these assumptions
[Nie 2016, Theorem 4.12] shows that if .ı=d/p divides q C 1 then Na1;a2;n1;n2

is maximal over Fq and if Na1;a2;n1;n2
is maximal over Fq2 then .ı=d/p divides

q2C 1.
Note N`;`;n;n DHn;`. Thus Theorem 4.3 generalizes [Nie 2016, Theorem 4.12]

when a1 D a2 D ` and n1 D n2 D n.

Corollary 4.6. If n and ` are relatively prime and Hn;` is supersingular over Fp,
then it will be maximal over Fp2i , where i is the same as in Theorem 4.3.

Proof. By Theorem 4.3, if Hn;` is supersingular over Fp , then pi ��1 mod m for
some i . By [Tafazolian 2010], this implies Fm will be maximal over Fp2i . Since
Fm covers Hn;`, this implies Hn;` will also be maximal over Fp2i . �

A priori, if Hn;` is supersingular (or maximal or minimal) over Fp then Fm may
not be because it has more normalized Weil numbers.

Corollary 4.7. If n and ` are relatively prime and Hn;` is supersingular over Fp,
then Fm is supersingular over Fp.

Proof. If Hn;` supersingular over Fp and gcd.n; `/ D 1, Theorem 4.3 shows the
existence of positive integer i such that pi � �1 mod m. Then by [Shioda and
Katsura 1979, Proposition 3.10], Fm is supersingular over Fp. �

Partial results are known for when a Hurwitz curve is maximal.

Theorem 4.8 [Aguglia et al. 2001, Theorem 3.1]. Let ` D 1. The curve Hn;1 is
maximal over Fq2j if and only if pj ��1 mod m for some positive integer j .

Theorem 4.9 [Aguglia et al. 2001, Theorem 4.5]. Assume that gcd.n; `/D 1 and
m is prime. Then Hn;` is maximal over Fp2j if and only if pj � �1 mod m for
some positive integer j .

Note that the key property used in [Aguglia et al. 2001] is the existence of some
positive integer j such that

pj
��1 mod m: (8)

Remark 4.10. Under the requirements `D 1, or gcd.n; `/D 1 and m prime, the
results in [Aguglia et al. 2001] and [Tafazolian 2010, Theorem 5] show that Fm is
maximal over Fq2 if and only if Hn;` is maximal over Fq2 .

We consider the case when Hn;` and Fm are minimal.
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Corollary 4.11. If `D 1, or n and ` are relatively prime and m is prime, Hn;` is
minimal over Fp4i if and only if Fm is minimal over Fp4i .

Proof. First suppose Fm is minimal over Fp4i with set N of normalized Weil
numbers. Then the normalized Weil numbers of Hn;` are a subset of N. Thus Hn;`

will also be minimal over Fp4i .
Now assume Hn;` is minimal over Fp4i . Minimality implies supersingularity,

thus Hn;` must also be supersingular. By Theorem 4.3 supersingularity of Hn;` over
Fp implies pj ��1 mod m for some positive integer j . Choose a minimal such j .
Then Corollary 4.6 shows Hn;` is maximal over Fp2j and thus minimal over Fp4j .
Minimality of j implies that Fp4j is a subfield of Fp4i . Consequently, j j i .

Now, by [Aguglia et al. 2001] pj � �1 mod m implies that Fm is maximal
over Fp2j . Hence, Fm is minimal over Fp4j . Because j j i , we have Fm is minimal
over Fp4i . �
Remark 4.12. The curve H3;3 is maximal over F52 but F9 is not. The theorems
above show a supersingular Hurwitz curve and its covering Fermat curve will both
be maximal over Fp2i . This does not imply that the Fermat curve will always be
maximal over the same field extension that the Hurwitz curve is. The Hurwitz
curve could also be maximal over Fp2j , where j j i with i=j odd. In this case the
Fermat curve may not be maximal over this field because it has a higher genus.
Unfortunately our example of this does not have n and ` being relatively prime. It is
difficult to find an example with n and ` relatively prime, as the genera of Hurwitz
curves grow quickly causing the point counts to become computationally expensive.

Figure 1 illustrates how the current theory fits together. The straight, dotted
arrows are under the conditions `D 1, or gcd.n; `/D 1 and m prime. The notation

Fm s.s.=Fp Fm max=Fq2 Fm min=Fq4

Hn;` s.s.=Fp Hn;` max=Fq2 Hn;` min=Fq4

[Tafazolian 2010]

[Serre 1985] [Serre 1985] [Serre 1985]

Corollary 4.6

Corollary 4.7 [Aguglia et al. 2001] Corollary 4.11

Figure 1. Current results regarding supersingularity, minimality,
and maximality of Hurwitz and Fermat curves.
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max/Fq2 means, for some power q of p, the curve is maximal over Fq2 . If a curve
is maximal over Fq2 then it is minimal over Fq4 . The curved arrows show that
under appropriate conditions a Hurwitz or Fermat curve is supersingular if and only
if it is minimal over some field extension. Corollaries 4.6 and 4.7 are under the
condition that gcd.n; `/ D 1, while [Aguglia et al. 2001] and Corollary 4.11 are
under the condition that `D 1, or gcd.n; `/D 1 and m is prime.

5. Genera of Hurwitz curves and additional data

Here we provide information about which genera occur for Hurwitz curves and
provide a classification of supersingular Hurwitz curves having genus less than 5,
defined over Fp when p < 37.

Recall that the genus of the Hurwitz curve Hn;` is

g D
n2� n`C `2� 3 gcd.n; `/C 2

2
:

From this, it can be seen that the genus is determined by the quadratic form
q.x;y/ D x2 � xy C y2 and gcd.x;y/. In this section, we provide information
about which genera can appear as a result of these equations.

Theorem 5.1 [Fermat 1999, Volume II, pp. 310–314]. The equation m D x2 �

xy C y2 has solutions x;y 2 Z if and only if for every prime p in the prime
decomposition of m, either p � 0; 1 mod 3 or p is raised to an even power.

There is no restriction in Theorem 5.1 on what the values x and y are. However,
for Hurwitz curves we require n and ` to be positive. The question remains as to
when the equation mD q.x;y/ has solutions in the positive integers. To solve this
we study the following automorphisms of q.x;y/Dm:

f W Z2
! Z2; f .x;y/ 7! .y;x/;

g W Z2
! Z2; g.x;y/ 7! .�x;�y/;

' W Z2
! Z2; '.x;y/ 7! .x;x�y/;

I W Z2
! Z2; I.x;y/ 7! .x;y/:

To see that '.x;y/ is an automorphism, we compute

q ı'.x;y/D x2
�x.x�y/C .x�y/2

D x2
�x2

CxyCx2
� 2xyCy2

D x2
�xyCy2

D q.x;y/:

Corollary 5.2. If the equation mD q.x;y/ has a solution .x;y/ 2 Z2 then there
is a solution with .x0;y0/ 2 N2.
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n l p g L-polynomial NWNs (multiplicity)

2 1 5 1 5T 2C1 i, -i
2 1 11 1 11T 2C1 i, -i
2 1 17 1 17T 2C1 i, -i
2 1 23 1 23T 2C1 i, -i
2 1 29 1 29T 2C1 i, -i

3 3 5 1 5T 2C1 i, -i
3 3 11 1 11T 2C1 i, -i
3 3 17 1 17T 2C1 i, -i
3 3 23 1 23T 2C1 i, -i
3 3 29 1 29T 2C1 i, -i

3 1 3 3 27T 6C1 i,-i, �12; �
5
12; �

7
12; �

11
12

3 1 5 3 125T 6C1 i,-i, �12; �
5
12; �

7
12; �

11
12

3 1 13 3 2197T 6C507T 4C39T 2C1 i(3), -i(3)
3 1 17 3 4913T 6C1 i, -i, �12; �

5
12; �

7
12; �

11
12

3 1 19 3 6859T 6C1 i, -i, �12; �
5
12; �

7
12; �

11
12

3 1 31 3 29791T 6C1 i, -i, �12; �
5
12; �

7
12; �

11
12

3 2 3 3 27T 6C1 i,-i, �12; �
5
12
; �7

12
; �11

12

3 2 5 3 125T 6C1 i,-i, �12; �
5
12
; �7

12
; �11

12

3 2 13 3 2197T 6C507T 4C39T 2C1 i(3), -i(3)
3 2 17 3 4913T 6C1 i, -i, �12; �

5
12
; �7

12
; �11

12

3 2 19 3 6859T 6C1 i, -i, �12; �
5
12
; �7

12
; �11

12

3 2 31 3 29791T 6C1 i, -i, �12; �
5
12
; �7

12
; �11

12

4 2 5 4 625T 8C500T 6C150T 4C20T 2C1 i(4), -i(4)
4 2 17 4 83521T 8C19652T 6C1734T 4C68T 2C1 i(4), -i(4)
4 2 29 4 707281T 8C97556T 6C5046T 4C116T 2C1 i(4), -i(4)

4 1 5 6 15625T 12C1875T 8C75T 4C1 �8.3/;�
3
8.3/;�

5
8.3/;�

7
8.3/

4 3 5 6 15625T 12C1875T 8C75T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

5 5 3 6 729T 12C243T 8C27T 4C1 �8.3/;�
3
8
.3/;�5

8
.3/;�7

8
.3/

5 5 7 6 117649T 12C7203T 8C147T 4C1 �8.3/;�
3
8.3/;�

5
8.3/;�

7
8.3/

5 5 13 6 4826809T 12C85683T 8C507T 4C1 �8.3/;�
3
8.3/;�

5
8.3/;�

7
8.3/

Table 1. Supersingular Hurwitz curves in characteristic p < 37

with genus < 5.

Proof. We separate into cases, depending on the values of x and y:

(1) If both x and y are negative, then g.x;y/D .�x;�y/ 2 N2.

(2) If y is negative and x is positive, then '.x;y/D .x;x�y/ 2 N2.
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(3) If x is negative and y is positive, then '.f .x;y//D .y;y �x/ 2 N2.

(4) If x is 0, then ' ıf .0;y/D .y;y/ and if y is 0, then '.y; 0/D .y;y/. �

By counting points and using Lemma 2.6 we computed, using CoCalc, the
L-polynomials and normalized Weil numbers of many supersingular Hurwitz curves
over Fp. When n and ` are not relatively prime, it is possible that certain points
of the equation for Hn;` are singular. Resolving these singularities requires taking
a field extension of Fp. To adjust for this we check if q � 1 mod gcd.n; `/ and
count the multiplicities of singular points. This gives the correct point counts to
compute the L-polynomial of the normalization of the equation. Table 1 has all
supersingular Hurwitz curves Hn;` of genus less than 5 for primes less than 37.
Table 1 also includes some curves of genus 6.
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