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We investigate the realization of a Bernoulli-type first-order differential equation
with a variable exponent. Using substitution methods, we show the existence of
an implicit solution to the Bernoulli problem. Numerical simulations applied to
several examples are also provided.

1. Introduction

The aim of this paper is to investigate a Bernoulli-type first-order ordinary differen-
tial equation with a variable exponent, formally written as

dy
dx
+ a(x)y = b(x)y p(x). (1-1)

Here a(x), b(x) are continuous functions and p(x) is a function of class C1 in a
bounded interval [α, β], with p(x) 6= 1 for all x .

Equation (1-1) is well known and standard in the case when p(x)= p, a constant;
e.g., see [Boyce and DiPrima 2012; Edwards and Penney 2008; Zill and Cullen
2012]. However, when the exponent is variable, to the best of our knowledge, this
problem has not been investigated up to the present time. The focus of this work is
to provide a first attempt to solve the generalized Bernoulli-type problem (1-1) for
particular functions p(x). Unfortunately, even for simple types of functions p(x),
the solution of problem (1-1) cannot be given explicitly, and its formulation is in
most cases quite complicated. At the end, for the main examples, we will provide
numerical simulations for the solutions of ODEs of the type presented in this paper,
and we will analyze and compare them with the analytical solutions.

Problem (1-1) for p a constant, known as the Bernoulli ODE, was proposed
by James Bernoulli in 1695. A year later, Leibniz solved the equation by making
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substitutions and simplifying to a linear equation, similar to the method employed
in this work. This type of ODE can be viewed as a generalization of the frictional
forces equation. Furthermore, modern physics uses Bernoulli differential equations
for modeling the dynamics behind certain circuit elements, known as Bernoulli
memristors (for more details, we refer to [O’Neil 2012], among others). The
Bernoulli differential equation also shows up in some economic utility maximization
problems; see, e.g., [Merton 1969]. As mentioned above, all these models consider
p to be constant, and there is no literature known for the case when p = p(x) is
nonconstant.

Over the recent years, various mathematical problems with variable exponent
have attracted the attention of many authors. Interest in variational problems
and differential equations with nonstandard growth conditions has grown, highly
motivated by various applications, such as elastic mechanics, electrorheological
fluids, fluid dynamics, and image restoration; see [Acerbi and Mingione 2002; Bollt
et al. 2009; Chen et al. 2006; Cruz-Uribe and Fiorenza 2013; Diening et al. 2011;
Diening and Růžička 2003], among others. However, to the best of our knowledge,
there is no work done on variable exponent ordinary differential equations.

The paper is organized as follows. In Section 2 we work with (1-1) in all its
generality. By making proper substitutions, we transform (1-1) into an exponential-
type first-order ODE with variable coefficients, which depends on the variable
exponent function p(x). We show that under appropriate conditions on p(x), the
corresponding initial value problem of type (1-1) is well-posed. Section 3 is devoted
entirely to the solvability of problem (1-1) in the case when the coefficients a, b
are constant. However, up to the present time, there are no known appropriate tools
that could allow us to solve the problem (1-1) in a general form. Consequently, in
this section we focus on the realization of problem (1-1) under particular choices
of the function p(x). Even under such restrictions, the solution of problem (1-1)
turns out to be of a very complicated structure, and in almost all cases only implicit
solutions are achieved. Under some additional restrictions, we are able to provide
a concrete formula for the solution of problem (1-1) (under the assumptions of
Section 3), which is given as an elaborated convergent infinite series which involves
complicated expressions, such as exponential integral functions. In Section 4, we
consider a particular case when the coefficients are variable with a specific structure
directly related with the exponent p(x). Several examples will be illustrated, whose
structure will coincide with the structure outlined at Section 2. Consequently,
solutions can only be given implicitly, as argued in the previous section. Finally, in
Section 5, some numerical methods are performed over the solutions of particular
examples of ODEs of types given by problem (1-1). When possible, we will discuss
the relationship between the behavior shown by the solution deduced through
numerical methods, in comparison with the analytic solution.
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2. Reformulation of the problem

In this section, simple calculations to transform the original Bernoulli equation
(1-1) into a simple differential equation will be employed.

Let us start by performing the substitution

v = y1−p(x). (2-1)

Then one has

y = v1/(1−p(x)),

y′ =
d

dx
(v1/(1−p(x)))= v1/(1−p(x))

(
p′(x)

(1− p(x))2
ln v+

1
(1− p(x))

v′

v

)
.

(2-2)

Substituting (2-2) and (2-1) into (1-1), and multiplying both sides by v we obtain

v1/(1−p(x))
(

p′(x)
(1− p(x))2

v ln v+
1

(1− p(x))
v′+ a(x)v

)
= b(x)v1/(1−p(x)),

where we recall that p = p(x). Dividing both sides of the equality above by
v1/(1−p(x)), we arrive at

p′(x)
(1− p(x))2

v ln v+
1

(1− p(x))
v′+ a(x)v = b(x). (2-3)

Performing the substitution w = ln v in (2-3), we have the nonlinear ODE

p′(x)
(1− p(x))2

eww+
1

(1− p(x))
eww′+ a(x)ew = b(x),

which, in turn, can be further simplified into the ODE

w′ = b(x)e−w(1− p)− a(x)(1− p)−
p′

1− p
w. (2-4)

Note that (2-4) is fully nonlinear, and cannot be linearized, and consequently its
solvability is quite nontrivial (as we will see in the subsequent section, even for
particular cases). However, the following result asserts that the ODE (2-4) can be
solved under certain conditions.

Theorem 2.1 (see [Edwards and Penney 2008]). Assume that both f (x, y) and
its partial derivative ∂y f (x, y) are continuous over a rectangular region R in the
xy-plane that contains the point (a, b) in its interior. Then, there exists some open
interval I containing the point a such that the initial value problem

dy
dx
= f (x, y), y(a)= b,

is uniquely solvable over I .
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For our case of interest, namely, the solution of (2-4), under suitable conditions
on the functions a(x), b(x) and p(x), we have

f (x, w)= b(x)e−w(1− p)− a(x)(1− p)−
p′

1− p
w,

∂w f (x, w)=−e−wb(x)(1− p)−
p′

1− p
.

Hence we can easily find a rectangle in R2 in which both f (x, w) and ∂w f (x, w)
are continuous. Consequently, we can apply Theorem 2.1 to obtain that (2-4) is
solvable over some interval I = (α, β).

3. Solvability of problem (1-1): constant coefficients case

The following section will be devoted in finding tools to solve the problem (1-1).
Because of the generality and difficulty of the original problem (1-1), we will
investigate the solvability for particular constant coefficient cases. It is shown that
even in very simple cases the problem will be highly nontrivial, as will its solution,
and basically impossible to be solved explicitly.

3A. The case: a = 0 and b = 1. Consider the situation when a(x) = 0 and
b(x) = 1. Then (1-1), using the substitution argument in (2-4), becomes the
simplified differential equation

w′ = e−w(1− p)−
p′

1− p
w. (3-1)

We seek an even more simplified version of the problem (3-1). In fact, below we
present some particular cases when the problem (3-1) can be solved implicitly
(under suitable conditions that will be explained in more detail).

3A1. A separable case. We consider the case when the exponent p= p(x) satisfies
the ordinary differential equation

p′

(1− p)
= λ(1− p), (3-2)

where λ ∈ R\ {0} is a fixed constant. Then (3-2) becomes

1
(1− p)2

dp = λ dx, (3-3)

which is clearly separable. The function p(x)= 1− 1/(λx) is a particular solution
to the problem (3-3). For this particular case, substituting the function p(x) in (3-1)
yields

dw
dx
=

1
λx
(e−w − λw), (3-4)
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which is also a separable first-order ODE. Hence solving (3-4), we get the implicit
equation ∫

1
e−w − λw

dw =
ln |x |
λ
+C, (3-5)

where the integral on the left-hand side cannot be computed explicitly. We then
examine the case when ∣∣∣∣e−wλw

∣∣∣∣< 1. (3-6)

This condition guarantees the uniform convergence of the series in the right-hand
side of (3-5) in the function h(w), defined by

h(w)=
1

e−w − λw
=−

1
λw

(
1

1− e−w/(λw)

)
=−

∞∑
k=0

1
(λw)k+1ekw . (3-7)

The uniform convergence of the series in h(w) allows us to perform term by term
integration, arriving at∫

h(w) dw =−
∞∑

k=0

∫
1

(λw)k+1ekw dw =
1
λ

∞∑
k=0

(λw)−k Ek+1(kw), (3-8)

where En(x) is the so called n-th exponential integral function, defined by

En(x)=
∫
∞

1

e−xt

tn dt (n ∈ N). (3-9)

Thus in view of (3-5) and (3-8) (under the special assumption (3-6)), the implicit
solution to (3-4) with a(x)= 0, b(x)= 1 and p(x)= 1− 1/(λx) is given by

∞∑
k=0

(λw)−k Ek+1(kw)− ln |x | = C. (3-10)

Performing backward substitutions on w and using the explicit formula for the
variable exponent p(x), the solution for (3-1) becomes

G(x, y)= C

for

G(x, y) :=
∞∑

k=0

(
x

ln y

)k

Ek+1(k(λx)−1 ln y)− ln |x |, (3-11)

whenever

0< y <
(
| ln y|
λx

)λx

.
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A further analysis on the solution (3-11) together with the condition above shows
that the solution y = y(x) fulfills y(x)≥ ex, with y ≈ ex as x is large enough. In
particular, the solution blows up as x tend to infinity.

3A2. The exact method. The previous case can be worked with an exact ODE by
taking (3-4) and rewriting it such that

(e−w − λw) dx − λx dw = 0, (3-12)

where M(x, w) = e−w − λw and N (x, w) = −λx , and looking over the partial
derivatives Mw and Nx it is clear that (3-12) is not exact; see, e.g., [Boyce and
DiPrima 2012]. Thus, suppose that an integration factor µ(x, w) = µ(w) exists
such that

µ(w)(e−w − λw) dx −µ(w)λx dw = 0 (3-13)

is an exact differential equation. Then M̃w= Ñx , where M̃(x, w)=µ(w)(e−w−λw)
and Ñ (x, w)=−µ(w)λx , from which we obtain

µ(w)= exp
(∫

1
1− λwew

dw
)
. (3-14)

Now let

8(w)=
1

1− λwew
=

∞∑
k=0

λkwkekw

for |λwew|< 1, and where the integration of this series is∫
8(w) dw = 1+

∞∑
k=1

∫
λkwkekw dw = 1+

∞∑
k=1

−w(λw)k E−k(−kw). (3-15)

Substitution of (3-15) into (3-14) yields

µ(w)= exp
(

1+
∞∑

k=1

−w(λw)k E−k(−kw)
)
. (3-16)

With this function we are now able to perform partial integration over (3-13) and
obtain an expression for the implicit solution of problem (3-1) for a = 0, b= 1 and
p(x)= 1− 1/(λx):

F(x, w)= µ(w)(e−w − λw)x = C, (3-17)

where µ(w) is as shown in (3-14).
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3B. The case a = b = 1. In this subsection we take a quick look into the case
when a 6= 0; for simplicity we take a = 1. In fact, setting a(x)= b(x)= 1, (1-1)
and (2-4) become

dy
dx
+ y = y p(x), (3-18)

w′ = (e−w − 1)(1− p)−
p′

1− p
w, (3-19)

respectively. Then as in the previous subsection, we concentrate on the separable
case for (3-19).

In fact, to have separability, as before we require that the function p(x) fulfill
(3-2) (here for simplicity we take λ= 1). Proceeding as in Section 3A1, we have that
p(x)= 1− 1/x is the required function. Inserting this function into (3-19), we get

dw
dx
=

1
x
(e−w −w− 1), (3-20)

a clearly separable ODE whose integral equation is given by∫
dw

e−w −w− 1
= ln |x | +C. (3-21)

Now let

h(w)=
1

e−w−w−1
=−

1
1+w

(
1

1−e−w/(1+w)

)
=−

∞∑
k=0

e−kw

(1+w)k+1 , (3-22)

where we are requiring that ∣∣∣∣ e−w

1+w

∣∣∣∣< 1. (3-23)

Then under such restriction, the series appearing in (3-22) converges absolutely,
and consequently, we have∫

h(w)dw=−
∞∑

k=0

∫
e−kw

(1+w)k+1 dw=
∞∑

k=0

e−k(w+1)−k Ek+1(k(w+1)). (3-24)

In view of (3-23) and (3-24), the solution of the ODE (3-18) is given implicitly by
H(x, y)= C for

H(x, y) :=
∞∑

k=0

e−k
(

ln y
x
+ 1
)−k

Ek+1

(
k ln y

x
+ k
)
− ln |x |, (3-25)

whenever (3-23) holds for w = ln v = (ln y)/x . A careful examination of this
condition shows that (3-23) is valid if and only if w > 0, or equivalently, if and
only if (ln y)/x > 0. Going over the solution (3-25) over the given interval of
convergence shows that the solution y satisfies y = y(x) ≥ 1 when x > 0, with
y ≈ 1 as x tends to infinity.
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3C. Method of differences. In this subsection we consider another approach to
solve (3-1) (and consequently (1-1)) in the case when a(x)= a and b(x)= b are
constant coefficients. For simplicity, we take a = b = 1.

We begin by considering the ODE

γ ′+
p′

1− p
γ = (1− p)[e−w − 1], (3-26)

where γ := γ (x) and w = w(x) is the solution of problem (3-1). One sees that
(3-26) is a linear first-order ODE, and thus the solution γ (x) of problem (3-26) is
given by

γ (x)= (1− p(x))
∫
(e−w − 1) dx = (1− p(x))

[
−x +

∫
e−w dx

]
. (3-27)

On the other hand, since w solves the ODE (3-19), we have

w′+
p′

1− p
w = (1− p)[e−w − 1]. (3-28)

Substituting the solution (3-27) into (3-26), and then taking the difference of (3-26)
and (3-28), we obtain

dφ
dx
=

p′

1− p
φ, (3-29)

where φ(x) :=γ (x)−w(x). Equation (3-29) is separable, and its solution is given by

φ(x)=
E

1− p(x)
(3-30)

for E = eD some arbitrary constant. Using the definition of φ, we arrive at the
integral equation

w(x)= (1− p(x))
[
−x +

∫
e−w dx

]
−

E
1− p(x)

. (3-31)

Substituting back into the original variable y = y(x), solution (3-31) becomes the
exponential integral equation

y(x)= exp
(
−x +

∫
[y(x)]p(x)−1 dx −

E
(1− p(x))2

)
. (3-32)

4. Solvability of problem (1-1): variable coefficients case

In this section, we will look into problem (1-1) for particular cases of the (variable)
coefficients a(x), b(x). A careful examination of (2-4) shows that the cases where
such problem can be solved (with the standard tools) are very few. In particular, one
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can deduce that a requirement is that a(x)= b(x), and this may equal a particular
function depending on the exponent function p(x), as we show below.

In view of the above paragraph, we let

a(x)= b(x)=
p′(x)

(1− p(x))2
. (4-1)

Then, substituting these choices into (2-4) gives the ODE

w′ =
p′

1− p
(e−w − 1−w). (4-2)

Equation (4-2) is clearly a separable differential equation, and consequently, its
solution is given by the integral equation∫

dw
e−w − 1−w

=− ln |p(x)− 1| +C, (4-3)

where the solution to the left-hand side of (4-3) is given by solution (3-24) (under
the assumption (3-23)). The following examples illustrate in a more concrete way
the above formulations.

Example 4.1. Consider the differential equation

y′− ex y =−ex y1+e−x
. (4-4)

Here a(x) = b(x) = −ex and p(x) = 1+ e−x . Observe that a, b, p ∈ C∞(R)
with p(x) > 1 for all x ∈ R. Furthermore, one clearly sees that (4-1) holds, and
consequently applying (4-3), recalling (3-24) and proceeding as in the derivation of
(3-25), the solution of the differential equation (4-4) is given by

∞∑
k=0

e−k
(

ln y
x
+ 1
)−k

Ek+1

(
k ln y

x
+ k
)
− x = C, (4-5)

provided that the condition (ln y)/x > 0 is valid.

Example 4.2. Consider the differential equation

y′+ 2 tan x sec2 xy = 2 tan x sec2 xysin2 x (4-6)

for x ∈
(
−
π
2 ,

π
2

)
. Then a(x) = b(x) = 2 tan x sec2 x ∈ C∞

(
−
π
2 ,

π
2

)
and p(x) =

sin2 x ∈ C∞
([
−
π
2 ,

π
2

])
with |p| < 1 over

(
−
π
2 ,

π
2

)
. Again, (4-1) holds, and thus

proceeding as in the previous example, one gets that the solution of ODE (4-6) is
given implicitly by

∞∑
k=0

e−k
(

ln y
x
+ 1
)−k

Ek+1

(
k ln y

x
+ k
)
− 2 ln(cos x)= D, (4-7)

whenever the inequality (ln y)/x > 0 holds.
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Figure 1. Solutions of dw/dx = (1/x)(e−w −w) with different
initial conditions (left) and the solution of dy/dx = y1−1/x with
initial condition y(1)= 5 (right).

5. Numerical simulations: some examples

In this section, we look at numerical solutions the problems (1-1) and (3-4) (for
a, b constant). Several examples are examined for particular choices of the function
p = p(x). With MATLAB software we tested numerical convergence to a solution
using the Runge–Kutta solution method through the built in function ode45. In
each of the examples provided, the plot on the left represents the solution of
the substitution problem given by (2-4) (under the specific assumptions for each
example) with five initial conditions taken randomly at x0 = 1. The plot on the
right shows a solution with initial condition y(1)= 5 for the original Bernoulli-type
equation (1-1), under the same assumptions as the plot on the left. All solutions are
plotted over their respective vector fields.

5A. The separable case. As shown in Section 3, the separable case of the problem
(2-4) (for a, b constants, b 6= 0) is given when p(x) = 1− 1/(λx) (for λ 6= 0 an
arbitrary fixed constant).

Example 5.1. We take the constants a = 0 and b= λ= 1 and p(x)= 1−1/x . The
solutions produced are given in Figure 1. Notice that, as described in Section 3A1
solutions blow up as x tends to infinity.

Observe that Figure 1(left) illustrates that as x tends to infinity, the numerical
solution converges, whereas the graph of the solution of the original equation,
Figure 1 (right) seems to blow-up as x goes to infinity. These facts agree with the
analysis performed over (3-11).

Example 5.2. We consider now the case where the constants satisfy a = b= λ= 1,
and p(x)= 1− 1/x . The simulations produced are given in Figure 2.
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Figure 2. Solutions of dw/dx= (1/x)(e−w−w−1)with different
initial conditions (left) and the solution of dy/dx = y1−1/x

− y
with initial condition y(1)= 5 (right).

Notice, again, we have numerical convergence in Figure 2 (left) and Figure 2
(right) shows convergence to y = 1; this agrees with the analysis done over (3-25).

5B. Other examples. In this section, we examine numerical solutions to the (non-
separable) problem (2-4) and the original equation, by exploring other choices for
the function p(x), but over the same domain and conditions used in the previous
simulations. Unlike the previous cases, we will be unable to provide a more rigorous
examination of the solution for these examples, since in these cases both (1-1) and
(2-4) become unsolvable with any of the known methods for ODEs. For simplicity,
we will assume that a(x)= 0 and b(x)= 1 in the following examples.

Example 5.3. Let p(x)= 1− ex . The resulting simulations are given in Figure 3.

Example 5.4. Let p(x)= 1− e−x . The resulting simulations are given in Figure 4.
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Figure 3. Solutions of dw/dx = ex−w

+w with different initial
conditions (left) and the solution of dy/dx = y1−ex

with initial
condition y(1)= 5 (right).
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Figure 4. Solutions of dw/dx = e−(x+w)+w with different initial
conditions (left) and the solution of dy/dx = y1−e−x

with initial
condition y(1)= 5 (right).
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Figure 5. Solutions of dw/dx = xe−w+w/x with different initial
conditions (left) and the solution of dy/dx = y1−x with initial
condition y(1)= 5 (right).

Example 5.5. Let p(x)= 1− x . The resulting simulations are given in Figure 5.

In the examples above of nonseparable ODEs, one can notice that the corre-
sponding solutions to problem (2-4) are unbounded as x becomes large enough.
Nevertheless, their corresponding solutions to the original equation (1-1) can be
bounded, as Examples 5.3 and 5.5 show. Since for these particular examples, there
is no method available to allow a more rigorous and deep analysis on the solutions
of problems (1-1) and (2-4), further details concerning these last examples cannot
be provided.
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