\bullet
 in Olve

a journal of mathematics

The number of rational points of hyperelliptic curves over subsets of finite fields

Kristina Nelson, József Solymosi, Foster Tom and Ching Wong

The number of rational points of hyperelliptic curves over subsets of finite fields

Kristina Nelson, József Solymosi, Foster Tom and Ching Wong

(Communicated by Kenneth S. Berenhaut)

Abstract

We prove two related concentration inequalities concerning the number of rational points of hyperelliptic curves over subsets of a finite field. In particular, we investigate the probability of a large discrepancy between the numbers of quadratic residues and nonresidues in the image of such subsets over uniformly random hyperelliptic curves of given degrees. We find a constant probability of such a high difference and show the existence of sets with an exceptionally large discrepancy.

1. Introduction

Let q be a prime power and let \mathbb{F}_{q} be the finite field with q elements. A curve $E: y^{2}=f(x)$ (together with a point at infinity \mathcal{O}) is called an elliptic curve over \mathbb{F}_{q} if $f(x) \in \mathbb{F}_{q}[x]$ is a cubic polynomial having distinct roots in the algebraic closure $\overline{\mathbb{F}}_{q}$ of \mathbb{F}_{q}. The set of rational points of E in \mathbb{F}_{q} is

$$
E\left(\mathbb{F}_{q}\right)=\left\{(x, y) \in \mathbb{F}_{q} \times \mathbb{F}_{q}: y^{2}=f(x)\right\} \cup\{\mathcal{O}\}
$$

Suppose that q is odd. Using the fact that there are $(q-1) / 2$ invertible quadratic residues and $(q-1) / 2$ nonresidues in \mathbb{F}_{q}, one can approximate the size of $E\left(\mathbb{F}_{q}\right)$ as follows. For each $x \in \mathbb{F}_{q}$, the probability of $f(x)$ being a nonzero square in \mathbb{F}_{q}, and hence contributing two points to $E\left(\mathbb{F}_{q}\right)$, is about $\frac{1}{2}$. With probability about $\frac{1}{2}$ there is no point in $E\left(\mathbb{F}_{q}\right)$ having the first coordinate $x \in \mathbb{F}_{q}$. Therefore, $\# E\left(\mathbb{F}_{q}\right)$ is expected to be close to $q+1$. Indeed, Hasse [1936] proved that the error in this estimate is at most $2 \sqrt{q}$:

$$
\left|\# E\left(\mathbb{F}_{q}\right)-(q+1)\right| \leq 2 \sqrt{q}
$$

Knowledge of $\# E\left(\mathbb{F}_{q}\right)$ is crucial in elliptic curve cryptography (ECC), which is considered to be more efficient than the classical cryptosystems, like RSA [Rivest

MSC2010: 68Q87, 68R05.
Keywords: hyperelliptic curves, finite fields.
Solymosi was supported by NSERC and the Hungarian National Research Development and Innovation Fund K 119528.
et al. 1978]. The security of ECC depends on the difficulty of solving the elliptic curve discrete logarithm problem (ECDLP). The best known algorithm to solve ECDLP in finite fields is Pollard's rho algorithm [1975], which requires $O(\sqrt{p})$ time complexity, where p is the prime factor of q. However, some well-studied classes of elliptic curves are not good candidates for ECC. For instance, if the number of rational points of an elliptic curve E in \mathbb{F}_{p} is exactly p, where p is a prime, then the running time of solving the ECDLP is $O(\log p)$; see [Semaev 1998]. Using verifiably random elliptic curves in ECC improves security since randomly generated curves are unlikely to be part of a weak class. Hyperelliptic curves can also be used in cryptography; see [Cohen et al. 2006] for more details. However, the verifiability of random hyperelliptic curves is much harder; see [Hess et al. 2001; Satoh 2009].

In this paper, we investigate the behaviour of random hyperelliptic curves over subsets S of \mathbb{F}_{q}. We are interested in the hyperelliptic curves $E: y^{2}=f(x)$ where $f(x)$ is a polynomial in $\mathbb{F}_{q}[x]$ of degree $4 k-1(k \geq 1)$ having distinct roots in $\overline{\mathbb{F}}_{q}$. Denote by $E\left(\mathbb{F}_{q}, S\right)$ the rational points of E in \mathbb{F}_{q} where the x-coordinate is in S; i.e.,

$$
E\left(\mathbb{F}_{q}, S\right)=\left\{(x, y) \in S \times \mathbb{F}_{q}: y^{2}=f(x)\right\}
$$

We remark that the point at infinity \mathcal{O} is not included in $E\left(\mathbb{F}_{q}, S\right)$. The approximation we have described for $\# E\left(\mathbb{F}_{q}\right)$ suggests that the expected value of $\# E\left(\mathbb{F}_{q}, S\right)$ is about $\# S$. For random hyperelliptic curves E over \mathbb{F}_{q}, the probability that the error $\left|\# E\left(\mathbb{F}_{q}, S\right)-\# S\right|$ is small has been extensively studied; see [Pelekis and Ramon 2017; Schmidt et al. 1995] for example.

On the other hand, it is easy to see that there exist many hyperelliptic curves of any (positive) even degree so that the error $\left|\# E\left(\mathbb{F}_{p}, S\right)-\# S\right|$ is very large. Indeed, the error is about $\# S$ when $f(x)$ is the square of any nonconstant polynomial in $\mathbb{F}_{q}[x]$ for any $S \subset \mathbb{F}_{p}$.

However, an error bound is not obvious in the case of hyperelliptic curves of odd degree, which we study in the probabilistic setting. Equivalently, we examine the difference between the numbers of quadratic residues and nonresidues in the image multiset $f(S)$. Using $4 k$-wise independence, we show that all subsets S of \mathbb{F}_{q} behave similarly, in the sense that the interested discrepancy is proportional to $\sqrt{\# S}$ and has a positive probability which depends only on the degree of the curve.

Theorem 1. Given a positive integer k and $\varepsilon>0$, there exist $\delta>0$ and a threshold N such that the following holds: for every odd prime power $q>N$, if a curve $E: y^{2}=$ $f(x)$ is chosen uniformly at random among all hyperelliptic curves of degree $4 k-1$ over \mathbb{F}_{q}, then with a probability at least $\left(4 \pi^{3 / 2} / e^{3}\right) 2^{-2 k}-\varepsilon$, we have

$$
\left|\# E\left(\mathbb{F}_{q}, S\right)-\# S\right|>\delta \sqrt{\# S}
$$

for any set $S \subset \mathbb{F}_{q}$ with $\# S \geq N$.

Theorem 2. Given a positive integer k, there exist a threshold N and $\varepsilon>0$ such that the following holds: for every odd prime power $q>N$, if a curve $E: y^{2}=f(x)$ is chosen uniformly at random among all hyperelliptic curves of degree $4 k-1$ over \mathbb{F}_{q}, then with a probability at least ε, we have

$$
\left|\# E\left(\mathbb{F}_{q}, S\right)-\# S\right|>0.8577 \sqrt{k} \sqrt{\# S}
$$

for any set $S \subset \mathbb{F}_{q}$ with $\# S \geq N$.
These two theorems imply that one can expect large deviation of magnitude $\sqrt{\# S}$. In the last section, we show that for small sets S of prime fields \mathbb{F}_{p}, the error is often much larger.

2. Preliminaries

Throughout this section, let q be an odd prime power and let n, k be positive integers such that $4 k<n \leq q$. Suppose $S=\left\{s_{1}, \ldots, s_{n}\right\} \subset \mathbb{F}_{q}$, and

$$
f(x)=\sum_{j=0}^{4 k-1} a_{j} x^{j} \in \mathbb{F}_{q}[x]
$$

is chosen uniformly at random.
We denote by $\# Q R$, $\# N R$ and $\# R$ the numbers of $s_{i} \in S$ such that $f\left(s_{i}\right)$ is an invertible quadratic residue, a quadratic nonresidue and zero in \mathbb{F}_{q}, respectively. Then, $n=\# Q R+\# N R+\# R$. It follows that, provided the curve $E: y^{2}=f(x)$ forms a hyperelliptic curve of degree $4 k-1$ over \mathbb{F}_{q}, the discrepancy we are interested in is

$$
\begin{equation*}
\left|\# E\left(\mathbb{F}_{q}, S\right)-n\right|=|2 \# Q R+\# R-n|=|\# Q R-\# N R| . \tag{1}
\end{equation*}
$$

This suggests we look at the random variables

$$
X_{i}=\left(\frac{f\left(s_{i}\right)}{q}\right)
$$

where $\left(\frac{a}{q}\right)$ is the Legendre symbol defined as

$$
\left(\frac{a}{q}\right)=\left\{\begin{aligned}
0 & \text { if } a \text { is the zero in } \mathbb{F}_{q}, \\
1 & \text { if } a \text { is a nonzero square in } \mathbb{F}_{q}, \\
-1 & \text { otherwise. }
\end{aligned}\right.
$$

We note that among all polynomials $f(x) \in \mathbb{F}_{q}[x]$ of degree at most 3 , only a small fraction fail to form elliptic curves. Indeed, the exceptions, where $f(x)$ has degree strictly less than 3 or has multiple roots, contribute $q^{3}+q^{2}(q-1)$ of all the q^{4} polynomials considered. When q is large, such exceptions are negligible. This situation generalizes to hyperelliptic curves.

Lemma 3. Let q be a prime power, k be a positive integer and $\mathbb{F}_{q}[x]_{4 k-1}$ be the set of polynomials in $\mathbb{F}_{q}[x]$ of degree at most $4 k-1$. Then at most a $2 / q$ fraction of the polynomials in $\mathbb{F}_{q}[x]_{4 k-1}$ fail to define a hyperelliptic curve of degree $4 k-1$.
Proof. A polynomial in $\mathbb{F}_{q}[x]$ defines a hyperelliptic curve precisely when it is separable, or equivalently when it is square-free because finite fields are perfect. As shown in [Carlitz 1932], the number of monic square-free polynomials in $\mathbb{F}_{q}[x]$ of degree $4 k-1$ is $q^{4 k-1}-q^{4 k-2}$. Thus, accounting for scaling, there are $(q-1)\left(q^{4 k-1}-q^{4 k-2}\right)$ polynomials in $\mathbb{F}_{q}[x]$ that define a hyperelliptic curve of degree $4 k-1$. Therefore, the fraction of those polynomials in $\mathbb{F}_{q}[x]$ of degree at most $4 k-1$ that do not is

$$
\frac{q^{4 k}-(q-1)\left(q^{4 k-1}-q^{4 k-2}\right)}{q^{4 k}}=\frac{2 q^{4 k-1}-q^{4 k-2}}{q^{4 k}}<\frac{2}{q} .
$$

Hence, the probability that, among all hyperelliptic curves of degree $4 k-1$ over \mathbb{F}_{q}, the discrepancy (1) is larger than some $\delta \sqrt{n}$ is at least the probability that, among all polynomials of degree at most $4 k-1$ over \mathbb{F}_{q}, the absolute value of the sum of the random variables X_{i} is larger than the same $\delta \sqrt{n}$ minus $2 / q$; i.e.,

$$
\begin{equation*}
\mathbb{P}\left(\left|\# E\left(\mathbb{F}_{q}, S\right)-n\right|>\delta \sqrt{n}\right) \geq \mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right|>\delta \sqrt{n}\right)-\frac{2}{q} . \tag{2}
\end{equation*}
$$

In the next two subsections, we will first estimate the higher moments

$$
\mathbb{E}_{j}:=\mathbb{E}\left(\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right)^{j}\right), \quad \text { where } 1 \leq j \leq 4 k,
$$

by finding their main order, and then give lower bounds on the interested probabilities involving the random variables X_{i}.
2.1. Estimating $\mathbb{E}_{\mathbf{2 k}}$ and $\mathbb{E}_{\mathbf{4} \boldsymbol{k}}$. Since $f(x) \in \mathbb{F}_{q}[x]$ is a random polynomial of degree at most $4 k-1$, the random variables X_{i} exhibit $4 k$-wise independence. Indeed, by solving a system of linear equations, the number of polynomials $f(x)$ in $\mathbb{F}_{q}[x]$ of degree at most $4 k-1$ satisfying

$$
f\left(s_{i_{1}}\right)=r_{1}, \quad f\left(s_{i_{2}}\right)=r_{2}, \quad \ldots, \quad f\left(s_{i_{\ell}}\right)=r_{\ell}
$$

is exactly $q^{4 k-\ell}$, given $\ell \leq 4 k, r_{1}, \ldots, r_{\ell} \in \mathbb{F}_{q}$ and distinct $i_{1}, \ldots, i_{\ell} \in\{1, \ldots, n\}$. Thus,

$$
\begin{aligned}
\mathbb{E}\left(X_{i_{1}}^{h_{1}} \cdots X_{i_{\ell}}^{h_{\ell}}\right) & =\sum_{r_{1}, \ldots, r_{\ell} \in \mathbb{F}_{q}} \mathbb{P}\left(f\left(s_{i_{1}}\right)=r_{1}, \ldots, f\left(s_{i_{\ell}}\right)=r_{\ell}\right)\left(\frac{r_{1}}{q}\right)^{h_{1}} \cdots\left(\frac{r_{\ell}}{q}\right)^{h_{\ell}} \\
& =\sum_{r_{1}, \ldots, r_{\ell} \in \mathbb{F}_{q}} \frac{q^{4 k-\ell}}{q^{4 k}}\left(\frac{r_{1}}{q}\right)^{h_{1}} \cdots\left(\frac{r_{\ell}}{q}\right)^{h_{\ell}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\sum_{r_{1} \in \mathbb{F}_{q}} \frac{1}{q}\left(\frac{r_{1}}{q}\right)^{h_{1}}\right] \cdots\left[\sum_{r_{\ell} \in \mathbb{F}_{q}} \frac{1}{q}\left(\frac{r_{\ell}}{q}\right)^{h_{\ell}}\right] \\
& =\left[\sum_{r_{1} \in \mathbb{F}_{q}} \mathbb{P}\left(f\left(s_{i_{1}}\right)=r_{1}\right)\left(\frac{r_{1}}{q}\right)^{h_{1}}\right] \cdots\left[\sum_{r_{\ell} \in \mathbb{F}_{q}} \mathbb{P}\left(f\left(s_{i_{\ell}}\right)=r_{\ell}\right)\left(\frac{r_{\ell}}{q}\right)^{h_{\ell}}\right] \\
& =\mathbb{E}\left(X_{i_{1}}^{h_{1}}\right) \cdots \mathbb{E}\left(X_{i_{\ell}}^{h_{\ell}}\right)
\end{aligned}
$$

We also note that the random variables X_{i} only take the values $0,1,-1$, and so $X_{i}^{2 h-1}=X_{i}$ and $X_{i}^{2 h}=X_{i}^{2}$ for all $h \geq 1$. Also, by convention, $X_{i}^{0}=0$. Therefore we have

$$
\begin{aligned}
\mathbb{E}\left(X_{i}^{2 h-1}\right) & =\mathbb{E}\left(X_{i}\right)=\sum_{r \in \mathbb{F}_{q}} \mathbb{P}\left(f\left(s_{i}\right)=r\right)\left(\frac{r}{q}\right)=\sum_{r \in \mathbb{F}_{q}} \frac{1}{q}\left(\frac{r}{q}\right)=0, \\
\mathbb{E}\left(X_{i}^{2 h}\right) & =\mathbb{E}\left(X_{i}^{2}\right)=\sum_{r \in \mathbb{F}_{q}} \mathbb{P}\left(f\left(s_{i}\right)=r\right)\left(\frac{r}{q}\right)^{2}=\sum_{r \in \mathbb{F}_{q}} \frac{1}{q}\left(\frac{r}{q}\right)^{2}=1-\frac{1}{q} .
\end{aligned}
$$

To summarize the above two observations, we have the following lemma:
Lemma 4. Let $\ell \leq 4 k$, let h_{1}, \ldots, h_{ℓ} be positive integers, and let $i_{1} \ldots, i_{\ell}$ be distinct numbers from $\{1, \ldots, n\}$. Then,

$$
\mathbb{E}\left(X_{i_{1}}^{h_{1}} \cdots X_{i_{\ell}}^{h_{\ell}}\right)= \begin{cases}(1-1 / q)^{\ell} & \text { if } h_{1}, \ldots, h_{\ell} \text { are all even numbers }, \\ 0 & \text { otherwise } .\end{cases}
$$

Before we estimate the general \mathbb{E}_{j}, let us compute $\mathbb{E}_{6}($ when $k \geq 2)$ as a toy version:

$$
\begin{aligned}
\mathbb{E}_{6} & =\mathbb{E}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right)^{6} \\
& =\frac{1}{n^{3}}\left(\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{6}\right)+\frac{6!}{4!2!} \sum_{i \neq j} \mathbb{E}\left(X_{i}^{4} X_{j}^{2}\right)+\frac{6!}{2!2!2!} \sum_{i<j<k} \mathbb{E}\left(X_{i}^{2} X_{j}^{2} X_{k}^{2}\right)\right) \\
& =\frac{1}{n^{3}}\left(n\left(1-\frac{1}{q}\right)+15 n(n-1)\left(1-\frac{1}{q}\right)^{2}+90\binom{n}{3}\left(1-\frac{1}{q}\right)^{3}\right) \\
& =15\left(1-\frac{1}{q}\right)^{3}-\frac{15}{n}\left(1-\frac{1}{q}\right)^{2}\left(2-\frac{3}{q}\right)+\frac{1}{n^{2}}\left(1-\frac{1}{q}\right)\left(16-\frac{45}{q}+\frac{30}{q^{2}}\right)
\end{aligned}
$$

We derive in the lemma below how the number 15 in the leading term can be expressed in terms of $j=6$.
Lemma 5. For $1 \leq j \leq 4 k$, we have

$$
\mathbb{E}_{j}= \begin{cases}\frac{j!}{2^{j / 2}(j / 2)!}+O_{j}\left(\frac{1}{n}\right) \text { as } n \rightarrow \infty, & \text { if } j \text { is an even number } \\ 0 & \text { otherwise }\end{cases}
$$

Proof. If j is an odd number, then every term in the multinomial expansion has at least one odd index, and hence vanishes by Lemma 4.

Suppose now that j is an even integer. Using the multinomial theorem and Lemma 4, we have

$$
\begin{aligned}
\mathbb{E}_{j} & =\frac{1}{n^{j / 2}} \mathbb{E}\left(\left(\sum_{i=1}^{n} X_{i}\right)^{j}\right)=\frac{1}{n^{j / 2}} \mathbb{E}\left(\sum_{h_{1}+\cdots+h_{n}=j} \frac{j!}{h_{1}!\cdots h_{n}!} \prod_{t=1}^{n} X_{t}^{h_{t}}\right) \\
& =\frac{1}{n^{j / 2}} \sum_{h_{1}+\cdots+h_{n}=j} \frac{j!}{h_{1}!\cdots h_{n}!} \mathbb{E}\left(\prod_{t=1}^{n} X_{t}^{h_{t}}\right) \\
& =\frac{1}{n^{j / 2}} \sum_{\substack{h_{1}+\cdots+h_{n}=j \\
h_{i} \text { even }}} \frac{j!}{h_{1}!\cdots h_{n}!}\left(1-\frac{1}{q}\right)^{\#\left\{i: h_{i}>0\right\}}=\frac{1}{n^{j / 2}} \sum_{m=1}^{j / 2}\left(1-\frac{1}{q}\right)^{m} H(j, m),
\end{aligned}
$$

where

$$
H(j, m)=\sum_{\substack{h_{1}+\ldots+h_{n}=j \\ h_{i} \text { even } \\ \#\left\{i: h_{i}>0\right\}=m}} \frac{j!}{h_{1}!\cdots h_{n}!}=\binom{n}{m} \sum_{\substack{h_{1}^{\prime}+\cdots+h_{m}^{\prime}=j \\ h_{i}^{\prime}>0 \text { even }}} \frac{j!}{h_{1}^{\prime}!\cdots h_{m}^{\prime}!}
$$

is a polynomial (with integer coefficients) in n of degree m. Therefore, the leading term of \mathbb{E}_{j} comes from the summand where $m=j / 2$. In this case, $h_{i}^{\prime}=2$ for every $1 \leq i \leq j / 2$ and so

$$
H(j, j / 2)=\binom{n}{j / 2} \frac{j!}{2^{j / 2}}
$$

has leading term

$$
\frac{j!}{(j / 2)!2^{j / 2}} n^{j / 2}
$$

It follows that

$$
\begin{aligned}
\mathbb{E}_{j} & =\frac{1}{n^{j / 2}}\left(\left(1-\frac{1}{q}\right)^{j / 2} \frac{j!}{(j / 2)!2^{j / 2}} n^{j / 2}+\cdots\right) \\
& =\left(1-\frac{1}{q}\right)^{j / 2} \frac{j!}{(j / 2)!2^{j / 2}}+O_{j}\left(\frac{1}{n}\right)=\frac{j!}{(j / 2)!2^{j / 2}}+O_{j}\left(\frac{1}{n}\right)
\end{aligned}
$$

as $n \rightarrow \infty$.
In particular, for each fixed k,

$$
\mathbb{E}_{2 k}=\frac{(2 k)!}{2^{k} k!}+O_{k}\left(\frac{1}{n}\right)
$$

is bounded uniformly in $n \geq 1$. As a consequence, one can have the following estimates, which will be used later in our proof, using Stirling's approximation. For
all fixed $k \geq 1$, we have

$$
\begin{equation*}
\sqrt[2 k]{\mathbb{E}_{2 k}} \geq \sqrt{\frac{2 k}{e}}+O_{k}\left(\frac{1}{n}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathbb{E}_{2 k}^{2}}{\mathbb{E}_{4 k}} \geq\left(\frac{\sqrt{2 \pi}}{e}\right)^{3} 2^{1 / 2-2 k}+O_{k}\left(\frac{1}{n}\right) \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$.

2.2. Lower bounds for the probabilities.

Proposition 6. Under the setting stated in the beginning of this section, we have

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right|>\delta\right) \geq \frac{\left(\mathbb{E}_{2 k}-\delta^{2 k}\right)^{2}}{\mathbb{E}_{4 k}-2 \delta^{2 k} \mathbb{E}_{2 k}+\delta^{4 k}} \tag{5}
\end{equation*}
$$

for any $0<\delta<\frac{1}{2}$, and

$$
\begin{equation*}
\mathbb{P}\left(\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right| \geq \sqrt[2 k]{\mathbb{E}_{2 k}}-\varepsilon^{1 / 2-o(1)}\right) \geq \varepsilon>0 \tag{6}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$.
Proof. Let $c \geq 1$ be a parameter to be determined. Using the second-moment Markov inequality, one can show that for $0<\lambda<c^{2 k}$,

$$
\begin{align*}
\mathbb{P}\left(\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right|>\sqrt[2 k]{c^{k}-\sqrt{\lambda}}\right) & =\mathbb{P}\left(\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right)^{2 k}-c^{k}>-\sqrt{\lambda}\right) \\
& \geq \mathbb{P}\left(\left|\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right)^{2 k}-c^{k}\right|<\sqrt{\lambda}\right) \\
& \geq 1-\frac{1}{\lambda} \mathbb{E}\left(\left(\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right)^{2 k}-c^{k}\right)^{2}\right) \\
& =1-\frac{c^{2 k}-2 c^{k} \mathbb{E}_{2 k}+\mathbb{E}_{4 k}}{\lambda} \tag{7}
\end{align*}
$$

To prove (5), we take $\lambda=\left(c^{k}-\delta^{2 k}\right)^{2}$, where $\delta>0$ is small. Maximizing the right-hand side of (7) over c, we see that the maximum is

$$
1-\frac{c^{2 k}-2 c^{k} \mathbb{E}_{2 k}+\mathbb{E}_{4 k}}{\left(c^{k}-\delta^{2 k}\right)^{2}}=\frac{\left(\mathbb{E}_{2 k}-\delta^{2 k}\right)^{2}}{\mathbb{E}_{4 k}-2 \delta^{2 k} \mathbb{E}_{2 k}+\delta^{4 k}}
$$

when

$$
c^{k}=\frac{\mathbb{E}_{4 k}-\delta^{2 k} \mathbb{E}_{2 k}}{\mathbb{E}_{2 k}-\delta^{2 k}}
$$

Now we prove (6). To make

$$
\mathbb{P}\left(\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}\right|>\sqrt[2 k]{c^{k}-\sqrt{\lambda}}\right) \geq \varepsilon
$$

we take

$$
\lambda=\frac{c^{2 k}-2 c^{k} \mathbb{E}_{2 k}+\mathbb{E}_{4 k}}{1-\varepsilon} .
$$

Since we require $c^{2 k}>\lambda$, it follows that

$$
c^{2 k}-2 c^{k} \mathbb{E}_{2 k}+\mathbb{E}_{4 k}<c^{2 k}-c^{2 k} \varepsilon,
$$

and therefore

$$
\eta:=\varepsilon c^{k}<2 \mathbb{E}_{2 k}-\frac{\mathbb{E}_{4 k}}{c^{k}}<2 \mathbb{E}_{2 k} .
$$

To compute the leading terms of $\sqrt[2 k]{c^{k}-\sqrt{\lambda}}$ as $\varepsilon \rightarrow 0$, we first use the binomial series to expand the numerator of $\sqrt{\lambda}$ as

$$
\begin{equation*}
c^{k} \sqrt{1-\left(\frac{2 \mathbb{E}_{2 k}}{c^{k}}-\frac{\mathbb{E}_{4 k}}{c^{2 k}}\right)}=c^{k}\left(1-\mathbb{E}_{2 k} \frac{1}{c^{k}}+\frac{\mathbb{E}_{4 k}-\mathbb{E}_{2 k}^{2}}{2} \frac{1}{c^{2 k}}+O\left(\frac{1}{c^{3 k}}\right)\right) \tag{8}
\end{equation*}
$$

as $c \rightarrow \infty$. Indeed, the bracket inside the square root in (8) is small in view of Lemma 5 . To get $\sqrt{\lambda}$, we multiply (8) by

$$
\frac{1}{\sqrt{1-\varepsilon}}=1+\frac{1}{2} \varepsilon+\frac{3}{8} \varepsilon^{2}+O\left(\varepsilon^{3}\right) .
$$

Substituting $c^{k}=\eta / \varepsilon$, we have

$$
\begin{aligned}
c^{k}-\sqrt{\lambda} & =\frac{\eta}{\varepsilon}\left[1-\left(1+\frac{1}{2} \varepsilon+\frac{3}{8} \varepsilon^{2}+O\left(\varepsilon^{3}\right)\right)\left(1-\frac{\mathbb{E}_{2 k}}{\eta} \varepsilon+\frac{\mathbb{E}_{4 k}-\mathbb{E}_{2 k}^{2}}{2 \eta^{2}} \varepsilon^{2}+O\left(\frac{\varepsilon^{3}}{\eta^{3}}\right)\right)\right] \\
& =\mathbb{E}_{2 k}-\frac{1}{2} \eta+\left(\frac{\mathbb{E}_{2 k}^{2}-\mathbb{E}_{4 k}}{2}+\frac{\mathbb{E}_{2 k}}{2} \eta-\frac{3}{8} \eta^{2}\right) \frac{\varepsilon}{\eta}+O\left(\frac{\varepsilon^{2}}{\eta^{2}}\right) .
\end{aligned}
$$

We may now take η satisfying $\sqrt{\varepsilon} \ll \eta \ll 1$ so that the terms in the last line are indeed arranged in decreasing order of magnitude. Therefore,

$$
\sqrt[2 k]{c^{k}-\sqrt{\lambda}}=\sqrt[2 k]{\mathbb{E}_{2 k}-\varepsilon^{1 / 2-o(1)}}=\sqrt[2 k]{\mathbb{E}_{2 k}}-\varepsilon^{1 / 2-o(1)}
$$

as $\varepsilon \rightarrow 0$, establishing (6).

3. Proofs of the theorems

Proof of Theorem 1. Write $n=\# S$, as in Section 2. Given $\varepsilon>0$, we choose N large enough so that $2 / N<\varepsilon / 3$, and the error appearing in (4) has an absolute value less than $\varepsilon / 3$.

Since $\mathbb{E}_{4 k}>\mathbb{E}_{2 k} \geq \frac{1}{2}$, there exists a small $\delta>0$ such that

$$
\left|\frac{\left(1-\delta^{2 k} / \mathbb{E}_{2 k}\right)^{2}}{1-2 \delta^{2 k}\left(\mathbb{E}_{2 k} / \mathbb{E}_{4 k}\right)+\delta^{4 k}\left(1 / \mathbb{E}_{4 k}\right)}-1\right|<\frac{\varepsilon}{3} \frac{\mathbb{E}_{4 k}}{\mathbb{E}_{2 k}^{2}} .
$$

Together with (2), (5) and (4), we have

$$
\begin{aligned}
\mathbb{P}\left(\left|\# E\left(\mathbb{F}_{q}, S\right)-n\right|>\delta \sqrt{n}\right) & \geq \mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right|>\delta \sqrt{n}\right)-\frac{2}{q} \\
& \geq \frac{\mathbb{E}_{2 k}^{2}}{\mathbb{E}_{4 k}} \frac{\left(1-\delta^{2 k} / \mathbb{E}_{2 k}\right)^{2}}{1-2 \delta^{2 k}\left(\mathbb{E}_{2 k} / \mathbb{E}_{4 k}\right)+\delta^{4 k}\left(1 / \mathbb{E}_{4 k}\right)}-\frac{\varepsilon}{3} \\
& \geq \frac{\mathbb{E}_{2 k}^{2}}{\mathbb{E}_{4 k}}-\frac{\varepsilon}{3}-\frac{\varepsilon}{3} \geq\left(\frac{\sqrt{2 \pi}}{e}\right)^{3} 2^{1 / 2-2 k}-\varepsilon,
\end{aligned}
$$

as desired.
Proof of Theorem 2. Similarly we write $n=\# S$. Using the estimate (3), we choose N so large and ε so small that the following lower bound implied by (6) is large:

$$
\sqrt[2 k]{\mathbb{E}_{2 k}}-\varepsilon^{1 / 2-o(1)}>0.8577 \sqrt{k}
$$

Here 0.8577 is a number strictly smaller than $\sqrt{2 / e}$. Now, increasing N if necessary, we also have $2 / N<\varepsilon / 2$. Then, by (2) and (6), we have

$$
\begin{aligned}
\mathbb{P}\left(\left|\# E\left(\mathbb{F}_{q}, S\right)-n\right|>0.8577 \sqrt{k} \sqrt{n}\right) & \geq \mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right|>0.8577 \sqrt{k} \sqrt{n}\right)-\frac{2}{q} \\
& \geq \mathbb{P}\left(\left|\sum_{i=1}^{n} X_{i}\right|>\left(\sqrt[2 k]{\mathbb{E}_{2 k}}-\varepsilon^{1 / 2-o(1)}\right) \sqrt{n}\right)-\frac{\varepsilon}{2} \\
& \geq \frac{\varepsilon}{2}
\end{aligned}
$$

4. Sets with exceptionally large discrepancy

So far we have considered sets of arbitrarily large size. We will show, as one may expect, that if n is a constant, then for each prime p large enough, there is a probability $\alpha>0$ that the error is much larger than \sqrt{n} for $\beta\binom{p}{n}$ of the subsets $S \subset \mathbb{F}_{p}$ of size n. In particular, for each n, there is a probability 2^{-n-1} that a randomly chosen subset $S \subset \mathbb{F}_{p}$ of size n has the following property - a randomly chosen monic separable cubic f over \mathbb{F}_{p} has a probability 2^{-n-1} so that $f(S)$ consists only of nonzero quadratic residues or quadratic nonresidues.

Let \mathcal{F} be the set of monic, separable cubics over \mathbb{F}_{p}. Note that $\# \mathcal{F}=p^{3}-p^{2}$. Let m, n be constants independent of p such that $n-2 m>\sqrt{n}$. We construct a bipartite graph G with $\binom{p}{n}$ " S-vertices" in one partition, each associated with a
set $S \subset \mathbb{F}_{p}$ of size n, and $p^{3}-p^{2}$ " f-vertices" in the other, each associated with an $f \in \mathcal{F}$. We draw an edge between the vertex corresponding to f and the vertex corresponding to S when

$$
\left|\sum_{s_{i} \in S}\left(\frac{f\left(s_{i}\right)}{p}\right)\right| \geq n-2 m .
$$

Fix $f \in \mathcal{F}$, and let $\mathcal{Q} \subset \mathbb{F}_{p}$ be the set of points mapped by f to a nonzero quadratic residue, and $\mathcal{N} \subset \mathbb{F}_{p}$ be those points mapped to a nonresidue. Let $p / 2+A_{f}$ be the size of the larger of these two sets. Then the degree of the vertex associated to f in G is at least

$$
\begin{equation*}
\binom{p / 2-A_{f}}{m}\binom{p / 2+A_{f}}{n-m} . \tag{9}
\end{equation*}
$$

By Hasse's theorem we have $A_{f} \leq \sqrt{p}$, and so (9) is bounded below by

$$
\binom{p / 2-\sqrt{p}}{m}\binom{p / 2-\sqrt{p}}{n-m}=\binom{p}{n}\left[\binom{n}{m} 2^{-n}+o(1)\right]
$$

as $p \rightarrow \infty$. Thus the number of edges in our graph, E, is at least

$$
\binom{p}{n}\left[\binom{n}{m} 2^{-n}+o(1)\right]\left(p^{3}-p^{2}\right) .
$$

Now if only $\beta\binom{p}{n}$ of the S-vertices achieve degree at least $\alpha\left(p^{3}-p^{2}\right)$, then we have

$$
E \leq \beta\binom{p}{n}\left(p^{3}-p^{2}\right)+\binom{p}{n}(1-\beta) \alpha\left(p^{3}-p^{2}\right),
$$

and so

$$
\beta \geq \frac{1}{1-\alpha}\left[\binom{n}{m} 2^{-n}-\alpha+o(1)\right]>0
$$

as $p \rightarrow \infty$, provided that $\alpha>0$ is small enough.

References

[Carlitz 1932] L. Carlitz, "The arithmetic of polynomials in a Galois field", Amer. J. Math. 54:1 (1932), 39-50. MR Zbl
[Cohen et al. 2006] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren (editors), Handbook of elliptic and hyperelliptic curve cryptography, Chapman \& Hall, Boca Raton, FL, 2006. MR Zbl
[Hasse 1936] H. Hasse, "Zur Theorie der abstrakten elliptischen Funktionenkörper, III: Die Struktur des Meromorphismenrings, die Riemannsche Vermutung", J. Reine Angew. Math. 175 (1936), 193-208. MR Zbl
[Hess et al. 2001] F. Hess, G. Seroussi, and N. P. Smart, "Two topics in hyperelliptic cryptography", pp. 181-189 in Selected areas in cryptography (Toronto, 2001), edited by S. Vaudenay and A. M. Youssef, Lecture Notes in Comput. Sci. 2259, Springer, 2001. MR Zbl
[Pelekis and Ramon 2017] C. Pelekis and J. Ramon, "Hoeffding's inequality for sums of dependent random variables", Mediterr. J. Math. 14:6 (2017), art. id. 243. MR Zbl
[Pollard 1975] J. M. Pollard, "A Monte Carlo method for factorization", Nordisk Tidskr. Informationsbehandling 15:3 (1975), 331-334. MR Zbl
[Rivest et al. 1978] R. L. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems", Comm. ACM 21:2 (1978), 120-126. MR Zbl
[Satoh 2009] T. Satoh, "Generating genus two hyperelliptic curves over large characteristic finite fields", pp. 536-553 in Advances in cryptology: EUROCRYPT 2009 (Cologne, 2009), edited by A. Joux, Lecture Notes in Comput. Sci. 5479, Springer, 2009. MR Zbl
[Schmidt et al. 1995] J. P. Schmidt, A. Siegel, and A. Srinivasan, "Chernoff-Hoeffding bounds for applications with limited independence", SIAM J. Discrete Math. 8:2 (1995), 223-250. MR Zbl
[Semaev 1998] I. A. Semaev, "Evaluation of discrete logarithms in a group of p-torsion points of an elliptic curve in characteristic p ", Math. Comp. 67:221 (1998), 353-356. MR Zbl

Received: 2018-01-19 Revised: 2018-06-21 Accepted: 2018-07-28

krisn@math.berkeley.edu	Department of Mathematics, University of California, Berekeley, CA, United States
solymosi@math.ubc.ca	Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
ching@math.ubc.ca	Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
	Department of Mathematics, University of British Columbia, Vancouver, BC, Canada

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Emory University, USA
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 5

Orbigraphs: a graph-theoretic analog to Riemannian orbifolds 721Kathleen Daly, Colin Gavin, Gabriel Montes de Oca, DianaOchoa, Elizabeth Stanhope and Sam Stewart
Sparse neural codes and convexity 737
R. Amzi Jeffs, Mohamed Omar, Natchanon Suaysom, Aleina Wachtel and Nora Youngs
The number of rational points of hyperelliptic curves over subsets of finite fields 755Kristina Nelson, József Solymosi, Foster Tom and Ching Wong
Space-efficient knot mosaics for prime knots with mosaic number 6 767
Aaron Heap and Douglas KnowlesShabat polynomials and monodromy groups of trees uniquely determined by791ramification type
Naiomi Cameron, Mary Kemp, Susan Maslak, GabrielleMelamed, Richard A. Moy, Jonathan Pham and Austin Wei
On some edge Folkman numbers, small and large 813
Jenny M. Kaufmann, Henry J. Wickus and StanisŁaw P. RADZISZOWSKI
Weighted persistent homology 823
Gregory Bell, Austin Lawson, Joshua Martin, James Rudzinski and Clifford Smyth
Leibniz algebras with low-dimensional maximal Lie quotients 839
William J. Cook, John Hall, Vicky W. Klima and Carter Murray
Spectra of Kohn Laplacians on spheres 855
John Ahn, Mohit Bansil, Garrett Brown, Emilee Cardin and Yunus E. ZeytuncuPairwise compatibility graphs: complete characterization for wheels871Matthew Beaudouin-Lafon, Serena Chen, Nathaniel Karst,Denise Sakai Troxell and Xudong Zheng
The financial value of knowing the distribution of stock prices in discrete market 883modelsAyelet Amiran, Fabrice Baudoin, Skylyn Brock, BerendCoster, Ryan Craver, Ugonna Ezeaka, Phanuel Mariano andMary Wishart

