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Let G be a quasisimple algebraic group defined over an algebraically closed
field k and B a Borel subgroup of G acting on the nilradical n of its Lie algebra b
via the adjoint representation. It is known that B has only finitely many orbits in
only five cases: when G is type An for n≤4, and when G is type B2. We elaborate
on this work in the case when G = SO5(k) (type B2) by finding the defining
equations of each orbit. We use these equations to determine the dimension of the
orbits and the closure ordering on the set of orbits. The other four cases, when G
is type An , can be approached the same way and are treated in a separate paper.

1. Introduction

Before specializing to G = SO5(k), we make some general remarks in order to
provide context and some motivation for our work. Let k be an algebraically
closed field and G a quasisimple algebraic group over k. Fix a maximal torus T
of G, and let 8 denote the root system of G relative to T (8 is irreducible since
G is quasisimple). Fix a set 1 of simple roots in 8, with corresponding set of
positive roots 8+, and let B = T U (U is the unipotent radical of B) be the Borel
subgroup of G determined by 8+. Write the one-dimensional unipotent root group
corresponding to a root α as Uα . Denote the Lie algebra of G by g, that of T by h,
and that of B by b. Then the nilradical n= n(b) of b is in fact the Lie algebra of U,
and we have decompositions b= h⊕n, and n=

⊕
α∈8+ gα as vector spaces, where

gα is the root space of g corresponding to α and is also the Lie algebra of Uα . There
is a corresponding decomposition of U ≈

∏
α∈8+ Uα as algebraic varieties over k.

In particular, U is generated as a group by the root groups U = 〈Uα | α ∈8
+
〉, a

fact we use repeatedly in our calculations in Section 2 below.
G acts on g via the adjoint representation, and the orbits of this action have been

intensely studied, partly because there are connections between the nilpotent orbit
theory and the representation theory of G. It is known that there are only finitely
many nilpotent G-orbits (a nilpotent orbit means the orbit of a nilpotent element
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of g). There are combinatorial indexing sets for these nilpotent orbits, and there are
formulas to compute the dimension of each orbit. Also, it is known which orbits
are in the Zariski closure of any given orbit (the closure ordering). Therefore, it
is well understood how all the nilpotent orbits fit together to form a larger object,
called the nullcone N of g, which is the union of the nilpotent orbits. For details of
this classical theory, see [Collingwood and McGovern 1993] for the characteristic-0
case and [Carter 1985; Jantzen 2004] more generally.

The notion of a support variety of a module is one example of a connection
between nilpotent G-orbits and representation theory, when the characteristic of k is
p> 0. In this case recall that there is a p-th power map x 7→ x [p] on g that makes g
into a restricted Lie algebra, and there is a Frobenius map F :G→G, whose kernel is
denoted by G1, which is an infinitesimal group scheme whose rational representation
theory coincides with the representation theory of g. Similarly, denote the kernel of
F : B→ B by B1. By results of [Friedlander and Parshall 1986], the cohomology
variety of G1 (the maximal ideal spectrum of the even-degree cohomology ring
H 2•(G1, k)) identifies naturally with a subvariety N1 = {x ∈N | x [p] = 0} of the
nullcone N of g, and furthermore, for any finite-dimensional g-module M, there is
an important subvariety of N1 called the support variety of M, denoted by Vg(M)
or VG1(M). If M is a rational G-module, then VG1(M) is G-stable in N1 and is
therefore a union of nilpotent G-orbits.

Aspects of the representation theory of G1 are determined by this support variety
(for example, M is a projective module if and only if VG1(M)= {0}), so one would
like to be able to compute these support varieties, and knowing they are unions of
nilpotent G-orbits may be useful.

If H is a closed subgroup of G and M is a rational H -module, denote the rational
G-module induced from M by M |GH . Now let X (T ) be the character group of T, and
for λ ∈ X (T ), we also use the symbol λ to denote the one-dimensional T -module
on which T acts via λ : t · v = λ(t)v for all t ∈ T. This rational T -module extends
to a rational B-module by trivial U -action, also denoted by λ. The modules λ|GB
are (the duals of) the well-known Weyl modules of G. Another important class of
modules are those of the form Z(λ)= λ|G1

B1
, sometimes called baby Verma modules.

(The name comes from the fact that there is an alternate definition of Z(λ) which
is analogous to the definition of a Verma module for g, while the adjective “baby”
can be interpreted as alluding to the infinitesimal subgroups in our definition using
induction, or to the fact that the Z(λ) are finite-dimensional and the usual Verma
modules are not.)

One of the goals of the paper [Nakano et al. 2002, Theorem 6.21] was to calculate
the support varieties VG1(λ|

G
B ) in order to prove the “Jantzen conjecture”. A central

strategy of that paper is to compare VG1(λ|
G
B ) to VG1(Z(λ)). Of course, Z(λ) is

not a G-module (only a G1-module), so one would not expect VG1(Z(λ)) to be a
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G-stable subset of N1. However, it turns out that this variety is stable under the
action of B and therefore VG1(Z(λ)) is a union of nilpotent B-orbits [Nakano et al.
2002, Proposition 7.1.1].

That nilpotent B-orbits (as well as nilpotent G-orbits) have a connection to the
representation theory of G provides a motivation for studying nilpotent B-orbits.
Even without this explicit motivation, it is interesting to try to generalize what is
known about nilpotent G-orbits to nilpotent B-orbits. However, the case of nilpotent
B-orbits is not nearly as tidy as that of nilpotent G-orbits. One important difference
is that most of the time there are infinitely many nilpotent B-orbits. Thus, finding
a nice indexing set for the orbits could be difficult. In general, we would expect
an indexing set to have a continuous piece as well as a discrete piece, as certain
infinite families of orbits might be described by continuous parameters.

In this paper, our focus is on the case G = SO5(k), which is one of the five cases
where there are finitely many nilpotent B-orbits. For each of the orbits, we find the
polynomial defining equations of the orbit. From these calculations, it is easy to
determine both the dimension of each orbit as well as the closure ordering for the
set of orbits.

2. Nilpotent B-Orbits in SO5(k)

Throughout this section we assume the characteristic of k is either 0 or a prime
p 6= 2. The following proposition is a basic fact about algebraic group actions. A
proof can be found in [Borel 1991; Humphreys 1975].

Proposition 1. Let G be an algebraic group acting morphically on a nonempty
variety V. Then each orbit is a locally closed, smooth variety, and its boundary is a
union of orbits of strictly lower dimension.

Thus, the orbit G · x is open and dense in its closure G · x , and hence has the
same dimension as its closure.

We study the action of a Borel subgroup B of G = SO5(k) on the nilradical n of
its Lie algebra b⊆ so5(k), via the adjoint representation. Our main results consist
of finding the defining equations of each nilpotent B-orbit, which will exhibit each
orbit explicitly as an intersection of an open set and a closed set. From there it
will be an easy matter to determine the closure of each orbit, and thereby find the
dimension of each orbit, as well as to determine which orbits comprise the boundary
of a given orbit. That is, we will find the partial order determined by the orbit
closures, which is defined as G · x � G · y if and only if G · x ⊆ G · y.

Let f be a polynomial. We use the standard notation that the zero set of f
is written as Z( f ) and that Z( f, g) = Z( f ) ∩ Z(g) is the set of common zeros
of polynomials f and g. If we have a finite set of polynomials f1, . . . , fr , then
Z( f1, f2, . . . , fr ) is a Zariski-closed set, that is, it is an affine variety. The notation
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V ( f ) denotes the complement of Z( f ), the set of elements that are not zeros of f ,
and so V ( f ) is a Zariski-open set. A locally closed set is an intersection of an open
set and a closed set, and in this section the orbits will turn out to be locally closed sets
of the form V = Z( f1, f2, . . . , fr )∩V (g1)∩V (g2)∩· · ·∩V (gt) for polynomials fi

and g j 6= 0 for all j . Observe that the closure of V is then Z( f1, f2, . . . , fr ) and
V is open and dense in this closure, whence dim V = dim Z( f1, f2, . . . , fr ).

If Uγ is a root group of G, then Uγ (t) denotes the image of t under the standard
isomorphism kadd ≈Uγ . In classical groups, the adjoint action on the Lie algebra
is simply conjugation of matrices. The matrix ei j is the matrix with a 1 in the
i j position and 0 everywhere else. Now g= so5(k), and we take T to be the set of
diagonal matrices in G. More precisely, a typical element of the torus T has the
form

T (s, t)= diag(1, s, t, s−1, t−1)=


1 0 0 0 0
0 s 0 0 0
0 0 t 0 0
0 0 0 s−1 0
0 0 0 0 t−1


for s and t nonzero in k.

For root systems we use the standard notation one finds in [Humphreys 1972;
Bourbaki 2002]. In type B2, the simple roots are 1= {α1, α2} and 8+ = {α1, α2,
α1+α2, α1+2α2}, so n ≈ k4 as an affine variety and vector space. The root vectors
in n are the matrices

xα1 = e23− e54,

xα2 = e15− e31,

xα1+α2 = e14− e21,

xα1+2α2 = e25− e34.

Now each root space has a coordinate function, which we denote by a capital X
with the same subscript as the root space. In other words, a typical element of n
has the form of a linear combination of the four root vectors, x = a1xα1 + a2xα2 +

a3xα1+α2 + a4xα1+2α2 , which we can write in coordinate form as (a1, a2, a3, a4)

(showing explicitly n≈ k4), and the coordinate function just selects the appropriate
coordinate; so Xα1(x)= a1 and Xα1+2α2(x)= a4, for example. Thus, the B-orbits
in which we are interested are locally closed sets in n or k4 which are defined
by polynomials in the four variables of the polynomial ring k[Xα1 , Xα2, Xα1+α2 ,
Xα1+2α2].

To begin the calculations, let’s determine the B-orbit of the highest root vector
xα1+2α2 . Since the highest root vector has the highest weight of the adjoint represen-
tation, it is a maximal vector — it is fixed by U, the unipotent radical of B, and sent
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to a multiple of itself by the torus T. It follows that B · xα1+2α2 = T ·U · xα1+2α2 =

T ·xα1+2α2 ⊆ gα1+2α2 . Thus, we need only compute the T -orbit of this weight vector,
which is easy by direct calculation. Abbreviating the root vector by x , we have

T (s, t) · x = T (s, t)xT (s, t)−1

=


1 0 0 0 0
0 s 0 0 0
0 0 t 0 0
0 0 0 s−1 0
0 0 0 0 t−1




0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0
0 0 0 0 0
0 0 0 0 0




1 0 0 0 0
0 s−1 0 0 0
0 0 t−1 0 0
0 0 0 s 0
0 0 0 0 t



=


0 0 0 0 0
0 0 0 0 st
0 0 0 −st 0
0 0 0 0 0
0 0 0 0 0

= st x .

In particular, taking s = 1, we obtain all elements of the form t x , t 6= 0, as part
of this orbit. Since 0 is in an orbit by itself, this shows the orbit is precisely the
set of all nonzero multiples of x . In terms of linear combinations of root vectors, or
coordinates in n≈ k4, this says an element (a1, a2, a3, a4) belongs to the orbit B · x
if and only if a1= a2= a3= 0 and a4 6= 0. In other words, this shows that the orbit is

B · x = B · xα1+2α2 = Z(Xα1, Xα2, Xα1+α2)∩ V (Xα1+2α2).

These are the defining equations of this orbit. Clearly, its closure is B · x =
Z(Xα1, Xα2, Xα1+α2), the intersection of three coordinate hyperspaces in n ≈ k4,
which is precisely the axis of the fourth coordinate Xα1+2α2 . In particular, it is obvi-
ous that this orbit is one-dimensional (it is dense in the highest root space gα1+2α2 .)

In order to save space, we will eschew writing out the matrices from this point
on, in favor of writing elements of n as linear combinations of root vectors (or as
ordered quadruples in k4), and elements of B as products of elements in T and
elements of the four one-dimensional root groups Uα for α ∈8+. Thus, the above
calculation could be more compactly written as

T (s, t)U · x = T (s, t) · x = st x,

leaving the reader to check the actual matrix calculation. In subsequent calculations,
it will be helpful to remember how the unipotent root groups act on weight vectors
in rational G-modules:

Lemma 2 [Humphreys 1975, Proposition 27.2]. Let α ∈ 8, and let v ∈ Vλ be a
weight vector in any rational G-module. Then each element u ∈ Uα acts on v as
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follows: u · v = v+
∑

k>0vλ+kα, where vλ+kα is a weight vector of weight λ+ kα,
and k is a positive integer.

Next, consider the orbit of the root vector x = xα1+α2 for the highest short root
α1+α2. If γ is a positive root, then by Lemma 2, Uγ (r) · x = x +w, where w is a
sum of root vectors for roots of the form (α1+α2)+ kγ for some k > 0, but there
are no roots of this form unless k = 1 and γ = α2. It follows that w = 0 for all
positive roots γ except γ = α2. In particular, Uα1 , Uα1+α2 , and Uα1+2α2 all fix the
vector x , whence U · x = Uα2 · x . Therefore, we have B · x = T U · x = T Uα2 · x .
Now take arbitrary elements T (s, t) ∈ T and Uα2(r) and compute directly

T (s, t)Uα2(r) · x = sx + rst xα1+2α2 . (1)

It follows, since s 6= 0, that the x = xα1+α2-coordinate is nonzero, while it is clear
that for all r ∈ k and s, t ∈ k−{0} that the xα1- and xα2-coordinates are 0, whence

B · x = T ·Uα2 · x ⊆ Z(Xα1, Xα2)∩ V (Xα1+α2).

To check the reverse containment, we start with an arbitrary element of the
locally closed set on the right, and find an element of B that carries x to that
element. So let y 6= 0 and z ∈ k be arbitrary. Then the element (0, 0, y, z) =
yx + zxα1+2α2 is an arbitrary element of our locally closed set. But substitute the
element T (y, 1)Uα2(z/y) directly into (1) to obtain

T (y, 1)Uα2

(
z
y

)
· x = yx + y · 1 ·

z
y

xα1+2α2 = (0, 0, y, z).

This shows the reverse containment and so proves the orbit is B ·x = B ·xα1+α2 =

Z(Xα1, Xα2) ∩ V (Xα1+α2).
Next consider the orbit of x = xα2 . By Lemma 2, we only need consider the

action of Uα1 and Uα1+α2 . By direct calculation, we have

T (p, q)Uα1(s)Uα1+α2(r) · x = qx + psxα1+α2 − pqr xα1+2α2

= (0, q, ps,−pqr). (2)

Since q 6= 0, this shows B · x ⊆ Z(Xα1)∩ V (Xα2). To see we have equality we
again start with an arbitrary element (0, w, y, z) ∈ Z(Xα1)∩ V (Xα2) (so w 6= 0),
and exhibit an element of B which carries x = (0, 1, 0, 0) to it. One such element
is T (1, w)Uα1(y)Uα1+α2(−z/w). Indeed by (2) we obtain

T (1, w)Uα1(y)Uα1+α2

(
−

z
w

)
· x = wx + yxα1+α2 + zxα1+2α2 = (0, w, y, z).

We have shown that B · x = B · xα2 = Z(Xα1)∩ V (Xα2).
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Next consider the orbit of x = xα1 . By Lemma 2, the U -orbit of x is the same as
the Uα2-orbit. Thus, direct calculation yields

T (s, t)Uα2(r) · x =
s
t

x − rsxα1+α2 −
r2st

2
xα1+2α2 =

(
s
t
, 0,−rs,−

r2st
2

)
. (3)

Note that because of the 2 in the denominator, we must avoid characteristic-2
fields. Since s/t 6= 0, this shows B · x ⊆ Z(Xα2)∩ V (Xα1). However, unlike the
above orbits, we do not have an equality in this case due to algebraic dependence
relations among the coordinates.

Indeed, define w, y, z by equating(
s
t
, 0,−rs,−

r2st
2

)
= (w, 0, y, z),

and observe that y2
+ 2wz = 0 for every element of this form. This shows that,

in fact, B · x ⊆ Z(Xα2, X2
α1+α2

+ 2Xα1 Xα1+2α2)∩ V (Xα1). We now claim we have
an equality. Indeed an arbitrary element of this locally closed set has the form
(w, 0, y, z) with y2

+ 2wz = 0 and w 6= 0 But it follows from (3) that

T (w, 1)Uα2

(
−

y
w

)
· x = wx + yxα1+α2 −

y2

2w
xα1+2α2

=

(
w, 0, y,−

y2

2w

)
= (w, 0, y, z),

where the last equality follows because y2
+ 2wz = 0. This shows that B · x =

B · xα1 = Z(Xα2, X2
α1+α2

+ 2Xα1 Xα1+2α2)∩ V (Xα1).
So far we have determined the orbits of the four root vectors, but taken together

they do not exhaust all of n. The remaining orbits can be taken to be orbits of certain
sums of root vectors. For example, consider the element x = xα1 + xα1+2α2 . All the
root groups Uγ of U fix x except for Uα2 by Lemma 2. By direct computation we
have

T (s, t)Uα2(r)·x =
s
t

xα1−rsxa1+α2+st
(

1−
r2

2

)
xα1+2α2 =

(
s
t
, 0, rs, st

(
1−

r2

2

))
.

Now s/t 6= 0, so the orbit is contained in Z(Xα2)∩ V (Xα1). But also

X2
α1+α2

+ 2Xα1 Xα1+2α2 = (−rs)2+ 2
s
t

(
st
(

1−
r2

2

))
= 2s2

6= 0.

So B ·x ⊆ Z(Xα2)∩V (Xα1)∩V (X2
α1+α2
+2Xα1 Xα1+2α2). We now prove the reverse

containment. Note that an arbitrary element of this locally closed set has the form
(w, 0, y, z) with w 6= 0, and y2

+ 2wz 6= 0. Since k is not of characteristic 2, the
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element 1
2(y

2
+ 2wz) exists and is nonzero in k, and since k is algebraically closed,

its square root exists in k and is also nonzero. Now by direct calculation we have

T
(√

y2
+ 2wz

2
,

1
w

√
y2
+ 2wz

2

)
Uα2

(
−y

√
2

y2+ 2wz

)
· x = (w, 0, y, z).

This proves B·x= B·(xα1+xα1+α2)= Z(Xα2)∩V (Xα1)∩V (X2
α1+α2
+2Xα1 Xα1+2α2).

The last orbit we need to consider is the orbit of x = xα1 + xα2 . Only Uα1+2α2

fixes x , so we need to see how all three of the other root groups act. By direct
matrix calculation we have

T (s, t)Uα1(a)Uα2(b)Uα1+α2(c) · x =
(

s
t
, t, (a− b)s,−st

(
b2

2
+ c

))
. (4)

Since s, t 6= 0, we have B · x ⊆ V (Xα1)∩ V (Xα2). We now show the reverse
containment. Let (w, u, y, z) ∈ V (Xα1)∩ V (Xα2) be arbitrary (so w, u 6= 0). Then
using (4), we have

T (wu, u)Uα1

(
y
wu

)
Uα2(0)Uα1+α2

(
−

z
wu2

)
· x = (w, u, y, z).

This shows B · x = V (Xα1) ∩ V (Xα2) is an open, dense orbit in n, called the
regular orbit. We are nearly finished with the proof of our main result:

Theorem 3. Let G = SO5(k), where k is algebraically closed and not of character-
istic 2, and let B be a Borel subgroup acting on n via the adjoint action. Then B
has just seven orbits as indicated in the following table along with their defining
equations. The dimensions of these orbits are also indicated in the table, and the
closure order is indicated by the Hasse diagram in Figure 1.

element x of n defining equations for B · x dim B · x

0 Z(Xα1, Xα2, Xα1+α2, Xα1+2α2) 0
xα1+2α2 Z(Xα1, Xα2, Xα1+α2)∩ V (Xα1+2α2) 1
xα1+α2 Z(Xα1, Xα2)∩ V (Xα1+α2) 2

xα1 Z(Xα2, X2
α1+α2

+ 2Xα1 Xα1+2α2)∩ V (Xα1) 2
xα2 Z(Xα1)∩ V (α2) 3

xα1 + xα1+2α2 Z(Xα2)∩ V (Xα1)∩ V (X2
α1+α2

+ 2Xα1 Xα1+2α2) 3
xα1 + xα2 V (Xα1)∩ V (Xα2) 4

In the Hasse diagram of the closure ordering in Figure 1, each orbit is indicated
by its representative element from the first column of the table.

Proof. We have already verified the entries in the first two columns of the table.
Note that the orbit closures are just the closed sets from the defining equations.
For example, since B · xα1+α2 = Z(Xα1, Xα2) ∩ V (Xα1+α2), we have B · xα1+α2
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xα1 + xα2

xα1 + xα1+2α2

xα1

xα2

xα1+α2

xα1+2α2

0

Figure 1. The closure order for nilpotent B-orbits in type B2.

= Z(Xα1, Xα2). Using the closures, we can easily determine the dimensions in
the third column as well as the closure ordering. Note that for polynomials fi

in r variables, the dimension of Z( f1, f2, . . . , fk) is just r − k provided that the
fi are all algebraically independent. It should be clear that we found all the
algebraic dependencies when we worked out the defining equations, so that the fi

are algebraically independent in the closed sets in the second column of the table.
Thus, since r = dim n= 4, the dimensions in the third column are equal to 4− k,
where k is the number of polynomials whose zero sets define the orbit closure.

The only nontrivial containment for the closure ordering is B · xa1+2α2 ⊆ B · xα1 ,
which happens if and only if B · xα1+2α2 ⊆ B · xα1 . So take an arbitrary element
x ∈ B · xα1+2α2 = Z(Xα1, Xα2, Xα1+α2). Then, since both Xα1 = 0 and Xα1+α2 = 0,
it follows that both X2

α1+α2
= 0 and Xα1 Xα1+2α2 = 0 when evaluated at x . Therefore,

X2
α1+α2
+2Xα1 Xα1+2α2=0 as well, so x ∈ Z(Xα2, X2

α1+α2
+2Xα1 Xα1+2α2)= B · xα1 ,

showing the desired containment. The other containments shown in the Hasse
diagram follow similarly.

All that remains to show is that we have exhausted all the nilpotent orbits in n.
So let n =wxα1+ xxα2+ yxα1+α2+ zxα1+2α2 = (w, x, y, z) be an arbitrary element
of n. We must show n lies in one of these seven orbits. We will distinguish cases
according to how many and which of the four coordinates are 0. If both w and x
are nonzero, then n is in V (Xα1)∩ V (Xα2)= B · (xα1 + xα2), the regular orbit. So
it only remains to consider cases when one or both of w, x are 0. First, suppose
w = 0 but x 6= 0. Then n = (0, x, y, z) ∈ Z(Xα1)∩V (Xα2)= B · xα2 . On the other
hand, suppose w 6= 0 and x = 0, so n = (w, 0, y, z) ∈ Z(Xα2)∩ V (Xα1). But then
n ∈ B · (xα1 + xα1+2α2) or n ∈ B · xα1 , depending on whether or not y2

+ 2wz = 0.
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Lastly, we consider cases where w = 0 = x . In this case, n = (0, 0, y, z) ∈
Z(Xα1)∩ Z(Xα2). If y 6= 0, then n ∈ Z(Xα1, Xα2)∩ V (Xα1+α2) = B · xα1+α2 . On
the other hand, if y = 0, then n = (0, 0, 0, z), which belongs to either B · 0 or
B · xα1+2α2 , depending on whether or not z = 0. This covers all possible cases, and
in each case, n was in one of the above-mentioned orbits, whence the union of the
seven orbits is all of n. �

3. Conclusions

The result that there are only finitely many nilpotent B-orbits for SO5(k) can be
phrased in terms of a general concept for algebraic group actions called modality
(see [Popov and Röhrle 1997] for example).

Let G be an arbitrary algebraic group acting morphically on a nonempty variety V.
The modality of the action is

mod(G, V )=max
Z

min
z∈Z

codimZ (G0
· z), (5)

where Z runs through all irreducible G0-invariant subvarieties of V. Here, G0 is the
connected component of the identity in G. Informally, the modality is the maximum
number of (continuous) parameters on which a family of G-orbits may depend.

Although we are mainly interested in nilpotent orbits for a Borel subgroup B
of G, much of the literature is written in terms of the more general case of orbits for
a parabolic subgroup P, which is any closed subgroup containing a Borel subgroup.
If P is parabolic, denote its Lie algebra by p, and the nilradical of p by n(p). Then
P acts on n(p) via the adjoint representation, and the modality of P is defined to be
mod(P, n(p)). Thus the modality of P is 0 precisely when there are only finitely
many nilpotent P-orbits in n(p).

When P = G, the nilradical of g is trivial since g is simple, so the modality of
G is trivially 0. At the other extreme, the modality of B is almost never 0. So
one consequence of Theorem 3 is that if p 6= 2, then B has modality 0 in type B2.
Of course, this is a well-known result. Based on earlier work in [Bürgstein and
Hesselink 1987], in [Kashin 1990] all the Borel subgroups of modality 0 were
determined in characteristic 0:

Theorem 4 [Kashin 1990]. Let G be quasisimple over k, where k has character-
istic 0, and suppose B is a Borel subgroup of G. The number of orbits of B on n

is finite (that is, B has modality 0) if and only if G is type An for n ≤ 4, or G is
type B2.

Aside from the consequences of this theorem for our investigation on nilpotent
B-orbits, Kashin’s result launched an investigation into the modality of parabolic
subgroups in general. For example, see [Röhrle 1996; 1999; Popov 1997; Popov



NILPOTENT ORBITS FOR BOREL SUBGROUPS OF SO5(k) 461

and Röhrle 1997; Hille and Röhrle 1999; Brüstle et al. 1999]. In fact, Theorem 1.1
in [Hille and Röhrle 1999] shows there is a strong connection between the modality
of a parabolic subgroup and the length of a descending central series of Ru(P), the
unipotent radical of P , also called the nilpotency class of Ru(P). Using this theorem,
one can easily recover Kashin’s original theorem, with the added benefit that the
proof is valid in good prime characteristics for G as well as for characteristic 0. In
type A, all primes are good, and in type B, all primes are good except p = 2.

In a previous version of this paper, using similar techniques as here, we showed
directly that there are finitely many nilpotent B-orbits for G of types A1, A2, A3

and A4 without any restrictions on p, and used that information to determine the
dimensions of the orbits and the closure ordering. A referee pointed out to us that
the closure orderings for the four type-A cases were already discussed in [Brüstle
et al. 1999], making a lot of our work seem redundant. Note that the techniques
used in that paper are quite different than ours — they are much more sophisticated
than our matrix calculations. Their approach has some advantages, such as both
being more elegant than our approach and also being closer in spirit to the way
nilpotent G-orbits are classified. A possible advantage of our techniques, though, is
that they yield the explicit polynomial defining equations of each orbit. It may be
an advantage to knowing these defining equations in applying this work, perhaps
to computing support varieties of baby Verma modules as discussed in Section 1,
or perhaps for other applications. For this reason, we have uploaded our type-A
calculations [Burkhart and Vella 2017] on the arXiv so that despite the overlap with
[Brüstle et al. 1999], our tables for these orbits are publicly available. Here we
conclude by simply reminding the reader how many orbits there are in each case:
two orbits in type A1, five orbits in type A2, 16 orbits in type A3, and 61 orbits in
type A4. For the details of the defining equations, etc., consult [Burkhart and Vella
2017], and for the dimensions of each orbit and the Hasse diagrams of the closure
order in these cases, valid for all characteristics, consult either [Brüstle et al. 1999]
or [Burkhart and Vella 2017].

References

[Borel 1991] A. Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics 126,
Springer, 1991. MR Zbl

[Bourbaki 2002] N. Bourbaki, Lie groups and Lie algebras: Chapters 4–6, Springer, 2002. MR Zbl

[Brüstle et al. 1999] T. Brüstle, L. Hille, G. Röhrle, and G. Zwara, “The Bruhat–Chevalley order
of parabolic group actions in general linear groups and degeneration for 1-filtered modules”, Adv.
Math. 148:2 (1999), 203–242. MR Zbl

[Bürgstein and Hesselink 1987] H. Bürgstein and W. H. Hesselink, “Algorithmic orbit classification
for some Borel group actions”, Compositio Math. 61:1 (1987), 3–41. MR Zbl

[Burkhart and Vella 2017] M. Burkhart and D. Vella, “Defining equations of nilpotent orbits for Borel
subgroups of modality zero in type An”, preprint, 2017. arXiv

http://dx.doi.org/10.1007/978-1-4612-0941-6
http://msp.org/idx/mr/1102012
http://msp.org/idx/zbl/0726.20030
http://dx.doi.org/10.1007/978-3-540-89394-3
http://msp.org/idx/mr/1890629
http://msp.org/idx/zbl/0983.17001
http://dx.doi.org/10.1006/aima.1999.1851
http://dx.doi.org/10.1006/aima.1999.1851
http://msp.org/idx/mr/1736958
http://msp.org/idx/zbl/0953.20037
http://www.numdam.org/item?id=CM_1987__61_1_3_0
http://www.numdam.org/item?id=CM_1987__61_1_3_0
http://msp.org/idx/mr/879187
http://msp.org/idx/zbl/0612.17005
http://msp.org/idx/arx/1708.05042


462 MADELEINE BURKHART AND DAVID VELLA

[Carter 1985] R. W. Carter, Finite groups of Lie type: conjugacy classes and complex characters,
John Wiley & Sons, New York, 1985. MR Zbl

[Collingwood and McGovern 1993] D. H. Collingwood and W. M. McGovern, Nilpotent orbits in
semisimple Lie algebras, Van Nostrand Reinhold Co., New York, 1993. MR Zbl

[Friedlander and Parshall 1986] E. M. Friedlander and B. J. Parshall, “Support varieties for restricted
Lie algebras”, Invent. Math. 86:3 (1986), 553–562. MR Zbl

[Hille and Röhrle 1999] L. Hille and G. Röhrle, “A classification of parabolic subgroups of classical
groups with a finite number of orbits on the unipotent radical”, Transform. Groups 4:1 (1999), 35–52.
MR Zbl

[Humphreys 1972] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate
Texts in Mathematics 9, Springer, 1972. MR Zbl

[Humphreys 1975] J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics 21,
Springer, 1975. MR Zbl

[Jantzen 2004] J. C. Jantzen, “Nilpotent orbits in representation theory”, pp. 1–211 in Lie theory,
edited by J.-P. Anker and B. Orsted, Progr. Math. 228, Birkhäuser, Boston, 2004. MR Zbl

[Kashin 1990] V. V. Kashin, “Orbits of an adjoint and co-adjoint action of Borel subgroups of a
semisimple algebraic group”, pp. 141–158 in Problems in group theory and homological algebra,
edited by A. L. Onishchik, Yaroslav. Gos. Univ., Yaroslavl, 1990. In Russian. MR Zbl

[Nakano et al. 2002] D. K. Nakano, B. J. Parshall, and D. C. Vella, “Support varieties for algebraic
groups”, J. Reine Angew. Math. 547 (2002), 15–49. MR Zbl

[Popov 1997] V. L. Popov, “A finiteness theorem for parabolic subgroups of fixed modality”, Indag.
Math. (N.S.) 8:1 (1997), 125–132. MR Zbl

[Popov and Röhrle 1997] V. Popov and G. Röhrle, “On the number of orbits of a parabolic subgroup
on its unipotent radical”, pp. 297–320 in Algebraic groups and Lie groups, edited by G. Lehrer et al.,
Austral. Math. Soc. Lect. Ser. 9, Cambridge Univ. Press, 1997. MR Zbl

[Röhrle 1996] G. Röhrle, “Parabolic subgroups of positive modality”, Geom. Dedicata 60:2 (1996),
163–186. MR Zbl

[Röhrle 1999] G. Röhrle, “On the modality of parabolic subgroups of linear algebraic groups”,
Manuscripta Math. 98:1 (1999), 9–20. MR Zbl

Received: 2017-08-16 Revised: 2018-02-08 Accepted: 2018-07-10

burkhm2@uw.edu Mathematics Department, University of Washington,
Seattle, WA, United States

dvella@skidmore.edu Mathematics and Statistics Department, Skidmore College,
Saratoga Springs, NY, United States

mathematical sciences publishers msp

http://msp.org/idx/mr/794307
http://msp.org/idx/zbl/0567.20023
http://msp.org/idx/mr/1251060
http://msp.org/idx/zbl/0972.17008
http://dx.doi.org/10.1007/BF01389268
http://dx.doi.org/10.1007/BF01389268
http://msp.org/idx/mr/860682
http://msp.org/idx/zbl/0626.17010
http://dx.doi.org/10.1007/BF01236661
http://dx.doi.org/10.1007/BF01236661
http://msp.org/idx/mr/1669178
http://msp.org/idx/zbl/0924.20035
http://msp.org/idx/mr/0323842
http://msp.org/idx/zbl/0254.17004
http://msp.org/idx/mr/0396773
http://msp.org/idx/zbl/0325.20039
http://msp.org/idx/mr/2042689
http://msp.org/idx/zbl/1169.14319
http://msp.org/idx/mr/1169975
http://msp.org/idx/zbl/0765.20018
http://dx.doi.org/10.1515/crll.2002.049
http://dx.doi.org/10.1515/crll.2002.049
http://msp.org/idx/mr/1900135
http://msp.org/idx/zbl/1009.17013
http://dx.doi.org/10.1016/S0019-3577(97)83356-3
http://msp.org/idx/mr/1617826
http://msp.org/idx/zbl/0905.20029
http://msp.org/idx/mr/1635688
http://msp.org/idx/zbl/0887.14020
http://dx.doi.org/10.1007/BF00160621
http://msp.org/idx/mr/1384426
http://msp.org/idx/zbl/0853.20031
http://dx.doi.org/10.1007/s002290050121
http://msp.org/idx/mr/1669615
http://msp.org/idx/zbl/0933.20037
mailto:burkhm2@uw.edu
mailto:dvella@skidmore.edu
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

Arthur T. Benjamin Harvey Mudd College, USA
Martin Bohner Missouri U of Science and Technology, USA

Nigel Boston University of Wisconsin, USA
Amarjit S. Budhiraja U of N Carolina, Chapel Hill, USA

Pietro Cerone La Trobe University, Australia
Scott Chapman Sam Houston State University, USA

Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Joel Foisy SUNY Potsdam, USA

Errin W. Fulp Wake Forest University, USA
Joseph Gallian University of Minnesota Duluth, USA

Stephan R. Garcia Pomona College, USA
Anant Godbole East Tennessee State University, USA

Ron Gould Emory University, USA
Sat Gupta U of North Carolina, Greensboro, USA

Jim Haglund University of Pennsylvania, USA
Johnny Henderson Baylor University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA
David Larson Texas A&M University, USA

Suzanne Lenhart University of Tennessee, USA

Chi-Kwong Li College of William and Mary, USA
Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Jonathon Peterson Purdue University, USA

Robert J. Plemmons Wake Forest University, USA
Carl B. Pomerance Dartmouth College, USA

Vadim Ponomarenko San Diego State University, USA
Bjorn Poonen UC Berkeley, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Javier Rojo Oregon State University, USA

Filip Saidak U of North Carolina, Greensboro, USA
Hari Mohan Srivastava University of Victoria, Canada

Andrew J. Sterge Honorary Editor
Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $195/year for the electronic
version, and $260/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2019 vol. 12 no. 3

361Darboux calculus
MARCO ALDI AND ALEXANDER MCCLEARY

381A countable space with an uncountable fundamental group
JEREMY BRAZAS AND LUIS MATOS

395Toeplitz subshifts with trivial centralizers and positive entropy
KOSTYA MEDYNETS AND JAMES P. TALISSE

411Associated primes of h-wheels
COREY BROOKE, MOLLY HOCH, SABRINA LATO, JANET STRIULI

AND BRYAN WANG

427An elliptic curve analogue to the Fermat numbers
SKYE BINEGAR, RANDY DOMINICK, MEAGAN KENNEY, JEREMY

ROUSE AND ALEX WALSH

451Nilpotent orbits for Borel subgroups of SO5(k)

MADELEINE BURKHART AND DAVID VELLA

463Homophonic quotients of linguistic free groups: German, Korean, and
Turkish

HERBERT GANGL, GIZEM KARAALI AND WOOHYUNG LEE

475Effective moments of Dirichlet L-functions in Galois orbits
RIZWANUR KHAN, RUOYUN LEI AND DJORDJE MILIĆEVIĆ
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