# $\bullet$ <br> involve 

 a journal of mathematicsToeplitz subshifts with trivial centralizers and positive entropy

Kostya Medynets and James P. Talisse

# Toeplitz subshifts with trivial centralizers and positive entropy 

Kostya Medynets and James P. Talisse

(Communicated by David Royal Larson)


#### Abstract

Given a dynamical system $(X, G)$, the centralizer $C(G)$ denotes the group of all homeomorphisms of $X$ which commute with the action of $G$. This group is sometimes called the automorphism group of the dynamical system $(X, G)$. We generalize the construction of Bułatek and Kwiatkowski (1992) to $\mathbb{Z}^{d}$-Toeplitz systems by identifying a class of $\mathbb{Z}^{d}$-Toeplitz systems that have trivial centralizers. We show that this class of $\mathbb{Z}^{d}$-Toeplitz systems with trivial centralizers contains systems with positive topological entropy.


## 1. Introduction

Toeplitz dynamical systems were first introduced by Jacobs and Keane [1969]. They provided a classical definition for a Toeplitz sequence over $\{0,1\}$. Markley [1975] studied these sequences and showed the equivalence of various definitions of them. The orbit closure of a Toeplitz sequence is regarded as a Toeplitz flow. Markley and Paul [1979] showed that these flows were exactly almost one-to-one extensions of odometers, or the group of $p$-adic integers. See [Hewitt and Ross 1979] for a general discussion of the group-theoretic properties of the group of $p$-adic integers. For a general survey of symbolic dynamics, we refer the reader to [Kitchens 1998]. For a good survey on $\mathbb{Z}$-odometers and Toeplitz flows, the reader is referred to [Downarowicz 2005]. Recently the definition of Toeplitz flows was extended to flows over $\mathbb{Z}^{d}$ by Cortez [2006], and then to flows over general groups in [Cortez and Petite 2008; Krieger 2010].

The centralizer of a dynamical system is the group of all homeomorphisms of the system which commute with the group action. Sometimes called the automorphism group of the dynamical system in the literature, the centralizer of a dynamical system has an intricate relationship with its parent dynamical system. For example,

[^0]in [Boyle et al. 1988], Boyle, Lind and Rudolph studied the centralizers of shifts of finite type and showed that they are countable, residually finite and contain the free group on two generators. Several results have been shown by Cyr and Kra [2015; 2016a; 2016b] which relate varying levels of complexity of symbolic dynamical systems to algebraic properties of their centralizers. We notice that systems with positive entropy tend to have very large centralizers. For example, the centralizer of the full shift contains every finite group and the free group on two generators. On the other hand, Donoso, Durand and Petite [Donoso et al. 2016] showed that some classes of low complexity symbolic dynamical systems have very small centralizers, in the sense that they consist only of powers of $T$. Bułatek and Kwiatkowski [1990; 1992] studied the centralizer of a class of high-complexity Toeplitz systems. The centralizer of multidimensional symbolic dynamical systems was studied by Hochman [2010]. For example, he showed that the centralizer of a positive-entropy multidimensional shift of finite type contains a copy of every finite group.

The main question this paper seeks to answer is whether there are multidimensional systems with a trivial centralizer and positive entropy. Following the ideas of [Bułatek and Kwiatkowski 1992], which developed this result in one dimension, we establish this result with a constructive proof. We note that there are several constructions of one-dimensional Toeplitz systems with trivial centralizers and positive entropy; see, for example, [Donoso et al. 2017].

In Section 3 we present main facts with proofs regarding general $G$-odometers, where $G$ is a residually finite group. For the reader's convenience, we include the proofs, otherwise scattered across multiple sources. In particular we show that the centralizer group of $\mathbb{Z}^{d}$-Toeplitz systems embeds into the centralizer group of its maximal equicontinuous factor, which is a $\mathbb{Z}^{d}$-odometer, and so is Abelian. This result was originally established in [Auslander 1963, Theorem 9] using the techniques of enveloping semigroups. The proof we present in this note follows the approach developed in [Olli 2013].

In Section 4, we construct a class of $\mathbb{Z}^{d}$-Toeplitz systems that have trivial centralizers. Then in Section 5, we show that this class contains systems of positive entropy, and we provide an explicit construction of a two-dimensional Toeplitz system of positive entropy.

## 2. Definitions and background

By a dynamical system we mean a pair ( $X, G$ ), where $X$ is a compact topological space and $G$ is a countable discrete group acting on $X$ by homeomorphisms. The action of a group element $g \in G$ on $x \in X$ will be denoted by $g \cdot x=g(x)$. The set $\{g \cdot x \mid g \in G\}$ is called the orbit of the point $x$. If every orbit of $(X, G)$ is dense, we call the system minimal. A system $(X, G)$ is called equicontinuous if for all $\varepsilon>0$
there exists $\delta>0$ such that for all $x, y \in X$ if $d(x, y)<\varepsilon$, then $d(g \cdot x, g \cdot y)<\delta$ for all $g \in G$. Let $(X, G)$, and $(Y, G)$ be two minimal systems. If there exists a continuous surjection $\pi: X \rightarrow Y$ which preserves the action of $G$, we say that $X$ is an extension of $Y$, and that $Y$ is a factor of $X$. We call $\pi$ a factor map. Given two factor maps $\pi$ and $\pi^{\prime}$, we say that $\pi$ is larger than $\pi^{\prime}$ if there exists a third factor map $\pi^{\prime \prime}$ such that $\pi^{\prime}=\pi^{\prime \prime} \circ \pi$. As such, we can discuss the maximal factor of a system. It is a known fact that every dynamical system has a maximal equicontinuous factor.

In this paper we are interested in symbolic dynamical systems. We start with a finite set $\Sigma$ called the alphabet. Say $|\Sigma|=n$. The set of all bi-infinite sequences over $\Sigma$ is called the full $n$-shift and is denoted by $\Sigma^{\mathbb{Z}}$. In general, we denote the full $d$ dimensional $n$-shift by $\Sigma^{\mathbb{Z}^{d}}$. This set is endowed with the product topology from the discrete topology in each coordinate. Cylinder sets in which we fix a finite number of coordinates form a basis for the topology. For $x \in \Sigma^{\mathbb{Z}^{d}}$ we write $x=\{x(v)\}_{v \in \mathbb{Z}^{d}}$. We call $x$ a $\mathbb{Z}^{d}$-array. The group $\mathbb{Z}^{d}$ acts on $\Sigma^{\mathbb{Z}^{d}}$, denoted by $T^{z}(x)$ for $z \in \mathbb{Z}^{d}$ and $x \in \Sigma^{\mathbb{Z}^{d}}$ as follows: $T^{z}(x)=\{x(z+v)\}_{v \in \mathbb{Z}^{d}}$. The orbit of an array is $\left\{T^{v}(x) \mid v \in \mathbb{Z}^{d}\right\}$. A closed subset $X \subseteq \Sigma^{\mathbb{Z}^{d}}$ is called a subshift if it is closed under the action of $\mathbb{Z}^{d}$.

For the sake of completeness, we note that symbolic dynamics can be studied over general, discrete groups. In this case, let $G$ be a discrete group. Then $\Sigma^{G}$ is acted on by the group $G$. While in this paper we restrict our study of symbolic dynamics to $\mathbb{Z}^{d}$-systems, we note that many of the results can be extended to $G$-systems for more general groups $G$.

The topological spaces discussed in this note will be topological zero-dimensional compact metric spaces without isolated points, i.e., Cantor sets. Notice that by a theorem of Brouwer [1910] every Cantor set is homeomorphic to the middle-thirds Cantor set, and so all Cantor sets are homeomorphic.

## 3. Odometers

In this section, we will recall some basic facts about odometers and their almost one-to-one extensions. In particular, we show that the centralizer of an odometer is Abelian, and the centralizer of the almost one-to-one extension of an odometer is also Abelian. These results are mostly known, but are scattered. In particular, the proof of Lemma 3.11 appears in [Veech 1970] and the proof of Proposition 3.12 appears in [Olli 2013]. We present slightly modified proofs for clarity and the reader's convenience.

Definition 3.1. A group $G$ is called residually finite if the intersection of all its finite-index normal subgroups is trivial.

Definition 3.2. Let $G$ be a residually finite group and $G=G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \cdots$ be nested normal subgroups such that $\bigcap G_{n}=\{0\}$. Let $\pi_{n}$ be the natural homomorphism from $G / G_{n}$ onto $G / G_{n-1}$; i.e., $\pi_{n}\left(h G_{n}\right)=h G_{n-1}$ for $h \in G$. The
$G$-odometer, $\bar{G}$, is the inverse limit

$$
\bar{G}=\varliminf_{\swarrow}\left(G / G_{i} ; \pi_{i}\right)=\left\{\left(g_{k}\right)_{k=0}^{\infty} \in \prod_{k=0}^{\infty} G / G_{k} \mid \pi_{n}\left(g_{n}\right)=g_{n-1} \text { for all } n \geq 1\right\} .
$$

An element $g \in G$ acts on an element $y=\left(y_{i}\right)_{i=0}^{\infty} \in \bar{G}$ as $g \cdot y=\left(g \cdot y_{i}\right)_{i=0}^{\infty}$.
First we prove that $G$ embeds into $\bar{G}$.
Lemma 3.3. Let $\varphi: G \rightarrow \bar{G}$ be defined as $g \mapsto\left(g G_{1}, g G_{2}, \ldots\right)$. Then $\varphi$ is an embedding.

Proof. Notice that $\varphi$ is a homomorphism. Let $g_{1}, g_{2} \in G$. Suppose

$$
\varphi\left(g_{1}\right)=\left(g_{1} G_{1}, g_{1} G_{2}, g_{1} G_{3}, \ldots\right)=\left(g_{2} G_{1}, g_{2} G_{2}, g_{2} G_{3}, \ldots\right)=\varphi\left(g_{2}\right) .
$$

So $g_{1} G_{i}=g_{2} G_{i}$ for all $i$. Therefore $g_{1}^{-1} g_{2} \in G_{i}$ for all $i$, and so $g_{1}^{-1} g_{2} \in \bigcap G_{i}=\{0\}$. Thus $g_{1}=g_{2}$, which implies that $\varphi$ is an embedding.

So we have shown that $G$ embeds into $\bar{G}$ in a natural way. In what follows, we will identify the group $G$ with its image $\varphi(G)$. We now prove that $(\bar{G}, G)$ is minimal.

Lemma 3.4. The system $(\bar{G}, G)$ is minimal.
Proof. Consider the identity element, $e \in \bar{G}$. In particular, $e=\left(G_{1}, G_{2}, G_{3}, \ldots\right)$. Let $y=\left(y_{i}\right)_{i=0}^{\infty} \in \bar{G}$. So, for each $n$, we have $y_{n}=\bar{y}_{n} G_{n}$, where $\bar{y}_{n} \in G$ is a representative of the coset. Note

$$
\begin{aligned}
\bar{y}_{n} \cdot e & =\bar{y}_{n}\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}, \ldots\right) \\
& =\left(\bar{y}_{n} G_{1}, \bar{y}_{n} G_{2}, \bar{y}_{n} G_{3}, \ldots, \bar{y}_{n} G_{n}, \ldots\right) \\
& =\left(\bar{y}_{1} G_{1}, \bar{y}_{2} G_{2}, \ldots, \bar{y}_{n} G_{n}, \ldots\right)=\left(y_{1}, y_{2}, \ldots, y_{n}, \ldots\right) .
\end{aligned}
$$

So $\bar{y}_{n} \cdot e$ agrees with $y$ in the first $n$ coordinates. And so we can get arbitrarily close to $y$ as we increase $n$. It follows that the orbit of $e$ is dense.

Now let $a, b \in \bar{G}$. Note we can find a sequence $b_{n}$ of elements of $G \subset \bar{G}$ such that $b_{n} \cdot e \rightarrow a b^{-1}$, since $e$ has a dense orbit. Then $\left(b_{n} \cdot e\right) \cdot b \rightarrow a$ so $b_{n} \cdot b \rightarrow a$. Therefore $b$ has a dense orbit.

Definition 3.5 (centralizer). Let ( $X, G$ ) be a dynamical system. The centralizer, $C(G)$, is defined as

$$
C(G)=\{\varphi \in \operatorname{Homeo}(X) \mid g \varphi=\varphi g \text { for all } g \in G\} .
$$

That is, the centralizer of a system consists of all homeomorphisms of the system which commute with the group action. It can be checked that this is a group under composition.

Next we show that elements of the centralizer of an odometer act as translations of the odometer.

Lemma 3.6. Let $\varphi \in C(\bar{G}, G)$. There exists $g_{0} \in \bar{G}$ such that $\varphi(x)=x \cdot g_{0}$ for all $x \in \bar{G}$.

Proof. Set $g_{0}=\varphi(e)$. Let $x \in \bar{G}$. Since the orbit of $e$ is dense, by Lemma 3.4, there exists a sequence $\left\{g_{n}\right\} \subseteq G$ such that $g_{n} \cdot e \rightarrow x$. Since $\varphi$ is continuous, $\varphi\left(g_{n} \cdot e\right) \rightarrow \varphi(x)$. Since $g_{n} \cdot e \rightarrow x$, we have $g_{n} \rightarrow x$. So $\varphi\left(g_{n} \cdot e\right)=\varphi\left(g_{n}\right) \cdot \varphi(e) \rightarrow$ $x \cdot \varphi(e)$. Therefore $\varphi(x)=x \cdot \varphi(e)=x \cdot g_{0}$.

We are now ready to prove the following proposition. In the following, $G$ is an Abelian group.
Proposition 3.7. The centralizer $C(\bar{G}, G)=\{\varphi: \bar{G} \rightarrow \bar{G} \mid \varphi g=g \varphi$ for all $g \in G\}$ of an odometer $\bar{G}$ is isomorphic to $\bar{G}$.
Proof. Define $\psi: C(\bar{G}, G) \rightarrow \bar{G}$ as $\psi(\varphi)=\varphi(e)$ for all $\varphi \in C(\bar{G}, G)$. Let $\varphi_{1}, \varphi_{2} \in C(\bar{G}, G)$. Then

$$
\psi\left(\varphi_{1} \circ \varphi_{2}\right)=\varphi_{1} \circ \varphi_{2}(e)=\varphi_{1}\left(\varphi_{2}(e)\right)=\varphi_{2}(e) \cdot \varphi_{1}(e)=\varphi_{1}(e) \cdot \varphi_{2}(e)=\psi\left(\varphi_{1}\right) \psi\left(\varphi_{2}\right) .
$$

So $\psi$ is a homomorphism. Let $y \in \bar{G}$. Let $\varphi_{y}(x)=x \cdot y$ for all $x \in \bar{G}$. Note, for $g \in \bar{G}$, we have $\varphi_{y}(g x)=g \varphi_{y}(x)$ so $\varphi_{y} \in C(\bar{G}, G)$. Also, $\psi\left(\varphi_{y}\right)=y$, so $\psi$ is onto. Suppose $\psi\left(\varphi_{1}\right)=\psi\left(\varphi_{2}\right)$. Then $\varphi_{1}(e)=\varphi_{2}(e)$. Using Lemma 3.6, we get that for any $x \in \bar{G}, \varphi_{1}(x)=x \cdot \varphi_{1}(e)=x \cdot \varphi_{2}(e)=\varphi_{2}(x)$. Therefore $\psi$ is an isomorphism.

We now turn our attention to almost one-to-one extensions of odometers.
Definition 3.8. We say $(X, G)$ is an almost one-to-one extension of $(Y, G)$ if there is a factor map $\pi: X \rightarrow Y$ such that there is at least one $y \in Y$ so that $\pi^{-1} y$ is singleton. Almost one-to-one extensions of odometers are also called Toeplitz systems.

We make use of the following commutative diagram:


Sometimes the context will deem the action of $G$ on $X$ or $Y$ ambiguous, so we will use $T^{g} x$ to denote the action of the group element $g \in G$ on $x \in X$ and $S^{g} y$ to denote the action of $g$ on $y \in Y$. In particular, $\pi \circ T^{g}=S^{g} \circ \pi$. If the context is clear, the action of $g$ on a point $x$ will be denoted by $g \cdot x$.

If $(X, G)$ is a minimal almost one-to-one extension of a minimal equicontinuous system $(Y, G)$, then it is known that $(Y, G)$ is the maximal equicontinuous factor
of ( $X, G$ ) [Auslander 1988]. As such, the odometer of which a Toeplitz system $(X, G)$ is an almost one-to-one extension is its maximal equicontinuous factor.

We will be considering almost one-to-one extensions of $\mathbb{Z}^{d}$-odometers. In this context, we will need the following proposition.

Proposition 3.9. The centralizer $C(G)$ of the almost one-to-one extension of a $\mathbb{Z}^{d}$-odometer is Abelian.

To prove Proposition 3.9, we show that the centralizer of the almost one-to-one extension of an odometer embeds into the centralizer of its maximal equicontinuous factor, which we have already shown to be isomorphic to the odometer, which is Abelian in the case of $G=\mathbb{Z}^{d}$.

Definition 3.10 [Veech 1970]. Given a dynamical system $(X, G)$ and a metric $d$ compatible with the topology on $X$, two points $x_{1}, x_{2} \in X$ are called proximal if

$$
\inf _{g \in G} d\left(g \cdot x_{1}, g \cdot x_{2}\right)=0
$$

Lemma 3.11. Let $(X, G)$ be an almost one-to-one extension of an odometer $(\bar{G}, G)$ via the factor map $\pi$. Then points of $X$ are proximal if and only if they are in the same $\pi$-fiber.

Proof. Let $x_{1}, x_{2} \in X$ be in the same $\pi$-fiber; i.e., $\pi\left(x_{1}\right)=\pi\left(x_{2}\right)$. Let $y \in \bar{G}$ be such that $\pi^{-1} y$ is a singleton. Since $(\bar{G}, G)$ is minimal, there exists a sequence $\left\{g_{n}\right\}$ of elements in $G$ such that $\lim _{n \rightarrow \infty} S^{g_{n}} \pi x_{1}=y$ and so $\lim _{n \rightarrow \infty} S^{g_{n}} \pi x_{2}=y$. Since $X$ is compact, there is a subsequence $\left\{g_{k}\right\}$ of $\left\{g_{n}\right\}$ such that $T^{g_{k}} x_{1}$ and $T^{g_{k}} x_{2}$ converge. Suppose $\lim _{k \rightarrow \infty} T^{g_{k}} x_{1}=z$. Applying $\pi$, we have

$$
\pi z=\lim _{k \rightarrow \infty} \pi T^{g_{k}} x_{1}=\lim _{k \rightarrow \infty} S^{g_{k}} \pi x_{1}=y .
$$

So we also have

$$
\lim _{k \rightarrow \infty} \pi T^{g_{k}} x_{2}=\lim _{k \rightarrow \infty} S^{g_{k}} \pi x_{2}=y .
$$

Since $\pi^{-1} y$ is a singleton, we get that $\lim _{k \rightarrow \infty} T^{g_{k}} x_{2}=z$. Now,

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} d\left(T^{g_{k}} x_{1}, T^{g_{k}} x_{2}\right) & \leq \limsup _{k \rightarrow \infty}\left(d\left(T^{g_{k}} x_{1}, z\right)+d\left(z, T^{g_{k}} x_{2}\right)\right) \\
& \leq \limsup _{k \rightarrow \infty} d\left(T^{g_{k}} x_{1}, z\right)+\limsup _{k \rightarrow \infty} d\left(z, T^{g_{k}} x_{2}\right)=0 .
\end{aligned}
$$

So the points $x_{1}$ and $x_{2}$ are proximal.
Now suppose $x_{1}, x_{2} \in X$ are proximal. Then there is a sequence $\left\{g_{n}\right\} \subseteq G$ such that $\lim _{n \rightarrow \infty} T^{g_{n}} x_{1}=\lim _{n \rightarrow \infty} T^{g_{n}} x_{2}=z$. Applying $\pi$, we have $\lim _{n \rightarrow \infty} \pi T^{g_{n}} x_{1}=$ $\lim _{n \rightarrow \infty} \pi T^{g_{n}} x_{2}=\pi z$. So $\lim _{n \rightarrow \infty} S^{g_{n}} \pi x_{1}=\lim _{n \rightarrow \infty} S^{g_{n}} \pi x_{2}$, which implies $\pi x_{1}$ and $\pi x_{2}$ are proximal in $\bar{G}$. But $\bar{G}$ has no proximal points, so $\pi x_{1}=\pi x_{2}$.

Finally, we prove that the centralizers of Toeplitz systems embed in the centralizers of the underlying odometers.
Proposition 3.12. Let $(X, G)$ be an almost one-to-one extension of a $G$-odometer $(Y, G)$. Every element $\varphi \in C(X, G)$ determines $\psi_{\varphi} \in C(Y, G)$ such that the following diagram commutes:


Additionally, this relationship is an embedding; i.e., $\psi_{\varphi_{1}}=\psi_{\varphi_{2}} \Rightarrow \varphi_{1}=\varphi_{2}$.
Proof. Let $\varphi \in C(X, G)$. Let $x_{1}, x_{2} \in X$ be proximal. So $\pi x_{1}=\pi x_{2}$. Since $x_{1}$ and $x_{2}$ are proximal, $\inf _{g \in G} d\left(g \cdot x_{1}, g \cdot x_{2}\right)=0$. Thus $\inf _{g \in G} d\left(\varphi\left(g \cdot x_{1}\right), \varphi\left(g \cdot x_{2}\right)\right)=0$, which, by Lemma 3.11, implies that $\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)$ are proximal. So $\varphi$ preserves the proximal relationship, and so it preserves the $\pi$-fibers. Define $\psi_{\varphi}: Y \rightarrow Y$ as $\psi_{\varphi}=\pi \circ \varphi \circ \pi^{-1}$. This map is well-defined because $\varphi$ preserves the $\pi$-fibers. Suppose $\psi_{\varphi}\left(y_{1}\right)=\psi_{\varphi}\left(y_{2}\right)$ for $y_{1}, y_{2} \in Y$. So $\pi \circ \varphi \circ \pi^{-1}\left(y_{1}\right)=\pi \circ \varphi \circ \pi^{-1}\left(y_{2}\right)$, and thus $\varphi \circ \pi^{-1}\left(y_{1}\right)$ and $\varphi \circ \pi^{-1}\left(y_{2}\right)$ are in the same $\pi$-fibers. Since $\varphi$ preserves the $\pi$-fibers, $\pi^{-1}\left(y_{1}\right)$ and $\pi^{-1}\left(y_{2}\right)$ are in the same $\pi$-fibers, and so it is clear that $y_{1}=y_{2}$. Therefore $\psi_{\varphi}$ is one-to-one. Also, $\psi_{\varphi}$ is continuous, so it is a homeomorphism; i.e., $\psi_{\varphi} \in C(Y, G)$.

Now suppose $\psi_{\varphi_{1}}=\psi_{\varphi_{2}}$. Let $y \in Y$ be such that $\pi^{-1} y=\{x\}$ is a singleton. Then $\varphi_{1}(x)=\pi^{-1}\left(\psi_{\varphi_{1}}(y)\right)$ and $\varphi_{2}(x)=\pi^{-1}\left(\psi_{\varphi_{2}}(y)\right)$. Since $\varphi_{i}$ preserves $\pi$-fibers for $i \in\{1,2\}$, these are singletons. In particular, $\varphi_{1}(x)=\varphi_{2}(x)$. So it is clear then that $g \cdot \varphi_{1}(x)=g \cdot \varphi_{2}(x)$ for all $g \in G$, and so $\varphi_{1}(g \cdot x)=\varphi_{2}(g \cdot x)$ for all $g \in G$. But every orbit is dense, so $\varphi_{1}$ and $\varphi_{2}$ agree on a dense subset of $X$, and hence agree everywhere.

Finally we prove Proposition 3.9.
Proof. We have shown in Proposition 3.12 that $C(X, G)$ embeds into $C(Y, G)$ and by Proposition 3.7 $C(Y, G)$ is Abelian, so $C(X, G)$ is Abelian.

## 4. $\mathbb{Z}^{d}$-Toeplitz systems

In this section, we study Toeplitz systems over $\mathbb{Z}^{d}$ and generalize the construction of Bułatek and Kwiatkowski. In particular, we present a class of Toeplitz systems over $\mathbb{Z}^{d}$ with a trivial centralizer and positive entropy.

Let $x \in \Sigma^{\mathbb{Z}^{d}}$. Note that the topological closure of the orbit of $x, \overline{O(x)}$, is closed and $T$-invariant. So $(\overline{O(x)}, T)$ is a subshift. This is called the orbit closure of $x$.
Definition 4.1. The centralizer of a symbolic dynamical system is called trivial if every element of the centralizer is $T^{g}$ for some $g \in \mathbb{Z}^{d}$.

For $x \in \Sigma^{\mathbb{Z}^{d}}, \sigma \in \Sigma$, and a subgroup $Z \subset \mathbb{Z}^{d}$, define

$$
\begin{aligned}
\operatorname{Per}(x, Z, \sigma) & =\left\{w \in \mathbb{Z}^{d} \mid x(w+z)=\sigma \text { for all } z \in Z\right\}, \\
\operatorname{Per}(x, Z) & =\bigcup_{\sigma \in \Sigma} \operatorname{Per}(x, Z, \sigma) .
\end{aligned}
$$

We say that $x \in \Sigma^{\mathbb{Z}^{d}}$ is a Toeplitz array if for every $v \in \mathbb{Z}^{d}$, there exists a finiteindex subgroup $Z \subseteq \mathbb{Z}^{d}$ (note that $Z$ is necessarily isomorphic to $\mathbb{Z}^{d}$ ) such that $v \in \operatorname{Per}(x, Z)$.

It can be shown that the orbit closure of a Toeplitz array is an almost one-to-one extension of a $\mathbb{Z}^{d}$-odometer. For details, the reader is referred to Theorem 7 and Proposition 21 in [Cortez 2006]. In fact, almost one-to-one extensions of odometers are exactly those systems which are orbit closures of Toeplitz arrays. In particular, defining a Toeplitz system as the orbit closure of a Toeplitz array is equivalent to Definition 3.8.

Definition 4.2. Given a finite alphabet $\Sigma$, a patch is a pair $(P, \mathcal{L})$, where $P \subseteq \mathbb{Z}^{d}$ and $\mathcal{L}: P \rightarrow \Sigma$ is a labeling of $P$. For the purposes of this paper, we will only consider rectangular patches (blocks) which can be defined by $d$ vectors parallel to the coordinate axes.

Given a patch $(P, \mathcal{L})$, we denote the coordinate closest to the origin in Cartesian space by $P[0]$. Any other location in the patch is denoted by $P[i]$, where $i \in \mathbb{Z}^{d}$ is a vector pointing to that location, as referenced from $P[0]$. A square block within $P$ is denoted by $P[i-l, i+k]$, where $k, l \in \mathbb{Z}$ and is the (hyper)cube in $P$ located between $P[i-l \overline{1}]$ and $P[i+k \overline{1}]$, where $\overline{1}=(1,1, \ldots, 1)$.

For a finite block $D$ in $d$ dimensions, we denote the size of $D$ along the $i$-th dimension as $|D|_{i}$. Note that the left-most and bottom-most entry of $D$ is identified with $D(0,0, \ldots, 0)$.

We now show how Toeplitz arrays can be constructed over an alphabet $\Sigma$ borrowing ideas from [Downarowicz 2005].

Let $\left\{p_{t, i}\right\}_{t=0}^{\infty}, 1 \leq i \leq d$, be $d$ sequences of positive integers such that $p_{0, i} \geq 2$ and $p_{t, i}$ divides $p_{t+1, i}$ for all $1 \leq i \leq d$. Define $\lambda_{t+1, i}=p_{t+1, i} / p_{t, i}$ and $\lambda_{0, i}=p_{0, i}$ for all $1 \leq i \leq d$ and $t \geq 0$.

Specify blocks $A_{t}$ as follows:
(1) $\left|A_{t}\right|_{i}=p_{t, i}$.
(2) Some spaces in $A_{t}$ are filled with elements from $\Sigma$ and others are left unfilled. The unfilled spaces are called holes.
(3) The block $A_{t+1}$ is the concatenation of $\lambda_{t+1, i}$ copies of $A_{t}$ along the $i$-th dimension for all $1 \leq i \leq d$, where some holes are filled by symbols from $\Sigma$.
(4) For every $\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in \mathbb{N}^{d}$ there exists a $t \geq 0$ such that $A_{t}\left(i_{1}, i_{2}, \ldots, i_{d}\right) \in \Sigma$ and $A_{t}\left(p_{t, 1}-i_{1}, p_{t, 2}-i_{2}, \ldots, p_{t, d}-i_{d}\right) \in \Sigma$.
Denote by $\omega_{t}$ the periodic tiling of $\mathbb{Z}^{d}$ by the block $A_{t}$ with the bottom-left corner of $A_{t}$ appearing at the origin. Set $\omega=\lim \omega_{t}$. The fourth condition assures that $\omega \in \Sigma^{\mathbb{Z}^{d}}$. We will additionally assume that $p_{t}$ is the smallest period of $\omega_{t}$, which ensures that $\omega$ is a nonperiodic Toeplitz array.

Essentially, in this construction we build finite blocks, each of which contains multiple copies of the block built in the previous step. As we copy these blocks, we fill in some of the holes, and leave some of them as holes. As we continue this process forever, we will have a Toeplitz array covering $\mathbb{Z}^{d}$.
Example 4.3 (one-dimensional Toeplitz array [Downarowicz 2005]). We will construct a Toeplitz array over $\mathbb{Z}$ from the alphabet $\Sigma=\{0,1\}$. Let $\left\{p_{t}\right\}=$ $\{2,4,8,16, \ldots\}$ and so $\lambda_{t}=2$ for all $t \geq 0$. Let $A_{0}=0_{-}$, where the ${ }_{-}$symbol indicates a hole. To get $A_{1}$, we copy $A_{0}$ twice and fill in some of the holes. Say $A_{1}=010$. The underline indicates a hole that was filled in at that step. In each step we will have two holes. For this construction, at each step we will alternately fill in the first hole with 0 and 1 . Let the limiting sequence of this process be $\omega$. Continuing, we have

$$
\begin{aligned}
& A_{2}=010 \underline{0} 010_{-}, \\
& A_{3}=0100010 \underline{10100010 \_}, \\
& A_{4}=010001010100010 \underline{0} 010001010100010_{-},
\end{aligned}
$$

$$
\omega=0100010101000100010001010100010101000101010001000100010101000100 \ldots,
$$

and so we have a Toeplitz array $\omega$. The orbit closure of this point is a Toeplitz system.
Example 4.4 (two-dimensional Toeplitz array). Again we will use the alphabet $\Sigma=\{0,1\}$ and we will construct a Toeplitz array over $\mathbb{Z}^{2}$. Let $\left\{p_{t, 1}\right\}=\left\{p_{t, 2}\right\}=$ $\{2,4,8,16, \ldots\}$. Then $\lambda_{t, 1}=\lambda_{t, 2}=2$ for all $t \geq 0$.

Let

$$
A_{0}=\begin{array}{|ll}
1 & 1 \\
\hline 0 & \\
\hline
\end{array}, \quad A_{1}=\begin{array}{|ll|ll|}
\hline 1 & 1 & 1 & 1 \\
\hline 0 & & 0 & 0 \\
\hline 1 & 1 & 1 & 1 \\
\hline 0 & 1 & 0 & \\
\hline
\end{array},
$$

$A_{2}=$| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 |  | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 |  | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 |  | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 | 0 |  |.

The black squares indicate where the holes are. Continuing this process, we will have a coloring of the whole plane, which will be a Toeplitz array, say $\omega$.

We call subblocks of $A_{t+1}$ which coincide with indices of the location of concatenated $A_{t}$ blocks $t$-blocks. We note that $\omega$ consists of the concatenation of $t$-blocks in all directions for any $t$, where all $t$-blocks agree in all locations except for where the holes were. In Example 4.4, the thick lines in $A_{1}$ indicate the 0-blocks, and the thick lines in $A_{2}$ indicate the 1-blocks.

Now we introduce a condition on constructing Toeplitz arrays which will give rise to Toeplitz systems with a trivial centralizer.

Condition (*). We say a Toeplitz array satisfies the condition (*) if:

- Every $t$-block in $A_{t+1}$ is composed of either $A_{t}$ where no hole remaining from $A_{t}$ is filled in or $A_{t}$ with all holes filled.
- The perimeter of $A_{t+1}$ is composed of $t$-blocks which are all filled in.
- For every $i \in \mathbb{Z}^{d}$ such that $A_{t}[i]$ is a hole, there are two $t$-blocks $B_{1}$ and $B_{2}$ with $B_{1}[i] \neq B_{2}[i]$.

Let $e_{1}, e_{2}, \ldots, e_{d}$ be the generators of $\mathbb{Z}^{d}$. For $1 \leq i \leq d$, let $T_{i}$ denote a shift by the vector $e_{i}$. In this context, the shift action on the system can be considered $d$ independent shift actions; i.e., $T^{g}=T^{\left(g_{1}, g_{2}, \ldots, g_{d}\right)}=T_{1}^{g_{1}} \times T_{2}^{g_{2}} \times \cdots \times T_{d}^{g_{d}}$.
Theorem 4.5. Let $\omega$ be a Toeplitz array satisfying the condition (*). Then the centralizer $C(T)$ of $(\overline{O(\omega)}, T)$ is trivial.

Proof. Let ( $\bar{G}, T_{1} \times T_{2} \times \cdots \times T_{d}$ ) be the maximal equicontinuous factor of $(\overline{O(\omega)}, T)$. Denote by $\pi:(\overline{O(\omega)}, T) \rightarrow\left(\bar{G}, T_{1} \times T_{2} \times \cdots \times T_{d}\right)$ the almost one-to-one factor map. Let $S \in C(T)$. By Proposition 3.12, this determines an element $S^{\prime} \in C\left(\bar{G}, T_{1} \times T_{2} \times \cdots \times T_{d}\right)$ which acts as a translation by some element $h \in \bar{G}$, by Lemma 3.6. By a result of [Hedlund 1969], we note $S$ is determined by a block code $f$ of window size $k \in \mathbb{N}$. In particular, if $u \in \overline{O(\omega)}$ and $z=S(u)$, then

$$
\begin{equation*}
z[i]=f(u[i-k, i+k]) \quad \text { for all } i \in \mathbb{Z}^{d} . \tag{1}
\end{equation*}
$$

In particular, the automorphism determines what to put in a specific location by looking at a block around that location in the preimage. Increasing $k$ if necessary, we can assume that $S^{-1}$ is also determined by a block code of the same window size $k$.

Note $\bar{G}$ is a product odometer, so $h=\left(h_{1}, h_{2}, \ldots, h_{d}\right)$, where $h_{i}=\sum_{t=0}^{\infty} h_{t, i} p_{t-1, i}$ for $1 \leq i \leq d$ with $0 \leq h_{t, i} \leq \lambda_{t, i}-1, p_{-1, i}=1$. Each $h_{i}$ is an element of the one-dimensional odometer occurring in the $i$-th coordinate of $h$. Let $m_{t, i}=$ $\sum_{j=0}^{t} h_{j, i} p_{j-1, i}$ and $m_{t}=\left(m_{t, 1}, m_{t, 2}, \ldots, m_{t, d}\right) \in \mathbb{Z}^{d}$. For each $g \in G$, denote by $X_{g}$ the preimage $\pi^{-1}(\{g\})$ under the factor map $\pi$. Then $S\left(X_{g}\right)=X_{g+h}$.

We claim that for all $1 \leq i \leq d$ either $m_{t, i} \leq k$ or $m_{t, i} \geq p_{t, i}-k-1$.

| $\dot{A}_{t}$ | $\dot{A}_{t}$ | $A_{t}$ |  |
| :---: | :---: | :---: | :---: |
|  | $A_{t}$ | $A_{t}$ | $A_{t}$ |
|  |  |  |  |

Figure 1. The two-dimensional case of the argument in the proof of Theorem 4.5. $\dot{A}_{t}$ indicates $A_{t}$ blocks with all holes filled and the solid black and gray squares indicate holes in $x_{t+1}$ and $y_{t+1}$, respectively.

Let $x \in \overline{O(\omega)}$ and $y=S(x)$. Suppose that $x$ has a $t$-block appearing at a location $x[i]$. Then by the construction of Toeplitz subshifts and almost one-to-one extensions, $y$ necessarily has a $t$-block at the location $y\left[i-m_{t}\right]$. Note that for every $t \geq 1$ the array $x$ can be written as a concatenation of $(t+1)$-blocks, which are made of $t$-blocks. Recall that all $t$-blocks are the same, except they may disagree where the holes are located. Denote by $x_{t+1}$ the $d$-dimensional array over the alphabet $\Sigma \cup\{$ hole $\}$ consisting of copies of the block $A_{t+1}$ at the locations where they appear in $x$. Note that $\lim x_{t}=x$. Similarly, we can define $y_{t+1}$, a $(t+1)$-block skeleton of the array $y$. Note that $x_{t+1}$ and $y_{t+1}$ are $p_{t+1}$-periodic and shifted by the vector $m_{t+1}$ relative to each other. Let $A$ denote any $(t+1)$-block of $y$. This block looks like $A_{t+1}$, which in turn is the concatenation of $A_{t}$ blocks both filled and not. Thus, we can view both $y_{t+1}$ and $x_{t+1}$ as the concatenations of copies of $A_{t}$ and copies of $\dot{A}_{t}$, filled versions of $A_{t}$. The $t$-blocks in $x_{t+1}$ and $y_{t+1}$ appear shifted by the vector $m_{t}$.

Fix $t>0$ such that $p_{t-1, i}>2 k+1$ for every $i=1, \ldots, d$. Fix $j \in \mathbb{Z}^{d}$ such that $y_{t+1}[j]$ is a hole. Note that this hole would correspond to a hole in $A_{t}$. Then the hypercube $x_{t+1}[j-k, j+k]$ must also contain a hole. For otherwise, $x_{t+1}[j-k, j+k]$ would be the same for every $j$ with $j \equiv i \bmod p_{t}$ and, thus, $y[j]=S(x)[j]=$ $f(x[j-k, j+k])$ would be the same for every such $j$. This would contradict the last property of the condition (*). Applying the same argument to $S^{-1}$, we see that if $x_{t+1}[j]$ is a hole for some $j \in \mathbb{Z}^{d}$, then $y[j-k, j+k]$ must also contain a hole.

This argument is demonstrated for the two-dimensional case and for the forwardlooking centralizers in Figure 1.

Now, the $t$-blocks in the arrays $x_{t+1}$ and $y_{t+1}$ are shifted by the vector $m_{t}$ relative to each other. At the same time, by the argument above, the filled $t$-blocks $\dot{A}_{t}$ in $x_{t+1}$ and $y_{t+1}$ must appear under each other and can be shifted by a vector of length at
most $k$. Since $p_{t}$ is the smallest period of $\omega_{t}$, we conclude that for all $1 \leq i \leq d$ either $m_{t, i} \leq k$ or $m_{t, i} \geq p_{t, i}-k-1$. It follows that $h_{i}$ is an integer for every $i=1, \ldots, d$. So, $h=S^{\prime}(0)=T^{h}(0)$; i.e., $S^{\prime}$ and $T^{h}$ agree on one point. Furthermore, $S^{\prime}$ agrees with the action of $T^{h}$ on the entire orbit of 0 , which is dense. Therefore, $S^{\prime}=T^{h}$.

Let $\alpha$ be in the orbit of $\omega$ in $(\overline{O(\omega)}, T)$; i.e., $\alpha=T^{g} \omega$ for some $g \in \mathbb{Z}^{d}$. Note

$$
\pi S(\alpha)=\pi S\left(T^{g} \omega\right)=S^{\prime} \pi\left(T^{g} \omega\right)=S^{\prime} T^{g}(0)=T^{h} T^{g}(0)=\pi T^{h} T^{g} \omega=\pi T^{h}(\alpha)
$$

So $S(\alpha)$ and $T^{h}(\alpha)$ are in the same $\pi$-fiber. Since $\alpha$ is in the orbit of $\omega$, it has a unique preimage under $\pi$. Therefore $S(\alpha)=T^{h}(\alpha)$. And so $S$ and $T^{h}$ agree on the entire orbit of $\omega$, which is dense. So $S=T^{h}$.

## 5. Positive-entropy Toeplitz subshift

We now construct an explicit example of a two-dimensional Toeplitz subshift which has positive entropy. This example is constructed so that it obeys the condition ( $*$ ), thus ensuring that it has a trivial centralizer.

Let $h>0$ and choose an integer $l_{0}$ such that $\log \left(l_{0}-1\right) \leq h \leq \log \left(l_{0}\right)$. For $i \geq 0$, let $\varepsilon_{i}>0$ and $\left\{\varepsilon_{i}\right\}$ be such that $\sum_{i=0}^{\infty} \varepsilon_{i}<h / 2$.

We note that for any $l$ and any $\varepsilon>0$, there exists $n \in \mathbb{N}$ sufficiently large such that

$$
\begin{equation*}
\frac{\log \left(l^{n^{2}}\right)}{(n+2)^{2}} \geq \log (l)-\varepsilon \tag{2}
\end{equation*}
$$

since $(n /(n+2))^{2} \rightarrow 1$.
Let $q_{0}$ be chosen so that

$$
\frac{\log \left(l_{0} q_{0}^{2}\right)}{\left(q_{0}+2\right)^{2}} \geq \log \left(l_{0}\right)-\frac{\varepsilon_{0}}{2} .
$$

Also require $q_{0}^{2} \geq l_{0}$. Define $l_{1}=l_{0}^{q_{0}^{2}}$. We notice that there are $l_{0}^{q_{0}^{2}}$ square blocks of side length $q_{0}$ over the alphabet $\left\{0,1, \ldots, l_{0}-1\right\}$. We enumerate these blocks as $B_{i}^{(0)}$ for $0 \leq i \leq l_{1}-1$. Furthermore, we require that $B_{0}^{(0)}$ and $B_{1}^{(0)}$ contain every letter from the alphabet. Let $C_{i}^{(0)}$ be the square block of side length $q_{0}+2$ with the block $B_{i}^{(0)}$ surrounded by a 0 in the top left corner, a 1 in the bottom right corner, and 0 's below the main diagonal and 1 's above it, as in the diagram below. We will denote this as $C_{i}^{(0)}=0 B_{i}^{(0)} 1$ for $0 \leq i \leq l_{1}-1$ :

$$
C_{i}^{(0)}=\begin{array}{|c|c|c|c|}
\hline 0 & 1 & \cdots & 1 \\
\hline 0 & B_{i}^{(0)} & \vdots \\
\hline \vdots & { }_{i} & 1 \\
\hline 0 & \cdots & 0 & 1 \\
\hline
\end{array} .
$$

For $k \geq 1$, define $l_{k}=l_{k-1}^{q_{k-1}^{2}}$ and let $q_{k}$ be such that

$$
\begin{equation*}
\frac{\log \left(l_{k} q_{k}^{2}\right)}{\left(q_{k}+2\right)^{2}} \geq \log \left(l_{k}\right)-\frac{\varepsilon_{k}}{2} . \tag{3}
\end{equation*}
$$

Additionally, require that $q_{k}^{2} \geq l_{k}$. Let $B_{i}^{(k)}$ be all the square blocks of side length $q_{k}$ over the alphabet $\left\{0,1, \ldots, l_{k}-1\right\}$ for $0 \leq i \leq l_{k+1}-1$. Require that $B_{0}^{(k)}$ and $B_{1}^{(k)}$ contain every letter from the alphabet. Let $C_{i}^{(k)}=0 B_{i}^{(k)} 1$ for $0 \leq i \leq l_{k+1}-1$.

Consider the following operation on finite blocks. Let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be square blocks of the same side length $|A|$ over some alphabet. Let $B$ be a square block over an alphabet containing $\{1,2, \ldots, n\}$. We define the block

$$
C=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} * B
$$

as $C[i, j]=A_{B[i . j]}$. In particular, $C$ will be a square block of side length $|B| \cdot|A|$.
Our goal is to construct a sequence of blocks $\left\{A_{t}\right\}$ that defines a system of $k$-blocks and that satisfies the condition $(*)$. We proceed as follows: Let $A_{i}^{(0)}=C_{i}^{(0)}$ and

$$
A_{i}^{(k)}=\left\{A_{0}^{(k-1)}, A_{1}^{(k-1)}, \ldots, A_{l_{k}-1}^{(k-1)}\right\} * C_{i}^{(k)} .
$$

We note that since $C_{0}^{(1)}$ and $C_{1}^{(1)}$ have every letter of the alphabet $\left\{0,1, \ldots, l_{1}-1\right\}$, the blocks $A_{0}^{(1)}$ and $A_{1}^{(1)}$ will have every 0 -block as a subblock. Similarly, $C_{0}^{(2)}$ and $C_{1}^{(2)}$ contain every letter in $\left\{0,1, \ldots, l_{2}-1\right\}$ and so the blocks $A_{0}^{(2)}$ and $A_{1}^{(2)}$ will contain every 1 -block as a subblock. In general, we note that each block $A_{i}^{(k)}$ for $i=0,1$ has every $(k-1)$-block as a subblock.

We let

$$
A_{0}=\begin{array}{|c|c|c|c|}
\hline 0 & 1 & \cdots & 1 \\
\hline 0 & & \vdots \\
\cline { 1 - 1 } & - & & 1 \\
\cline { 1 - 2 } 0 & \cdots & 0 & 1 \\
\hline
\end{array},
$$

where the side length of the square box $A_{0}$ is $q_{0}+2$, and the dash in the center square indicates a square of side length $q_{0}$ consisting of all holes. We note that $A_{i}^{(0)}$, $i=0, \ldots, l_{1}-1$, are 0 -blocks corresponding to $A_{0}$.

Inductively, define

$A_{k+1}=$| $A_{0}^{(k)}$ | $A_{1}^{(k)}$ | $\cdots$ | $A_{1}^{(k)}$ | $A_{1}^{(k)}$ |
| :---: | :---: | :---: | :---: | :---: |
| $A_{0}^{(k)}$ | $A_{k}$ | $\cdots$ | $A_{k}$ | $A_{1}^{(k)}$ |
| $\vdots$ | $\vdots$ | $\ddots$ | $\vdots$ | $\vdots$ |
| $A_{0}^{(k)}$ | $A_{k}$ | $\cdots$ | $A_{k}$ | $A_{1}^{(k)}$ |
| $A_{0}^{(k)}$ | $A_{0}^{(k)}$ | $\cdots$ | $A_{0}^{(k)}$ | $A_{1}^{(k)}$ |,

where there is a square block consisting of $q_{k}^{2}$ copies of $A_{k}$ surrounded by $4 q_{k}+4$ copies of $A_{i}^{(k)}$ for $i=0$ or 1 on each side positioned similarly to 0 's and 1 's in $A_{0}$. Notice that $A_{0}^{(k)}$ and $A_{1}^{(k)}$ have no holes, so all the holes are contained in the middle block of $A_{k}$ blocks. Note that $A_{i}^{(k)}, i=0, \ldots, l_{k}-1$, are the $k$-blocks corresponding to the pattern $A_{k}$.

Let $\omega$ be the limiting array from the above process. Note that $\omega \in\left\{0, \ldots, l_{0}-1\right\}^{\mathbb{Z}^{2}}$ and $\omega$ satisfies the condition (*).

Proposition 5.1. The Toeplitz system $(\overline{O(\omega)}, T)$ has positive entropy.
Proof. Define $\lambda_{k}=q_{k}+2$ and $p_{k}=\lambda_{1} \lambda_{2} \cdots \lambda_{k}$. Let $h_{\omega}$ be the entropy of $(\overline{O(\omega)}, T)$ and let $\Theta(n)$ be the number of square blocks of side length $n$ appearing in $\omega$. We note that

$$
h_{\omega}=\lim _{n \rightarrow \infty} \frac{\log (\Theta(n))}{n^{2}}=\lim _{k \rightarrow \infty} \frac{\log \left(\Theta\left(p_{k}\right)\right)}{p_{k}^{2}},
$$

by switching to a subsequence.
There are $l_{k+1}$ many $k$-blocks. We note that every block $A_{k}$ contains every $(k-1)$-block as a subblock. This is because the blocks $C_{i}^{(k)}$ for $i=0$ or $i=1$ contain every letter of the alphabet in them. This means that as we do the shuffling process described above, the blocks $A_{i}^{(k)}$ for $i=0$ or $i=1$ contain every single block $A_{i}^{(k-1)}$ for $0 \leq i \leq l_{k}-1$. Furthermore, since $k$-blocks are squares of side length $p_{k}$, there are at least as many blocks of side length $p_{k}$ occurring in $\omega$ as there are $k$-blocks. Specifically, square blocks of length $p_{k}$ can occur at any position within $\omega$, while $k$-blocks only occur at specific positions. Hence we have

$$
\begin{equation*}
\Theta\left(p_{k}\right) \geq l_{k+1} . \tag{4}
\end{equation*}
$$

So we have

$$
\begin{equation*}
h_{\omega} \geq \limsup _{k \rightarrow \infty} \frac{\log \left(l_{k+1}\right)}{p_{k}^{2}} . \tag{5}
\end{equation*}
$$

By (3) we have

$$
\frac{\log \left(l_{k+1}\right)}{\lambda_{k}^{2}} \geq \log \left(l_{k}\right)-\frac{\varepsilon_{k}}{2} .
$$

It then follows by (2) that

$$
\frac{\log \left(l_{k+1}\right)}{p_{k}^{2}} \geq \frac{\lambda_{k}^{2}\left(\log \left(l_{k}\right)-\varepsilon_{k} / 2\right)}{p_{k}^{2}}=\frac{\log \left(l_{k}\right)-\varepsilon_{k} / 2}{p_{k-1}^{2}} \geq \frac{\log \left(l_{k}\right)}{p_{k-1}^{2}}-\varepsilon_{k} .
$$

Continuing, we have

$$
\frac{\log \left(l_{k+1}\right)}{p_{k}^{2}} \geq h-\sum_{i=0}^{k} \varepsilon_{i}
$$

Taking the limit as $k \rightarrow \infty$, from (5), we have $h_{\omega} \geq h / 2>0$.

It is a basic fact that every Toeplitz system is minimal, so this system is minimal. It is either finite or uncountable, and since it has positive entropy, it cannot be finite. So this is an infinite minimal Toeplitz system.

## References

[Auslander 1963] J. Auslander, "Endomorphisms of minimal sets", Duke Math. J. 30:4 (1963), 605-614. MR Zbl
[Auslander 1988] J. Auslander, Minimal flows and their extensions, North-Holland Mathematics Studies 153, North-Holland, Amsterdam, 1988. MR Zbl
[Boyle et al. 1988] M. Boyle, D. Lind, and D. Rudolph, "The automorphism group of a shift of finite type", Trans. Amer. Math. Soc. 306:1 (1988), 71-114. MR Zbl
[Brouwer 1910] L. E. J. Brouwer, "On the structure of perfect sets of points", KNAW, Proc. 12 (1910), 785-794.
[Bułatek and Kwiatkowski 1990] W. Bułatek and J. Kwiatkowski, "The topological centralizers of Toeplitz flows and their $Z_{2}$-extensions", Publ. Mat. 34:1 (1990), 45-65. MR Zbl
[Bułatek and Kwiatkowski 1992] W. Bułatek and J. Kwiatkowski, "Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers", Studia Math. 103:2 (1992), 133-142. MR Zbl
[Cortez 2006] M. I. Cortez, " ${ }^{d}{ }^{d}$ Toeplitz arrays", Discrete Contin. Dyn. Syst. 15:3 (2006), 859-881. MR Zbl
[Cortez and Petite 2008] M. I. Cortez and S. Petite, " $G$-odometers and their almost one-to-one extensions", J. Lond. Math. Soc. (2) 78:1 (2008), 1-20. MR Zbl
[Cyr and Kra 2015] V. Cyr and B. Kra, "The automorphism group of a shift of linear growth: beyond transitivity", Forum Math. Sigma 3 (2015), art. id. e5. MR Zbl
[Cyr and Kra 2016a] V. Cyr and B. Kra, "The automorphism group of a minimal shift of stretched exponential growth", J. Mod. Dyn. 10 (2016), 483-495. MR Zbl
[Cyr and Kra 2016b] V. Cyr and B. Kra, "The automorphism group of a shift of subquadratic growth", Proc. Amer. Math. Soc. 144:2 (2016), 613-621. MR Zbl
[Donoso et al. 2016] S. Donoso, F. Durand, A. Maass, and S. Petite, "On automorphism groups of low complexity subshifts", Ergodic Theory Dynam. Systems 36:1 (2016), 64-95. MR Zbl
[Donoso et al. 2017] S. Donoso, F. Durand, A. Maass, and S. Petite, "On automorphism groups of Toeplitz subshifts", Discrete Anal. (2017), art. id. 11. MR
[Downarowicz 2005] T. Downarowicz, "Survey of odometers and Toeplitz flows", pp. 7-37 in Algebraic and topological dynamics (Bonn, 2004), edited by S. Kolyada et al., Contemp. Math. 385, Amer. Math. Soc., Providence, RI, 2005. MR Zbl
[Hedlund 1969] G. A. Hedlund, "Endomorphisms and automorphisms of the shift dynamical system", Math. Systems Theory 3 (1969), 320-375. MR Zbl
[Hewitt and Ross 1979] E. Hewitt and K. A. Ross, Abstract harmonic analysis, I: Structure of topological groups, integration theory, group representations, 2nd ed., Grundlehren der Mathematischen Wissenschaften 115, Springer, 1979. MR Zbl
[Hochman 2010] M. Hochman, "On the automorphism groups of multidimensional shifts of finite type", Ergodic Theory Dynam. Systems 30:3 (2010), 809-840. MR Zbl
[Jacobs and Keane 1969] K. Jacobs and M. Keane, " 0 -1-sequences of Toeplitz type", Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 123-131. MR Zbl
[Kitchens 1998] B. P. Kitchens, Symbolic dynamics: one-sided, two-sided and countable state Markov shifts, Springer, 1998. MR Zbl
[Krieger 2010] F. Krieger, "Toeplitz subshifts and odometers for residually finite groups", pp. 147161 in École de Théorie Ergodique (Marseilles, 2006), edited by Y. Lacroix et al., Sémin. Congr. 20, Soc. Math. France, Paris, 2010. MR Zbl
[Markley 1975] N. G. Markley, "Substitution-like minimal sets", Israel J. Math. 22:3-4 (1975), 332-353. MR Zbl
[Markley and Paul 1979] N. G. Markley and M. E. Paul, "Almost automorphic symbolic minimal sets without unique ergodicity", Israel J. Math. 34:3 (1979), 259-272. MR Zbl
[Olli 2013] J. Olli, "Endomorphisms of Sturmian systems and the discrete chair substitution tiling system", Discrete Contin. Dyn. Syst. 33:9 (2013), 4173-4186. MR Zbl
[Veech 1970] W. A. Veech, "Point-distal flows", Amer. J. Math. 92 (1970), 205-242. MR Zbl
Received: 2017-05-03 Revised: 2017-06-13 Accepted: 2018-06-25
medynets@usna.edu
jptalisse@gmail.com
Mathematics Department, United States Naval Academy, Annapolis, MD, United States

Mathematics Department, United States Naval Academy, Annapolis, MD, United States

## involve

msp.org/involve

## INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

## MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

## BOARD OF EDITORS

| Colin Adams | Williams College, USA | Chi-Kwong Li | College of William and Mary, USA |
| :---: | :---: | :---: | :---: |
| Arthur T. Benjamin | Harvey Mudd College, USA | Robert B. Lund | Clemson University, USA |
| Martin Bohner | Missouri U of Science and Technology, | USA Gaven J. Martin | Massey University, New Zealand |
| Nigel Boston | University of Wisconsin, USA | Mary Meyer | Colorado State University, USA |
| Amarjit S. Budhiraja | U of N Carolina, Chapel Hill, USA | Frank Morgan | Williams College, USA |
| Pietro Cerone | La Trobe University, Australia | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran |
| Scott Chapman | Sam Houston State University, USA | Zuhair Nashed | University of Central Florida, USA |
| Joshua N. Cooper | University of South Carolina, USA | Ken Ono | Emory University, USA |
| Jem N. Corcoran | University of Colorado, USA | Yuval Peres | Microsoft Research, USA |
| Toka Diagana | Howard University, USA | Y.-F. S. Pétermann | Université de Genève, Switzerland |
| Michael Dorff | Brigham Young University, USA | Jonathon Peterson | Purdue University, USA |
| Sever S. Dragomir | Victoria University, Australia | Robert J. Plemmons | Wake Forest University, USA |
| Joel Foisy | SUNY Potsdam, USA | Carl B. Pomerance | Dartmouth College, USA |
| Errin W. Fulp | Wake Forest University, USA | Vadim Ponomarenko | San Diego State University, USA |
| Joseph Gallian | University of Minnesota Duluth, USA | Bjorn Poonen | UC Berkeley, USA |
| Stephan R. Garcia | Pomona College, USA | Józeph H. Przytycki | George Washington University, USA |
| Anant Godbole | East Tennessee State University, USA | Richard Rebarber | University of Nebraska, USA |
| Ron Gould | Emory University, USA | Robert W. Robinson | University of Georgia, USA |
| Sat Gupta | U of North Carolina, Greensboro, USA | Javier Rojo | Oregon State University, USA |
| Jim Haglund | University of Pennsylvania, USA | Filip Saidak | U of North Carolina, Greensboro, USA |
| Johnny Henderson | Baylor University, USA | Hari Mohan Srivastava | University of Victoria, Canada |
| Glenn H. Hurlbert | Arizona State University,USA | Andrew J. Sterge | Honorary Editor |
| Charles R. Johnson | College of William and Mary, USA | Ann Trenk | Wellesley College, USA |
| K. B. Kulasekera | Clemson University, USA | Ravi Vakil | Stanford University, USA |
| Gerry Ladas | University of Rhode Island, USA | Antonia Vecchio | Consiglio Nazionale delle Ricerche, Italy |
| David Larson | Texas A\&M University, USA | John C. Wierman | Johns Hopkins University, USA |
| Suzanne Lenhart | University of Tennessee, USA | Michael E. Zieve | University of Michigan, USA |

## PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ( $+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

## PUBLISHED BY

- mathematical sciences publishers


## nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

# involve 2019 vol. 12 no. 3 

Darboux calculus ..... 361
Marco Aldi and Alexander McCleary
A countable space with an uncountable fundamental group ..... 381Jeremy Brazas and Luis Matos
Toeplitz subshifts with trivial centralizers and positive entropy ..... 395
Kostya Medynets and James P. Talisse
Associated primes of $h$-wheels ..... 411Corey Brooke, Molly Hoch, Sabrina Lato, Janet Striuliand Bryan Wang
An elliptic curve analogue to the Fermat numbers ..... 427
Skye Binegar, Randy Dominick, Meagan Kenney, Jeremy Rouse and Alex Walsh
Nilpotent orbits for Borel subgroups of $\mathrm{SO}_{5}(k)$ ..... 451
Madeleine Burkhart and David Vella
Homophonic quotients of linguistic free groups: German, Korean, and ..... 463
Turkish
Herbert Gangl, Gizem Karaali and Woohyung Lee
Effective moments of Dirichlet $L$-functions in Galois orbits ..... 475
Rizwanur Khan, Ruoyun Lei and Djordje Milićević
On the preservation of properties by piecewise affine maps of locally ..... 491 compact groupsSerina Camungol, Matthew Morison, Skylar Nicol andRoss Stokke
Bin decompositions ..... 503
Daniel Gotshall, Pamela E. Harris, Dawn Nelson, Maria
D. Vega and Cameron Voigt
Rigidity of Ulam sets and sequences ..... 521
Joshua Hinman, Borys Kuca, Alexander Schlesinger and Arseniy Sheydvasser


[^0]:    MSC2010: 37B05, 37B40, 37B50.
    Keywords: topological dynamics, symbolic dynamics, automorphism group, centralizer, topological entropy.
    The research of Medynets was supported by NSA Young Investigator Grant H98230258656.

