
inv lve
a journal of mathematics

mathematical sciences publishers

2009 Vol. 2, No. 1

Computing points of small height for cubic
polynomials

Robert L. Benedetto, Benjamin Dickman, Sasha Joseph,
Benjamin Krause, Daniel Rubin and Xinwen Zhou



INVOLVE 2:1(2009)

Computing points of small height for cubic
polynomials

Robert L. Benedetto, Benjamin Dickman, Sasha Joseph,
Benjamin Krause, Daniel Rubin and Xinwen Zhou

(Communicated by Bjorn Poonen)

Let φ ∈Q[z] be a polynomial of degree d at least two. The associated canonical
height ĥφ is a certain real-valued function on Q that returns zero precisely at
preperiodic rational points of φ. Morton and Silverman conjectured in 1994 that
the number of such points is bounded above by a constant depending only on d.
A related conjecture claims that at nonpreperiodic rational points, ĥφ is bounded
below by a positive constant (depending only on d) times some kind of height of
φ itself. In this paper, we provide support for these conjectures in the case d = 3
by computing the set of small height points for several billion cubic polynomials.

Let φ(z) ∈ Q[z] be a polynomial with rational coefficients. Define φ0(z) = z,
and for every n ≥ 1, let φn(z) = φ ◦ φn−1(z); that is, φn is the n-th iterate of φ
under composition. A point x is said to be periodic under φ if there is an integer
n ≥ 1 such that φn(x)= x . In that case, we say x is n-periodic; the smallest such
positive integer n is called the period of x . More generally, x is preperiodic under
φ if there are integers n > m ≥ 0 such that φn(x)= φm(x); equivalently, φm(x) is
periodic for some m ≥ 0.

Using the theory of arithmetic heights, Northcott [1950] proved that if the degree
of φ is at least 2, then φ has only finitely many preperiodic points in Q. (In fact, his
result applied far more generally, to morphisms of N -dimensional projective space
over any number field.) In 1994, motivated by Northcott’s result and by analogies to
torsion points of elliptic curves (for which uniform bounds were proven by Mazur
[1977] over Q and by Merel [1996] over arbitrary number fields), Morton and
Silverman [1994; 1995] proposed a dynamical Uniform Boundedness Conjecture.
Their conjecture applied to the same general setting as Northcott’s Theorem, but
we state it here only for polynomials over Q.
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Conjecture 1 [Morton and Silverman 1994]. For any d ≥ 2, there is a constant
M =M(d) such that no polynomial φ ∈Q[z] of degree d has more than M rational
preperiodic points.

Thus far only partial results towards Conjecture 1 have been proven. Several
authors [Morton and Silverman 1994; 1995; Narkiewicz 1989; Pezda 1994; Zieve
1996] have bounded the period of a rational periodic point in terms of the smallest
prime of good reduction (see Definition 1.3). Others [Flynn et al. 1997; Manes
2007; Morton 1992; 1998; Poonen 1998] have proven that polynomials of degree
two cannot have rational periodic points of certain periods by studying the set of
rational points on an associated dynamical modular curve; see also [Silverman
2007, Section 4.2]. A different method, introduced in [Call and Goldstine 1997]
and generalized and sharpened in [Benedetto 2007], gave (still nonuniform) bounds
for the number of preperiodic points by taking into account all primes, including
those of bad reduction.

In a related vein, the canonical height function ĥφ : Q→ [0,∞) satisfies the
functional equation ĥφ(φ(z))= d · ĥφ(z), where d = degφ, and it has the property
that ĥφ(x)=0 if and only if x is a preperiodic point of φ; see Section 1. Meanwhile,
if we consider φ itself as a point in the appropriate moduli space of all polynomials
of degree d , we can also define h(φ) to be the arithmetic height of that point; see
[Silverman 2007, Section 4.11]. For example, the height of the quadratic polyno-
mial φ(z) = z2

+ m/n is h(φ) := h(m/n) = log max{|m|, |n|}; a corresponding
height for cubic polynomials appears in Definition 4.4. Again by analogy with
elliptic curves, we have the following conjecture, stating that the canonical height
of a nonpreperiodic rational point cannot be too small in comparison to h(φ); see
[Silverman 2007, Conjecture 4.98] for a more general version.

Conjecture 2. Let d ≥ 2. Then there is a positive constant M ′ = M ′(d) > 0 such
that for any polynomial φ ∈ Q[z] of degree d and any point x ∈ Q that is not
preperiodic for φ, we have ĥφ(x)≥ M ′h(φ).

Just as Conjecture 1 says that any preperiodic rational point must land on a re-
peated value after a bounded number of iterations, Conjecture 2 essentially says that
the size of a nonpreperiodic rational point must start to explode within a bounded
number of iterations. Some theoretical evidence for Conjecture 2 appears in [Baker
2006; Ingram≥2009], and computational evidence when d=2 appears in [Gillette
2004]. The smallest known value of ĥφ(x)/h(φ) for d = 2 occurs for x = 7

12 under
φ(z)= z2

−
181
144 ; the first few iterates are

7
12
7→
−11
12
7→
−5
12
7→
−13
12
7→
−1
12
7→
−5
4
7→

11
36
7→
−377
324

7→
2445
26244

7→ · · · .
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(This example was found in [Gillette 2004] by a computer search.) The small
canonical height ratio ĥφ(7/12)/ log 181 ≈ .0066 makes precise the observation
that although the numerators and denominators of the iterates eventually explode
in size, it takes several iterations for the explosion to get underway.

In this paper, we investigate cubic polynomials with rational coefficients. We
describe an algorithm to find preperiodic and small height rational points of such
maps, and we present the resulting data, which supports both conjectures. In
particular, after checking the fourteen billion cubics with coefficients of smallest
height, we found none with more than eleven rational preperiodic points; those with
exactly ten or eleven are listed in Table 2. Meanwhile, as regards Conjecture 2,
the smallest height ratio hφ(x) := ĥφ(x)/h(φ) we found was about .00025, for
φ(z)=− 25

24 z3
+

97
24 z+ 1 and the point x =− 7

5 , with orbit

−
7
5
7→ −

9
5
7→ −

1
5
7→

1
5
7→

9
5
7→

11
5
7→ −

6
5
7→ −

41
20
7→

4323
2560

7→ . . . .

More importantly, although we found quite a few cubics throughout the search
with a nonpreperiodic point of height ratio less than .001, only nine (listed in
Table 6) gave hφ(x) < .0007, and the minimal one above was found early in the
search. Thus, our data suggests that Conjecture 2 is true for cubic polynomials,
with M ′(3)= .00025.

The outline of the paper is as follows. In Section 1 we review heights, canonical
heights, and local canonical heights. In Section 2 we state and prove formulas for
estimating local canonical heights accurately in the case of polynomials. In Section
3, we discuss filled Julia sets (both complex and nonarchimedean), and in Section
4 we consider cubics specifically. Finally, we describe our search algorithm in
Section 5 and present the resulting data in Section 6.

Our exposition does not assume any background in either dynamics or arithmetic
heights, but the interested reader is referred to Silverman’s text [Silverman 2007].
For more details on nonarchimedean filled Julia sets and local canonical heights,
see [Benedetto 2007; Call and Goldstine 1997; Call and Silverman 1993].

1. Canonical heights

Denote by MQ the usual set {| · |∞, | · |2, | · |3, | · |5, . . .} of absolute values (also
called places) of Q, normalized to satisfy the product formula∏

v∈MQ

|x |v = 1 for any nonzero x ∈Q×.

(See [Gouvêa 1997, Chapters 2–3] or [Koblitz 1984, Chapter 1], for example, for
background on absolute values.) The standard (global) height function on Q is the
function h : Q→ R given by h(x) := log max{|m|∞, |n|∞}, if we write x = m/n
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in lowest terms. Equivalently,

h(x)=
∑
v∈MQ

log max{1, |x |v} for any x ∈Q. (1-1)

Of course, h extends to the algebraic closure Q̄ of Q; see [Lang 1983, Section 3.1],
[Hindry and Silverman 2000, Section B.2], or [Silverman 2007, Section 3.1]. The
height function satisfies two important properties. First, for any polynomial φ(z)∈
Q[z], there is a constant C = C(φ) such that∣∣h(φ(x))− d · h(x)

∣∣≤ C for all x ∈ Q̄, (1-2)

where d = degφ. Second, if we restrict h to Q, then for any bound B ∈ R,

{x ∈Q : h(x)≤ B} is a finite set. (1-3)

For any fixed polynomial φ ∈ Q[z] (or more generally, rational function) of
degree d ≥ 2, the canonical height function ĥφ : Q̄→ R for φ is given by

ĥφ(x) := lim
n→∞

d−nh(φn(x)),

and it satisfies the functional equation

ĥφ(φ(x))= d · ĥφ(x) for all x ∈ Q̄. (1-4)

(The convergence of the limit and the functional equation follow fairly easily from
(1-2).) In addition, there is a constant C ′ = C ′(φ) such that∣∣ĥφ(x)− h(x)

∣∣≤ C ′ for all x ∈ Q̄. (1-5)

Northcott’s Theorem [Northcott 1950] follows because properties (1-3)–(1-5) im-
ply that for any x ∈Q (in fact, for any x ∈ Q̄), ĥ(x)=0 if and only if x is preperiodic
under φ.

For our computations, we will need to compute ĥφ(x) rapidly and accurately.
Unfortunately, the constants C and C ′ in inequalities (1-2) and (1-5) given by the
general theory are rather weak and are rarely described explicitly. The goal of
Section 2 will be to improve these constants, using local canonical heights.

Definition 1.1. Let K be a field with absolute value v. We denote by Cv the
completion of an algebraic closure of K . The function λv : Cv→[0,∞) given by

λv(x) := log max{1, |x |v}

is called the standard local height at v. If φ(z) ∈ K [z] is a polynomial of degree
d ≥ 2, the associated local canonical height is the function λ̂v,φ : Cv → [0,∞)
given by

λ̂v,φ(x) := lim
n→∞

d−nλv
(
φn(x)

)
. (1-6)
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According to [Call and Goldstine 1997, Theorem 4.2], the limit in (1-6) con-
verges, so that the definition makes sense. It is immediate that λ̂v,φ satisfies the
functional equation λ̂v,φ(φ(x)) = d · λ̂v,φ(x). In addition, it is well known that
λ̂v,φ(x) − λv(x) is bounded independent of x ∈ Cv; we shall prove a particular
bound in Proposition 2.1 below.

Formula (1-6) of Definition 1.1 is specific to polynomials. For a rational function
φ = f/g, where f, g ∈ K [z] are coprime polynomials and

max{deg f, deg g} = d ≥ 2,

the correct functional equation for λ̂v,φ is

λ̂v,φ(φ(x))= d · λ̂v,φ(x)− log |g(x)|v.

Of course, formula (1-1) may now be written as

h(x)=
∑
v∈MQ

λv(x) for any x ∈Q.

The local canonical heights provide a similar decomposition for ĥφ , as follows.

Proposition 1.2. Let φ(z) ∈ Q[z] be a polynomial of degree d ≥ 2. Then for all
x ∈Q,

ĥφ(x)=
∑
v∈MQ

λ̂v,φ(x).

Proof. See [Call and Silverman 1993, Theorem 2.3], which applies to arbitrary
number fields, with appropriate modifications. �

Often, the local canonical height λ̂v,φ exactly coincides with the standard local
height λv; this happens precisely at the places of good reduction for φ. Good
reduction of a map φ was first defined in [Morton and Silverman 1994]; see also
[Benedetto 2007, Definition 2.1]. For polynomials, it is well known [Morton and
Silverman 1995, Example 4.2] that those definitions are equivalent to the following.

Definition 1.3. Let K be a field with absolute value v, and let

φ(z)= ad zd
+ · · ·+ a0 ∈ K [z]

be a polynomial of degree d ≥ 2. We say that φ has good reduction at v if

(1) v is nonarchimedean,

(2) |ai |v ≤ 1 for all i = 0, . . . , d, and

(3) |ad |v = 1.

Otherwise, we say φ has bad reduction at v.
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Note that if K = Q (or more generally, if K is a global field), a polynomial
φ ∈ K [z] has bad reduction at only finitely many places v ∈ MK . As claimed
above, we have the following result, proven in, for example, [Call and Goldstine
1997, Theorem 2.2].

Proposition 1.4. Let K be a field with absolute value v, and let φ(z) ∈ K [z] be a
polynomial of degree d ≥ 2 with good reduction at v. Then λ̂v,φ = λv.

For more background on heights and canonical heights, see [Hindry and Silver-
man 2000, Section B.2], [Lang 1983, Chapter 3], or [Silverman 2007, Chapter 3];
for local canonical heights, see [Call and Goldstine 1997] or [Call and Silverman
1993, Section 2].

2. Computing local canonical heights

Proposition 2.1. Let K be a field with absolute value v, let φ(z) ∈ K [z] be a
polynomial of degree d ≥ 2, and let λ̂v,φ be the associated local canonical height.
Write φ(z)= ad zd

+· · ·+a1z+a0 = ad(z−α1) · · · (z−αd), with ai ∈ K , ad 6= 0,
and αi ∈ Cv Let A = max{|αi |v : i = 1, . . . , d} and B = |ad |

−1/d
v , and define real

constants cv,Cv ≥ 1 by

cv =max{1, A, B} and Cv =max{1, |a0|v, |a1|v, . . . , |ad |v}

if v is nonarchimedean, or

cv =max{1, A+ B} and Cv =max{1, |a0|v + |a1|v + . . .+ |ad |v}

if v is archimedean. Then for all x ∈ Cv,

−d log cv
d − 1

≤ λ̂v,φ(x)− λv(x)≤
log Cv
d − 1

.

Proof. First, we claim that λv(φ(x))− dλv(x) ≤ log Cv for any x ∈ Cv. To see
this, if |x |v ≤ 1, then |φ(x)|v ≤ Cv, and the desired inequality follows. If |x |v > 1
and |φ(x)|v ≤ 1, the inequality holds because Cv ≥ 1. Finally, if |x |v > 1 and
|φ(x)|v > 1, then the claim follows from the observation that∣∣∣φ(x)

xd

∣∣∣
v
=
∣∣ad + ad−1x−1

+ · · ·+ a0x−d
∣∣
v
≤ Cv.

Next, we claim that λv(φ(x))−dλv(x)≥−d log cv for any x ∈Cv. If |x |v ≤ cv,
then λv(x) ≤ log cv because cv ≥ 1; the desired inequality is therefore immediate
from the fact that λv(φ(x))≥ 0. If |x |v > cv, then

λv(φ(x))− dλv(x)= λv(φ(x))− d log |x |v ≥ log |φ(x)|v − d log |x |v,

by definition of λv and because |x |v > cv ≥ 1. To prove the claim, then, it suffices
to show that |φ(x)|v ≥ (|x |v/cv)d for |x |v > cv.
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If v is nonarchimedean, then |x−αi |v=|x |v for all i=1, . . . , d, since |x |v> A≥
|αi |v. Hence, |φ(x)|v = |ad |v|x |dv = (|x |v/B)d ≥ (|x |v/cv)d . If v is archimedean,
then

|x −αi |v

|x |v
≥ 1−

|αi |v

|x |v
≥ 1−

A
A+ B

=
B

A+ B
for all i = 1, . . . , d.

Thus, |φ(x)|v≥|ad |v(B|x |v/(A+B))d= (|x |v/(A+B))d ≥ (|x |v/cv)d , as claimed.
To complete the proof, we compute

λ̂v,φ(x)− λv(x)= lim
n→∞

1
dn λv

(
φn(x)

)
− λv(x)

= lim
n→∞

n−1∑
j=0

1
d j

[1
d
λv
(
φ j+1(x)

)
− λv

(
φ j (x)

)]

≥ lim
n→∞

n−1∑
j=0

−
1

d j log cv =− log cv
∞∑
j=0

1
d j =

−d log cv
d − 1

.

Similarly, λ̂v,φ(x)− λv(x)≤ (log Cv)/(d − 1). �

Remark 2.2. The proof above is just an explicit version of [Call and Silverman
1993, Theorem 5.3], giving good bounds for 1, 1/zd , φ(z), and φ(z)/zd in certain
cases — for example, a lower bound for |φ(x)/xd

|v when |x |v is large. These are
precisely the four functions {si j }i, j∈{0,1} in [Call and Silverman 1993].

Remark 2.3. If v is nonarchimedean, the quantity A = max{|αi |v} can be com-
puted directly from the coefficients of φ. Specifically,

A =max{|a j/ad |
1/(d− j)
v : 0≤ j ≤ d − 1}.

This identity is easy to verify by recognizing (−1)d− j a j/ad as the (d− j)-th sym-
metric polynomial in the roots {αi }; see also [Call and Goldstine 1997, Lemma 5.1].

On the other hand, if v is archimedean and |x |v >
∑d−1

j=0 |a j/ad |
1/(d− j)
v , then

|ad xd
|v = |x |v · |ad xd−1

|v >

d−1∑
j=0

∣∣∣a j

ad

∣∣∣1/(d− j)

v
· |xd− j−1

|v · |ad x j
|v

≥

d−1∑
j=0

∣∣∣a j

ad

∣∣∣
v
· |ad x j

|v

=

d−1∑
j=0

|a j x j
|v ≥ |a0+ a1x + · · ·+ ad−1xd−1

|v,

and hence φ(x) 6= 0. Thus, A ≤
d−1∑
j=0
|a j/ad |

1/(d− j)
v if v is archimedean.
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Remark 2.4. Proposition 1.4 can be proven as a corollary of Proposition 2.1, be-
cause the constants cv and Cv are both clearly zero if φ has good reduction.

The constants cv and Cv of Proposition 2.1 can sometimes be improved (that
is, made smaller) by changing coordinates, and perhaps even leaving the original
base field K. The following proposition shows how local canonical heights change
under scaling; but it actually applies to any linear fractional coordinate change.

Proposition 2.5. Let K be a field with absolute value v, let φ(z) ∈ K [z] be a
polynomial of degree d ≥ 2, and let γ ∈ C×v . Define ψ(z) = γφ(γ−1z) ∈ Cv[z].
Then

λ̂v,φ(x)= λ̂v,ψ(γ x) for all x ∈ Cv.

Proof. By exchanging φ and ψ if necessary, we may assume that |γ |v ≥ 1. For
any x ∈Cv and n ≥ 0, let y = φn(x). Then 0≤ λv(γ y)−λv(y)≤ log |γ |v, because
max{|y|v, 1} ≤max{|γ y|v, 1} ≤ |γ |v max{|y|v, 1}. Thus,

λ̂v,ψ(γ x)− λ̂v,φ(x)= lim
n→∞

d−n
[λv(ψ

n(γ x))− λv(φn(x))]

= lim
n→∞

d−n
[λv(γ φ

n(x))− λv(φn(x))] = 0. �

Corollary 2.6. Let K be a field with absolute value v, let φ(z) ∈ K [z] be a poly-
nomial of degree d ≥ 2, and let λ̂v,φ be the associated local canonical height. Let
γ ∈C×v , and define ψ(z)= γφ(γ−1z)∈Cv[z]. Let cv and Cv be the constants from
Proposition 2.1 for ψ . Then for all x ∈ Cv,

−d log cv
d − 1

≤ λ̂v,φ(x)− λv(γ x)≤
log Cv
d − 1

.

We can now prove the main result of this section.

Theorem 2.7. Let φ(z)∈Q[z] be a polynomial of degree d≥2 with lead coefficient
a ∈ Q×. Let e ≥ 1 be a positive integer, let γ = e

√
a ∈ Q̄ be an e-th root of a, and

define ψ(z) = γφ(γ−1z). For each v ∈ MQ at which φ has bad reduction, let cv
and Cv be the associated constants in Proposition 2.1 for ψ ∈ Cv[z]. Then

−
1

dn c̃(φ, e)≤ ĥφ(x)−
1

edn h
(

a
(
φn(x)

)e
)
≤

1
dn C̃(φ, e),

for all x ∈Q and all integers n ≥ 0, where

c̃(φ, e)=
d

d − 1

∑
v bad

log cv, and C̃(φ, e)=
1

d − 1

∑
v bad

log Cv.

Proof. For any prime v of good reduction for φ, we have |a|v=1; therefore |γ |v=1,
and λv(γ y) = λv(y) for all y ∈ Cv. Hence, by Equation (1-4), Propositions 1.2
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and 1.4, and Corollary 2.6, we compute

dn ĥφ(x)= ĥφ
(
φn(x)

)
=

∑
v∈MQ

λ̂v,φ
(
φn(x)

)
=

∑
v good

λv
(
φn(x)

)
+

∑
v bad

λ̂v,φ
(
φn(x)

)
≥−c̃(φ, e)+

∑
v∈MQ

λv
(
γφn(x)

)
=−c̃(φ, e)+

1
e

∑
v∈MQ

λv

(
a
(
φn(x)

)e
)
,

since eλv(y)= λv(ye) for all y ∈Cv. The lower bound is now immediate from the
summation formula (1-1). The proof of the upper bound is similar. �

Remark 2.8. The point of Theorem 2.7 is to approximate ĥφ(x) even more accu-
rately than the naive estimate d−nh(φn(x)), by first changing coordinates to make
φ monic. Of course, that coordinate change may not be defined over Q; fortunately,
the expression a(φn(x))e at the heart of the theorem still lies in Q, and hence its
height is easy to compute quickly.

Remark 2.9. By essentially the same proof, Theorem 2.7 also holds (with appro-
priate modifications) for any global field K in place of Q.

3. Filled Julia sets

The following definition is standard in both complex and nonarchimedean dynam-
ics.

Definition 3.1. Let K be a field with absolute value v, and let φ(z) ∈ K [z] be a
polynomial of degree d ≥ 2. The filled Julia set Kv of φ at v is

Kv :=
{

x ∈ Cv : {|φ
n(x)|v : n ≥ 0} is bounded

}
.

Note that φ−1(Kv) = Kv. Also note that Kv can be defined equivalently as the
set of x ∈ Cv such that |φn(x)|v 6→ ∞ as n → ∞. In addition, the following
well known result relates Kv to λ̂v,φ; the (easy) proof can be found in [Call and
Goldstine 1997, Theorem 6.2].

Proposition 3.2. Let K be a field with absolute value v, and let φ(z) ∈ K [z] be a
polynomial of degree d ≥ 2. For any x ∈ Cv, we have λ̂v,φ(x) = 0 if and only if
x ∈ Kv.

Because the local canonical height of a polynomial takes on only nonnegative
values, Propositions 1.2 and 3.2 imply that any rational preperiodic points must
lie in Kv at every place v. However, Kv is often a complicated fractal set. Thus,
the following Lemmas, which specify disks containing Kv, will be useful. We set
some notation: for any x ∈ Cv and r > 0, we denote the open and closed disks of
radius r about x by

D(x, r)= {y ∈ Cv : |y− x |v < r} and D̄(x, r)= {y ∈ Cv : |y− x |v ≤ r}.
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Lemma 3.3. Let K be a field with nonarchimedean absolute value v, let φ(z) ∈
K [z] be a polynomial of degree d ≥ 2 and lead coefficient ad , and let Kv ⊆ Cv be
the filled Julia set of φ. Define

sv =max{A, |ad |
−1/(d−1)
v },

where A =max{|α|v : φ(α)= 0} as in Proposition 2.1. Then Kv ⊆ D̄(0, sv).

Proof. See [Call and Goldstine 1997, Lemma 5.1]. Alternately, it is easy to check
directly that if |x |v > sv, then

|φ(x)|v = |ad xd
|v > |x |v.

It follows that |φn(x)|v→∞. �

Lemma 3.4. Let K be a field with nonarchimedean absolute value v, and let φ(z)∈
K [z] be a polynomial of degree d ≥ 2 with lead coefficient ad . Let Kv ⊆ Cv be the
filled Julia set of φ at v, let rv = sup{|x − y|v : x, y ∈ Kv} be the diameter of Kv,
and let U0 ⊆ Cv be the intersection of all disks containing Kv. Then:

(1) U0 = D̄(x, rv) for any x ∈ Kv.

(2) There exists x ∈ Cv such that |x |v = rv.

(3) rv ≥ |ad |
−1/(d−1)
v , with equality if and only if Kv =U0.

(4) If rv> |ad |
−1/(d−1)
v , let α∈U0, and let β1, . . . , βd ∈Cv be the roots of φ(z)=α.

Then Kv ⊆U1, where

U1 =

d⋃
i=1

D̄(βi , |ad |
−1/d−1
v ).

Proof. Parts (1–3) are simply a rephrasing of [Benedetto 2007, Lemma 2.5].
As for part (4), if

rv = |ad |
−1/(d−1)
v ,

then Kv =U0 by part (3), and hence also

φ−1(U0)= φ
−1(Kv)= Kv =U0.

In particular, βi ∈U0 for all i , and the result follows.
If

rv > |ad |
−1/(d−1)
v ,

Benedetto [2007, Lemma 2.7] says that φ−1(U0) is a disjoint union of ` strictly
smaller disks V1, . . . , V`, each contained in U0, and each of which maps onto U0

under φ, for some integer 2≤ `≤ d .
Suppose there is some x ∈ Kv such that

|x −βi |v > |ad |
−1/(d−1)
v for all i = 1, . . . , d.
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By part (1), there is some y ∈ Kv such that |x − y|v = rv. Without loss, x ∈ V1

and y ∈ V2; V1 and V2 are distinct and in fact disjoint, because each has radius
strictly smaller than rv, and v is nonarchimedean. The disk V2 must also contain
some β j (without loss, βd ), since φ(V2) = U0 by the previous paragraph; hence
|x −βd |v = rv. Thus,

|φ(x)−α|v = |ad |v · |x −βd |v

d−1∏
i=1

|x −βi |v > |ad |v · rv · (|ad |
−1/(d−1)
v )d−1

= rv.

However,
φ(x) ∈ Kv ⊆U0 and α ∈U0;

therefore |φ(x)−α|v ≤ rv. Contradiction. �

Remark 3.5. Lemma 3.4(4) says that Kv is contained in a union of at most d disks
of radius |ad |

−1/(d−1)
v . However, if d ≥ 3, then at most one of the disks needs to

be that large; the rest can be strictly smaller. Still, the weaker statement of Lemma
3.4 above suffices for our purposes.

4. Cubic polynomials

In the study of quadratic polynomial dynamics, it is useful to note that (except in
characteristic 2) any such polynomial is conjugate over the base field to a unique
one of the form z2

+ c. For cubics, it might appear at first glance that a good
corresponding form would be z3

+az+b. However, this form is not unique, since
z3
+az+b is conjugate to z3

+az−b by z 7→−z. In addition, it is not even possible
to make most cubic polynomials monic by conjugation over Q. More precisely,
if φ is a cubic with leading coefficient a, and if η(z) = αz + β, then η−1

◦ φ ◦ η

has leading coefficient α−2a, which can only be 1 if a is a perfect square. Instead
of z3

+ az + b, then, we propose the following two forms as normal forms when
conjugating over a (not necessarily algebraically closed) field of characteristic not
equal to three.

Definition 4.1. Let K be a field, and let φ ∈ K [z] be a cubic polynomial. We will
say that φ is in normal form if either

φ(z)= az3
+ bz+ 1 (4-1)

or
φ(z)= az3

+ bz. (4-2)

Proposition 4.2. Let K be a field of characteristic not equal to 3, and let φ(z) ∈
K [z] be a cubic polynomial. Then there is a degree one polynomial η ∈ K [z] such
that ψ = η−1

◦ φ ◦ η is in normal form. Moreover, if another conjugacy η̃(z) also
gives a normal form ψ̃ = η̃−1

◦ φ ◦ η̃, then either η̃ = η and ψ̃ = ψ , or else both
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normal forms ψ(z) = az3
+ bz and ψ̃(z) = ãz3

+ bz are of the type in (4-2) with
the same linear term, and the quotient ã/a of their lead coefficients is the square
of an element of K .

Proof. Write φ(z) = az3
+ bz2

+ cz + d ∈ K [z], with a 6= 0. Conjugating by
η1(z)= z− b/(3a) gives

ψ1(z) := η−1
1 ◦φ ◦ η1(z)= az3

+ b′z+ d ′.

(Note that b′, d ′ ∈ K can be computed explicitly in terms of a, b, c, d , but their
precise values are not important here.) If d ′ = 0, then we have a normal form of
the type in (4-2). Otherwise, conjugating ψ1 by η2(z)= d ′z gives the normal form

η−1
2 ◦ψ1 ◦ η2(z)= a′z3

+ b′z+ 1,

where a′ = a/(d ′)2.
For the uniqueness, suppose φ1 = η

−1
◦φ2 ◦ η, where

η(z)= αz+β, φ1(z)= a1z3
+ b1z+ c1, φ2(z)= a2z3

+ b2z+ c2,

with c1, c2 ∈ {0, 1} and αa1a2 6= 0. Because the z2-coefficient of η−1
◦φ2 ◦η(z) is

αβa1, we must have β = 0. Thus,

φ2(z)= α−1φ1(αz),

which means that c2 = αc1 and a2/a1 = α
2. If either c1 or c2 is 1, then α = 1

and φ1 = φ2. Otherwise, we have c1 = c2 = 0, b1 = b2, and a2/a1 ∈ (K×)2, as
claimed. �

Remark 4.3. The cubic φ(z)= az3
+ bz is self-conjugate under z 7→ −z; that is,

φ(−z) = −φ(z). (It is not a coincidence that those cubic polynomials admitting
nontrivial self-conjugacies are precisely those with the more complicated “ã/a
is a square” condition in Proposition 4.2; see [Silverman 2007, Example 4.75 and
Theorem 4.79].) As a result, ĥφ(−x)= ĥφ(x) for all x ∈Q; and if x is a preperiodic
point of φ, then so is −x .

In addition, the function −φ(z) = −az3
− bz satisfies (−φ) ◦ (−φ) = φ ◦ φ.

Thus, ĥφ(x) = ĥ−φ(x) for all x ∈ Q. Moreover, φ and −φ have the same set of
preperiodic points, albeit with slightly different arrangements of points into cycles.

The normal forms of Definition 4.1 have two key uses. The first is that they
allow us to list a unique (or, in the case of form (4-2), essentially unique) element
of each conjugacy class of cubic polynomials over Q in a systematic way, which is
helpful for having a computer algorithm test them one at a time. The second is that
the forms provide a description of the moduli space M3 of all cubic polynomials
up to conjugation. This second use is crucial to the very statement of Conjecture 2,
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because the quantity h(φ) is defined to be the height of the conjugacy class of φ
viewed as a point on M3.

In particular, Proposition 4.2 says that M3 can be partitioned into two pieces:
the first piece is an affine subvariety of P2, and the second is an affine line. More
specifically, the conjugacy class of the polynomial φ(z)= az3

+bz+1 corresponds
to the point (a, b) in {(a, b)∈A2

:a 6=0}. To compute heights, then, we should view
A2 as an affine subvariety of P2, thus declaring h(φ) to be the height h([a : b : 1])
of the point [a : b : 1] in P2. Meanwhile, the conjugacy class of az3

+ bz over Q̄

is determined solely by b, because az3
+ bz is conjugate to a′z3

+ bz over Q̄. (As
noted in [Silverman 2007, Section 4.4 and Remark 4.39], M3 is the moduli space
of Q̄-conjugacy classes of cubic polynomials, not Q-conjugacy classes.) Thus, the
Q̄-conjugacy class of φ0(z) = az3

+ bz corresponds to the point b in A1, and the
corresponding height is h(φ0)= h([b : 1]), the height of the point [b : 1] in P1. We
phrase these assignments formally in the following definition.

Definition 4.4. Given a, b ∈Q with a 6= 0, define

φ(z)= az3
+ bz+ 1 and φ0(z)= az3

+ bz.

Write a = k/m and b = `/m with k, `,m ∈ Z and gcd(k, `,m) = 1; also write
b = `0/m0 with gcd(`0,m0) = 1. Then we define the heights h(φ), h(φ0) of the
maps φ and φ0 to be

h(φ) := log max{|k|∞, |`|∞, |m|∞} and h(φ0) := log max{|`0|∞, |m0|∞}.

Note that

h(φ0)= h(b)=
∑
v

log max{1, |b|v}, and h(φ)=
∑
v

log max{1, |a|v, |b|v}.

Proposition 4.5. Given a, b, φ, φ0 as in Definition 4.4, let γ =
√

a ∈ Q̄ be a square
root of a, and define

ψ(z)= γφ(γ−1z)= z3
+ bz+

√
a, and ψ0(z)= γφ0(γ

−1z)= z3
+ bz.

Let c̃(φ, 2), C̃(φ, 2), c̃(φ0, 2), and C̃(φ0, 2) be the corresponding constants from
Theorem 2.7. Then

c̃(φ, 2)≤ 1.84 ·max{h(φ), 1}, C̃(φ, 2)≤ .75 ·max{h(φ), 1},

c̃(φ0, 2)≤ 1.57 ·max{h(φ0), 1}, C̃(φ0, 2)≤ .75 · h(φ0).

Proof. Note that

log(1+ |a|1/6
∞
+ |b|1/2

∞
)≤ log

(
3 max{1, |a|1/6

∞
, |b|1/2
∞
}
)

≤ log 3+ 1
2 log max{1, |a|∞, |b|∞}.
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Thus, if h(φ)≥ log 9, then by Remark 2.3 and the definition of c̃(φ, 2),

2
3

c̃(φ, 2)≤ log(1+ |a|1/6
∞
+ |b|1/2

∞
)+

∑
v 6=∞

log max{1, |a|1/6v , |b|1/2v }

≤ log 3+ 1
2

∑
v

log max{1, |a|v, |b|v} = log 3+ 1
2

h(φ)≤ h(φ).

Hence, c̃(φ, 2) < 1.5 · h(φ) if h(φ) > log 9.
Similarly,

log(1+ |a|∞+ |b|∞)≤ log 3+ log max{1, |a|∞, |b|∞},

and therefore
2C̃(φ, 2)≤ log 3+ h(φ)≤ 1.5 · h(φ)

if h(φ) ≥ log 9. The bounds for φ0 can be proven in the same fashion in the case
that h(φ0)≥ log 4. (That is, h(b)≥ 4.)

Finally, there are fifteen choices of b∈Q for which h(b)< log 4, and 1842 pairs
(a, b) ∈ Q for which h(φ) < log 9. By a simple computer computation (working
directly from the definitions in Proposition 2.1 and Theorem 2.7, not the estimates
of Remark 2.3), one can check that the desired inequalities hold in all cases. �

Remark 4.6. In fact, c̃(φ0, 2)≤ 1.5 ·max{h(b), 1} in all but four cases: b=±2/3
and b=±3/2, which give h(b)= log 3 and c̃(φ0, 2)=1.5·log(

√
2+
√

3). Similarly,
c̃(φ, 2)≤ 1.5 ·max{h(φ), 1} in all but 80 cases. The maximum ratio of 1.838 . . . is
attained twice, when (a, b) is (−1, 2/3) or (1,−2/3). In both cases, h(φ)= log 3
and c̃(φ0, 2) = 1.5 · log((α + 1)

√
3), where α ≈ 1.22 is the unique real root of

3z3
− 2z− 3.

The next lemma says that for cubic polynomials in normal form, and for v a
p-adic absolute value with p 6= 3, the radius sv from Lemma 3.3 coincides with
the radius rv from Lemma 3.4. Thus, when we search for rational preperiodic
points, we are losing no efficiency by searching in D̄(0, sv) instead of the ostensibly
smaller disk U0.

Lemma 4.7. Let K be a field with nonarchimedean absolute value v such that
|3|v = 1. Let φ(z) ∈ K [z] be a cubic polynomial in normal form, and let Kv ⊆ Cv

be the filled Julia set of φ at v. Let rv = sup{|x − y|v : x, y ∈ Kv} be the diameter
of Kv. Then |x |v ≤ rv for all x ∈ Kv.

Proof. If φ(z) = az3
+ bz, then φ(0) = 0, and therefore 0 ∈ Kv. The desired

conclusion is immediate. Thus, we consider φ(z) = az3
+ bz + 1. Note that the

three roots α, β, γ ∈ Cv of the equation φ(z)− z = 0 are fixed by φ and hence lie
in Kv.

Without loss, assume |α|v ≥ |β|v ≥ |γ |v. It suffices to show that |α−γ |v = |α|v;
if x ∈Kv, then |x |v ≤max{|x−α|v, |α−γ |v} ≤ rv, as desired. If |α|v > |γ |v, then
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|α−γ |v=|α|v, and we are done. Thus, we may assume |α|v=|β|v=|γ |v=|a|
−1/3
v ,

which implies that |a|v ≥ |b− 1|3v. We may also assume that |α− γ |v ≥ |α−β|v.
The polynomial Q(z) = φ(z + α)− (z + α) has roots 0, β − α, and γ − α; on

the other hand, Q(z)= az[z2
+ 3αz+ (a−1(b− 1)+ 3α2)] by direct computation.

Thus, (
z− (β −α)

)(
z− (γ −α)

)
= z2
+ 3αz+

(
a−1(b− 1)+ 3α2). (4-3)

Since |a−1(b−1)|v≤|a|
−2/3
v =|α|2v, the constant term of (4-3) has absolute value at

most |α|2v; meanwhile, the linear coefficient satisfies |3α|v=|α|v. Thus, either from
the Newton polygon or simply by inspection of (4-3), it follows that |α−γ |v=|α|v.

�

Remark 4.8. Lemma 4.7 can be false in nonarchimedean fields in which |3|v < 1.
For example, if K =Q3 (in which |3|3 = 1/3< 1) and φ(z)=−(1/27)z3

+ z+1,
then it is not difficult to show that the diameter of the filled Julia set is 3−3/2.
However, α = 3 is a fixed point, and |α|3 = 1/3> 3−3/2.

At the archimedean place v = ∞, we will study not K∞ itself, but rather the
simpler set K∞∩R, which we will describe in terms of the real fixed points. Note,
of course, that any cubic with real coefficients has at least one real fixed point; and
if there are exactly two real fixed points, then one must appear with multiplicity
two.

Lemma 4.9. Let φ(z) ∈ R[z] be a cubic polynomial with positive lead coefficient.
If φ has precisely one real fixed point γ ∈ R, then K∞ ∩R= {γ } is a single point.

Proof. We can write φ(z) = z + (z − γ ) jψ(z), where 1 ≤ j ≤ 3, and where
ψ ∈ R[z] has positive lead coefficient and no real roots. Thus, there is a positive
constant c > 0 such that ψ(x) ≥ c for all x ∈ R. Given any x ∈ R with x > γ ,
then, φ(x) > x + c(x − γ ) j . It follows that φn(x) > x + nc(x − γ ) j , and hence
φn(x)→∞ as n→∞. Similarly, for x < γ , φn(x)→−∞ as n→∞. �

Lemma 4.10. Let φ(z) ∈R[z] be a cubic polynomial with positive lead coefficient
a>0 and at least two distinct fixed points. Denote the fixed points by γ1, γ2, γ3∈R,
with γ1 ≤ γ2 ≤ γ3. Then K∞ ∩R⊆ [γ1, γ3], and

φ−1([γ1, γ3])⊆ [γ1, γ1+ a−1/2
] ∪ [γ2− a−1/2, γ2+ a−1/2

] ∪ [γ3− a−1/2, γ3].

Proof. Let α = inf(K∞ ∩R); then α ∈ K∞ ∩R, since this set is closed. Therefore,
φ(α)≥ α, because φ(K∞∩R)⊆K∞∩R. On the other hand, if φ(α) > α, then by
continuity (and because φ has positive lead coefficient), there is some α′ <α such
that φ(α′)= α, contradicting the minimality of α. Thus φ(α)= α, giving α = γ1.
Similarly, sup(K∞)= γ3, proving the first statement.
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For the second statement, note that

φ(z)= a(z− γ1)(z− γ2)(z− γ3)+ z,

and consider x ∈ R outside all three desired intervals. We will show that

φ(x) 6∈ [γ1, γ3].

If x > γ3, then φ(x) > x > γ3. Similarly, if x < γ1, then φ(x) < x < γ1.
If γ1+ a−1/2 < x < γ2− a−1/2, then, noting that γ3 > x , we have

φ(x)− γ3 =
[
a(x − γ1)(γ2− x)− 1

]
(γ3− x) > (a(a−1/2)2− 1)(γ3− x)≥ 0.

Similarly, if γ2+ a−1/2 < x < γ3− a−1/2, we obtain φ(x) < γ1. �

Lemma 4.11. Let φ(z)∈R[z] be a cubic polynomial with negative lead coefficient.
If K∞ ∩ R consists of more than one point, then φ has at least two distinct real
periodic points of period two. Moreover, if α ∈ R is the smallest such periodic
point, then φ(α) is the largest, and K∞ ∩R⊆ [α, φ(α)].

Proof. Let α = inf(K∞ ∩R) and β = sup(K∞ ∩R), so that K∞ ∩R ⊆ [α, β]. By
hypothesis, α < β. It suffices to show that φ(α)= β and φ(β)= α.

Note that φ(α) ∈ K∞ ∩ R, and therefore φ(α) ≤ β. If φ(α) < β, then by
continuity, there is some α′ < α such that φ(α′)= β, contradicting the minimality
of α. Thus, φ(α)= β; similarly, φ(β)= α. �

5. The search algorithm

We are now ready to describe our algorithm to search for preperiodic points and
points of small height for cubic polynomials over Q.

Algorithm 5.1. Given a∈Q× and b∈Q, set φ(z)=az3
+bz+1 or φ(z)=az3

+bz,
define h(φ) as in Definition 4.4, and set h+(φ)=max{h(φ), 1}.

1. Let S be the set of all (bad) prime factors p of the numerator of a, denominator
of a, and denominator of b. Compute each radius sp from Lemma 3.3; by Remark
2.3,

sp =

{
max{|b/a|1/2p , |1/a|1/2p } for φ(z)= az3

+ bz,

max{|b/a|1/2p , |1/a|1/3p , |1/a|1/2p } for φ(z)= az3
+ bz+ 1.

Shrink sp if necessary to be an integer power of p. Let M =
∏

p∈S sp ∈Q×. Thus,
for any preperiodic rational point x ∈Q, we have Mx ∈ Z.

2. If a> 0 and φ has only one real fixed point, or if a< 0 and φ has no real two-
periodic points, then (by Lemma 4.9 or Lemma 4.11) K∞ ∩R consists of a single
point γ ∈ R, which must be fixed. In that case, check whether γ is rational by
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seeing whether Mγ is an integer; report either the one or zero preperiodic points,
and end.

3. Let S′ be the set of all p ∈ S for which |a|−1/2
p < sp. Motivated by Lemma

3.4(4), for each such p consider the (zero, one, two, or three) disks of radius |a|−1/2
p

that contain both an element of φ−1(0) and a Qp-rational point. If for at least one
p ∈ S′ there are no such disks, then report zero preperiodic points, and end.

4. Otherwise, use the Chinese Remainder Theorem to list all rational numbers
that lie in the real interval(s) given by Lemma 4.10 or 4.11, are integer multiples of
the rational number M from Step 1, and lie in the disks from Step 3 at each p ∈ S′.

5. For each point x in Step 4, compute φi (x) for i = 0, . . . , 6. If any are repeats,
record a preperiodic point. Otherwise, compute h(a(φ6(x))2)/(2 · 36

· h+(φ)). If
the value is less than .03, record h(a(φ12(x))2)/(2 · 312) as ĥφ(x), and

h(x)= ĥφ(x)/h+(φ) (5-1)

as the scaled height of x .

Remark 5.2. The definition of h+(φ) is designed to avoid dividing by zero when
computing h(x). In particular, the choice of 1 as a minimum value is arbitrary.
Of course, the height h(φ) already depends on our choice of normal forms in
Definition 4.1; moreover, without reference to some kind of canonical structure,
Weil heights on varieties are only natural objects up to bounded differences. In
other words, h+(φ) is no more arbitrary than h(φ) as a height on the moduli space
M3.

In addition, none of the polynomials we found with points of particularly small
scaled height h(x) had h(φ)≤1, even though the change from h(φ) to h+(φ) could
only make h(x) smaller. Thus, our use of h+ had no significant effect on the data.

Remark 5.3. Algorithm 5.1 tests only points that, at all places, are in regions
where the filled Julia set might be. At nonarchimedean places, that means the
region U1 in Lemma 3.4(4); and at the archimedean place, that means the regions
described in Lemma 4.10 or Lemma 4.11. Thus, as mentioned in the discussion
following Proposition 3.2, the algorithm is guaranteed to test all preperiodic points,
but there is a possibility it may miss a point of small positive height that happens
to lie outside the search region at some place. However, such a point must have a
nonnegligible positive contribution to its canonical height, coming from the local
canonical height at that place.

For example, any point x lying outside the region U1 at a nonarchimedean place
v must satisfy φ(x) 6∈U0. If pv 6= 3, then by Lemma 4.7,

U0 = D̄(0, sv),
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outside of which it is easy to show that

λ̂φ,v(x)= λv(x)+ 1
2 log |a|v.

Since λ̂φ,v(φ(x)) > 0 and λv(x) takes values in (log pv)Z, it follows that

λ̂φ,v(φ(x))≥ 1
2 log pv,

and therefore

ĥφ(x)≥ λ̂φ,v(x)≥
log pv

6
≥

log 2
6
= .1155 . . . .

Thus, we are not missing points of height smaller than .11 by restricting to U1.
Admittedly, at the archimedean place we have no such lower bound, and the

possibility exists of missing a point of small height just outside the search region.
However, because the denominators of such points (and all their forward iterates!)
must divide M , there still cannot be many omitted points of small height unless
h(φ) is very large.

Remark 5.4. The bounds of 6 for preperiodic repeats and .03 for h(x), as well as
the decision to test ĥφ(x) first at 6 iterations and again at 12, were chosen by trial
and error. There seem to be many cubic polynomials with points of scaled height
smaller than .03, suggesting that our choice of that cutoff is safely large.

Meanwhile, if there happened to be a preperiodic chain of length 7 or longer, our
algorithm would not identify the starting point as preperiodic. However, the first
point in such a chain would still have shown up in our data as one of extraordinarily
small scaled height; but we found no such points in our entire search. That is, none
of the maps we tested have preperiodic chains of length greater than six.

Finally, by Proposition 4.5 and Theorem 2.7, our preliminary estimate (after six
iterations) for h is accurate to within 3−6

· 1.84< .0026, and our sharper estimate
(after twelve iterations) is accurate to within 3−12

· 1.84 < .0000035. Thus, the
points we test with h< .027 or h> .033 cannot be misclassified; and our recorded
computations of h are accurate to at least five places after the decimal point.

6. Data collected

We ran Algorithm 5.1 on every cubic polynomial az3
+ bz + 1 and az3

+ bz for
which a ∈ Q×, b ∈ Q, and both numerators and both denominators are smaller
than 300 in absolute value. That means 109,270 choices for a and (because b = 0
is allowed) 109,271 choices for b, giving almost 12 billion pairs (a, b). (Not
coincidentally, 109,271 is approximately (12/π2) · 3002; see [Silverman 2007,
Exercise 3.2(b)].) Of course, in light of Proposition 4.2, we skipped polynomials
of the form γ 2az3

+ bz for γ ∈ Q if we had already tested az3
+ bz. That meant

only 18,972 choices for a, but the same 109,271 choices for b; as a result, there
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number of form az3
+ bz number of form az3

+ bz+ 1
when h(a), h(b) < when h(a), h(b) <

n log 200 log 300 log 200 log 300

11 10 10 0 0
10 0 0 0 3
9 30 36 20 28
8 0 0 36 52
7 196 318 144 193
6 0 0 257 358
5 524 774 533 751
4 0 0 1,533 2,314
3 132,352 297,826 52,402 115,954
2 0 0 42,447 92,221
1 422,358,932 2,072,790,448 187,391 432,131
0 0 0 2,362,307,079 11,939,398,165

total 422,492,044 2,073,089,412 2,362,591,842 11,940,042,170

Table 1. Number of distinct cubic polynomials of the given forms
with h(a), h(b) < log 200, log 300 and n rational points of scaled
height smaller than .03.

were only about 2 billion truly different cubics of the second type. Combining the
two families, then, we tested over 14 billion truly different cubic polynomials. We
summarize our key observations here; the complete data may be found online at
http://www.cs.amherst.edu/˜rlb/cubicdata/.

Table 1 lists the number of such polynomials with a prescribed number of points
x ∈Q of small height — that is, with h< .03, where h(x)= ĥφ(x)/max{h(φ), 1}
is the scaled height of (5-1). It also lists the totals for h(a), h(b) < log 200, for
comparison. Of course, every polynomial of the form az3

+bz has an odd number
of small height points, by Remark 4.3 and because x = 0 is fixed. Meanwhile,
there are more polynomials of the form az3

+ bz+ 1 with three small points than
with two, because there are several ways to have three preperiodic points (three
fixed points, a fixed point with two extra preimages, or a 3-cycle), but essentially
only one way to have two: a 2-cycle. After all, a cubic φ with two rational fixed
points has a third, except in the rare case of multiple roots of φ(z)− z; and if φ
has a fixed point α ∈Q with a distinct preimage β ∈Q, then the third preimage is
also rational.

According to our data, no cubic polynomial with h(a), h(b) < log 300 has more
than 11 rational points of small height. In fact, there are only ten such polynomials

http://www.cs.amherst.edu/~rlb/cubicdata/
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a, b, c periodic cycles strictly preperiodic

−
3
2 , 19

6 , 0 {
5
3 ,−

5
3}, {0} ±

4
3 ,±

2
3 ,±

1
3 ,±1

3
2 , − 19

6 , 0 {
5
3}, {−

5
3}, {0} ±

4
3 ,±

2
3 ,±

1
3 ,±1

−3 , 37
12 , 0 {

7
6 ,−

7
6}, {

5
6}, {−

5
6}, {0} ±

1
6 ,±

1
2 ,±

2
3

3 , − 37
12 , 0 {

5
6 ,−

5
6}, {

7
6}, {−

7
6}, {0} ±

1
6 ,±

1
2 ,±

2
3

−
3
2 , 73

24 , 0 {
1
2 ,

4
3}, {−

1
2 ,−

4
3}, {

7
6}, {−

7
6}, {0} ±

1
6 ,±

3
2

3
2 , − 73

24 , 0 {
1
2 ,−

4
3}, {−

1
2 ,

4
3}, {

7
6 ,−

7
6}, {0} ±

1
6 ,±

3
2

−
5
3 , 109

60 , 0 {
13
10 ,−

13
10}, {

7
10},−{

7
10}, {0} ±

3
10 ,±

6
5 ,±

1
2

5
3 ,− 109

60 , 0 {
7

10 ,−
7
10}, {

13
10}, {−

13
10}, {0} ±

3
10 ,±

6
5 ,±

1
2

−
6
5 , 169

120 , 0 {
17
12 ,−

17
12}, {

7
12}, {−

7
12}, {0} ±

13
12 ,±

2
3 ,±

5
4

6
5 ,− 169

120 , 0 {
7

12 ,−
7
12}, {

17
12}, {−

17
12}, {0} ±

13
12 ,±

2
3 ,±

5
4

1
240 ,−151

60 , 1 {−10, 22}, {12,−22}, {18,−20} 10,−18,±28

−
1

240 , 151
60 , 1 — —

−
169
240 , 259

60 , 1 {−2}, {− 4
13}, {

30
13}

4
13 ,−

10
13 ,−

30
13 ,±

34
13 ,

36
13

Table 2. Cubic polynomials az3
+bz+c with ten or more points of

small height. The nonpreperiodic points of small positive height
pertaining to the last two rows are as follows. Penultimate row:
−12, 20 with h= .00244, then 10, 18, −22, −28 with h= .00733,
then −10, −18, 22, 28 with h = .02198. Last row: − 14

13 with
h= .02947. Other rows have no such points.

with 11 small points; these are shown in the upper portion of Table 2. All ten have
only preperiodic points as points of small height; all have h(a), h(b) < log 200;
and all are in the az3

+ bz family. (Five are negatives of the other five, and the
negative of any preperiodic point is also preperiodic, as discussed in Remark 4.3.)

Table 2 also lists the only three polynomials in our search with exactly ten points
of small height. A complete list, ordered by h(φ), of those with exactly nine points
of small height can be found in Table 3 (c = 0) and Table 4 (c = 1).

Remark 6.1. Most of the points sharing the same canonical height in Tables 3
and 4 do so simply because one or two iterates later, they coincide. For example,
consider the fourth map in Table 4, namely φ(z)= 3

8 z3
−

49
24 z+1. The three points

0, ± 7
3 all satisfy φ(x) = 1, and hence all three have the same canonical height.
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a, b periodic cycles strictly small height > 0
preperiodic points h

3
2 , − 13

6 {0}, { 23 ,−1}, {− 2
3 , 1} ±

1
3 ,±

4
3 —

3 , − 13
12 {0}, { 16 ,−

1
6}, {

5
6}, {−

5
6} ±

1
2 ,±

2
3 —

5
3 , − 49

15 {0}, { 85}, {−
8
5} ±1,± 3

5 ,±
7
5 —

3
2 , − 49

24 {0}, { 56 ,−
5
6} ±

1
2 ,±

4
3 ,±

7
6 —

5
2 , − 49

40 {0}, { 3
10 ,−

3
10} ±

1
2 ,±

4
5 ,±

7
10 —

6
5 , − 61

30 {0}, {1,−5
6}, {−1, 5

6} ±
2
3 ,±

3
2 —

6
5 , − 79

30 {0}, { 76 ,−
7
6} ±

1
2 ,±

5
3 ±

1
3 .02046

6
5 , − 91

30 {0}, { 11
6 }, {−

11
6 } ±1,± 5

6 ±
2
3 .01982

6
5 ,−139

30 {0}, { 13
6 }, {−

13
6 } ±

1
2 ,±

5
3 ±2 .02525

7
6 ,−163

42 {0}, { 11
7 ,−

11
7 } ±2,± 3

7 ,±
4
7 —

7
2 ,−169

56 {0}, { 15
14}, {−

15
14} ±

1
2 ,±

4
7 ,±

13
14 —

5
3 ,−169

60 {0}, { 12 ,−
6
5}, {−

1
2 ,

6
5} ±

13
10 ±

3
10 .02744

15
7 ,−169

105 {0}, { 8
15 ,−

8
15} ±1,± 7

15 ,±
13
15 —

5
3 ,−181

60 {0}, { 11
10 ,−

11
10} ±

3
2 ,±

2
5 ,±

9
10 —

7
3 ,−193

84 {0}, { 12 ,−
6
7}, {−

1
2 ,

6
7} ±

8
7 ,±

9
14 —

5
3 ,−229

60 {0}, { 13
10 ,−

13
10}, {

17
10}, {−

17
10} ±

6
5 ,±

1
2 —

5
3 ,−241

60 {0}, { 32 ,−
2
5}, {−

3
2 ,

2
5} ±

8
5 ,±

1
10 —

6
5 ,−

289
120

{0}, { 23 ,−
5
4}, {−

2
3 ,

5
4},

±
17
12

—
{

13
12 ,−

13
12}

Table 3. Cubic polynomials az3
+bz with a>0 and nine points of

small height. To save space, only polynomials az3
+bz with a> 0

are listed; to obtain those with a < 0, simply replace each pair
(a, b) by (−a,−b) and adjust the cycle structure of the periodic
points according to Remark 4.3.

Meanwhile, φ(− 1
3) =

5
3 6= 1, but φ(1) = φ( 5

3) = −
2
3 , and hence − 1

3 also has the
same common canonical height.

The map φ(z)=− 27
80 z3
+

151
60 z+ 1, near the bottom of Table 4 (page 59), is an

exception to this trend. The points −2, −10
9 , and 28

9 all satisfy φ(x) = − 4
3 , but
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a,b periodic cycles strictly small height > 0
preperiodic points h

1
6 , −13

6 {3,−1} 0,1,±2,−3,±4 —

−
1
6 , 13

6 {3}, {−1}, {−2} 0,1,2,−3,±4 —
3
4 , −49

12 {1,− 7
3} 0,±1

3 ,
4
3 ,

5
3 ,

7
3 ,−

8
3 —

3
8 , −49

24 {−3}, { 13}, {
8
3} −1,− 5

3 0,−1
3 ,±

7
3 .02309

25
24 , −49

24 {0,1} ±
1
5 ,

3
5 ,±

7
5 ,−

8
5 ,−

9
5 —

5
12 , −49

60 {
3
5} 0,±1,−3

5 ,±
7
5 ,±

8
5 —

−
5
12 , 49

60 {1, 7
5} 0,−1,−7

5 ,±
3
5 ,±

8
5 —

−
49
48 , 19

12 {
12
7 ,−

10
7 }, {

2
7 ,

10
7 } −

2
7 ,±

4
7 ,±

6
7 —

2
15 , −91

30 {
5
2 ,−

9
2} 3,±5,±1

2 ,
9
2 ,−

11
2 —

−
1
30 , 91

30 {4,11,−10} 0,1,9,−5,−6 −4 .01983
1
48 , −31

12 {−4,10}, {−10,6} ±2,−6,±12 —

4 .00039

−
1

48 ,
31
12 — —

2,10,−12 .00118
±6 .00355

−2,−10,12 .01065
49
48 , −31

12 {−2}, { 27}, {
12
7 } −

2
7 ,

4
7 ,±

10
7 ,−

12
7

6
7 .02587

2 .00677
3
16 , −43

12 {−4, 10
3 } −

2
3 ,

14
3

4
3 .01653

4, 2
3 ,−

14
3 .02030

−
3

16 ,
43
12 {−4,− 4

3 ,−
10
3 }

14
3 ,−

2
3

−2 .00488
4, 2

3 ,−
14
3 .01463

3
40 ,− 241

120 {
1
3} ±3,5,−16

3 ,−
19
3 −

1
3 ,−5, 16

3 .02182

3,−5,−1
3

−
3
40 , 241

120 {−3} — 16
3 ,

19
3

}
.00933

5, 1
3 ,−

16
3 .02800

27
80 , −91

60 {
4
3 ,−

2
9} −2,− 4

3 ,±
10
9 ,

20
9 ,±

22
9 —

Table 4. Cubic polynomials az3
+bz+1 with nine points of small

height (continued on next page).
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a,b periodic cycles strictly small height > 0
preperiodic points h

2, 2
9 ,−

20
9 .00505

−
27
80 , 91

60 — — ±
4
3 ,±

10
9

±
22
9

}
.01516

121
80 , − 91

20 {−2}, { 2
11}, {

20
11} −

2
11 ,

10
11 ,

12
11 ,±

18
11 ,−

20
11 —

1
240 , − 91

60 {−10,12} 10,−12,±22 2,18,−20 .01806

−
1

240 , 91
60 {−2}, {−10}, {12} 10,−12,−18,20,±22 —

169
96 ,− 133

24 {−2}, { 2
13}, {

24
13} −

2
13 ,

8
13 ,

18
13 ,±

22
13 ,−

24
13 —

−
289
240 , 139

60 {
4
17 ,

26
17}, {−

26
17 ,

30
17} ±

6
17 ,±

20
17 −

14
17 .02485

−2,−10
9

−
27
80 , 151

60 {
10
3 ,−

28
9 } 2, 10

9
28
9 ,−

22
9

}
.01396

22
9 .01418

3
112 ,− 247

84 {12} 2,−14
3 ,−

22
3 ,

28
3 ,−

34
3 −2,−28

3 ,
34
3 .02313

−2,−12, 14
3

−
3

112 , 247
84 — — 22

3 ,−
28
3 ,

34
3

}
.01568

2, 28
3 ,−

34
3 .01995

3
80 ,−

259
60 {−12} 10

3 ,
26
3

−
4
3 ,−10, 34

3 .02012
4
3 ,10,−34

3 .02974

Table 4 (continued). Cubic polynomials az3
+ bz + 1 with nine

points of small height.

all iterates of −22
9 appear to be distinct from those of −2. Nonetheless, all four

points share the same canonical height ĥφ(−22
9 )= ĥφ(−2)= 1

18 log 5≈ .08941.
(The scaled height .01396 is of course .08941 divided by h(φ)= log 604.) We can
compute this explicit value as follows. The bad primes are v=2, 3, 5,∞. In R, the
iterates of all four points approach the fixed point at −1.639. At v= 3, φ maps the
set {x ∈Q3 : |x |3≤ 9} into itself, since 9φ(z/9)= 1

3(z
3
− z)− 27

80 z3
+

57
20 z+ 9 maps

3-adic integers to 3-adic integers. At v = 2, one can show that φ maps D̄(4, 1
16)

into D̄(2, 1
4), D̄(2, 1

8) into D̄(−2, 1
8), D̄(−2, 1

16) into D̄(4, 1
16), and D̄(6, 1

16) into
D̄(4, 1

16); hence the orbit any point x ∈ Q2 in these disks stays in the same disks.
Thus, λ̂φ,∞(x)= λ̂φ,3(x)= λ̂φ,2(x)= 0 for all four points x ; by Propositions 1.2
and 1.4, then, ĥφ(x) = λ̂φ,5(x). Finally, all four points satisfy |φ3(x)|5 = 5, and
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therefore |φn(x)|5 = 5en for all n ≥ 3, where

en = 1+ 3+ · · ·+ 3n−3
=

3n−2
−1

2
.

Thus, λ̂φ,5(x)= limn→∞(en/3n) log 5= 1
18 log 5, as claimed. Incidentally, this

same argument almost applies to the fifth point x = 22
9 as well, but φ7( 22

9 )≈ 36.19.
As a result, λ̂φ,∞(22

9 )≈ .0014 is positive; dividing by log 604 gives the extra con-
tribution of .00022 to the scaled height.

A similar phenomenon occurs for the map φ(z)=− 1
240 z3
+

259
60 z+1, listed near

the bottom of Table 2. For that map, −12 and 20 have the same small height but
apparently disjoint orbits. The point 20 maps to 18, and all three of 10, 18, and
−28 map to 22, which then maps to 12. Meanwhile, −12 maps to −22, which
maps to −10; and all three of −10, −18, and 28 map to −20.

As mentioned in Remark 5.4, no preperiodic point in our data took more than
six iterations to produce a repeated value. In fact, all but one function required
only five. The one exception is φ(z) = 1

12 z3
−

25
12 z+ 1, for which the preperiodic

point 0 lands on the 5-periodic point 1 after one iteration. (There are a total of 8
small height points for φ, because −5 also maps to 1, and because −4 has scaled
height .01595 . . ..) This map was also the only cubic polynomial in our search with
a rational 5-periodic point; all other periods were at most 4. Table 5 lists all those
cubic polynomials in our search for which some rational preperiodic point required
5 or more iterations to reach a repeat; note that all are of the form az3

+ bz+ 1.
Our data supports Conjecture 1 for cubic polynomials inasmuch as the number

of rational preperiodic points does not grow as h(φ) increases. For example, even
though Table 2 shows a number of maps az3

+ bz with eleven preperiodic points,
it is important to note that the first such map had height as small as h(φ)= log 19.
Similarly, every preperiodic structure appearing anywhere in Tables 2, 3, and 4
appeared already for some map of relatively small height. That is, the data suggests
that all the phenomena that can occur have already occurred among the small height
maps.

In the same way, the data also supports Conjecture 2 for cubic polynomials.
Table 6 lists the only nine points of scaled height smaller than .0007 in our entire
search. (There were only twenty points with scaled height smaller than .001; three
of the extra eleven are iterates of the first three points listed in Table 6.) Once
again, even though there are two maps of fairly large height (log 289 ≈ 5.67 and
log(27 · 12) ≈ 5.78) with a point of small scaled height, there was already a map
of substantially smaller height (log 97≈ 3.37) with an even smaller point.

Moreover, the intuition (mentioned in the introduction) that the scaled height
measures the number of iterates required to start the “explosion” is on clear display
in Table 6. For these points, it takes seven applications of φ to get to an iterate with
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a, b, c x, φ(x), φ2(x), . . . other small height > 0
preperiodic point h

1
12 , −25

12 , 1 0, {1,−1, 3,−3, 5} −5 −4 .01595

−
3
2 , 7

6 , 1 0, 1, 2
3 , {

4
3 ,−1} ±

1
3 ,−

2
3 —

1
6 , −13

6 , 1 2,−2, 4, {3,−1} 0, 1,−3,−4 —
2
3 , −13

6 , 1 3
2 , 0, 1,−1

2 , {2} −2, 1
2 ,−

3
2 —

−
4
3 , 13

12 , 1 0, 1, { 34 ,
5
4 ,−

1
4} −1, 1

4 ,−
3
4 —

3
4 , −25

12 , 1 4
3 , 0, {1,− 1

3 ,
5
3}

1
3 ,−

5
3 —

−
1
3 , 37

12 , 1 1
2 ,

5
2 ,

7
2 , {−

5
2 ,−

3
2} −2,− 1

2 —

−
4
3 , 37

12 , 1 −
5
4 ,−

1
4 ,

1
4 ,

7
4 , {−

3
4} −1 —

3
4 , −49

12 , 1 1
3 ,−

1
3 ,

7
3 , {1,−

7
3} 0, 4

3 ,
5
3 ,−

8
3 —

6
5 , −61

30 , 1 −
3
2 , {0, 1, 1

6 ,
2
3}

5
6 —

−
32
3 , 37

6 , 1 −
5
8 ,−

1
4 ,−

3
8 , {−

3
4 ,

7
8} −

1
2 —

1
48 , −19

12 , 1 2,−2, 4, {−4, 6} −6,±10 —

−
2
15 ,

79
30 , 1 −4,−1,− 3

2 , {−
5
2 ,−

7
2} 5

{
0 .00688
1 .02065

−
1
30 , 91

30 , 1 0, 1, {4, 11,−10} −5,−6, 9 −4 .01983
8
15 ,− 121

30 , 1 1
4 , 0, {1,−5

2 ,
11
4 } −

11
4 —

−
49
48 , 31

12 , 1 −
6
7 ,−

4
7 ,−

2
7 , {

2
7 ,

12
7 } ±

10
7 ,−

12
7 —

5
48 ,− 211

60 , 1 22
5 ,−

28
5 , {

12
5 ,−6,− 2

5} 6, 28
5 ,

2
5 —

Table 5. Cubic polynomials az3
+ bz + c having a rational pre-

periodic chain of length ≥ 5.

noticeably larger numerator or denominator than its predecessors. To get a point
of smaller scaled height than the record of .00025 in Table 6, then, it seems one
would need a point and map with eight iterations required to start the explosion.

Also of note is that, just as in Table 5, all the maps in Table 6 are of the form
az3
+ bz + 1. In fact, the smallest scaled height for a map az3

+ bz occurs for
±

5
3 z3
∓

77
30 z, at x =±4

5 . (Once again, see Remark 4.3 to explain the four-way tie.)
The scaled height is .00591, more than twenty times as large as the current record
for az3

+bz+1; indeed, it takes a mere four iterations to land on 43/40, at which
point the numerator and denominator both start to explode.

This phenomenon supports the heuristic behind Conjectures 1 and 2, that it is
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a, b, c h(φ) x, φ(x), φ2(x), . . . h(x)

25
24 , 97

24 , 1 3.3672 7
5 ,

9
5 ,

1
5 ,

1
5 ,

9
5 ,

11
5 ,

6
5 ,

41
20 ,

4323
2560 , . . . .00025

8
15 , 289

120, 1 5.6664 5
8 ,

3
8 ,

15
8 , 0, 1, 7

8 ,
11
4 ,

175
32 ,

307441
4096 , . . . .00030

27, 85
12 , 1 5.7807 2

9 ,
5
18 ,

7
18 ,

1
6 ,

1
18 ,

11
18 ,

5
6 ,

193
18 ,

597703
18 , . . . .00032

1
48 , 31

12 , 1 4.8202 4, 10, 6, 12, 4, 8, 9, 113
16 ,

649189
65536 , . . . .00039

3
4 , 25

12 , 1 3.2188 1, 1
3 ,

1
3 ,

5
3 , 1,7

3 ,
11
3 ,

91
3 ,

62605
3 , . . . .00046

21
128, 295

168, 1 8.4596 4, 52
21 ,

20
7 ,

4
21 ,

4
3 ,

20
21 ,

124
49 ,

39572
50421 , . . . .00047

243
224, 85

168, 1 6.5917 2
27 ,

26
27 ,

14
27 ,

10
9 ,

2
27 ,

28
27 ,

17
54 ,

2593
2304 ,

2336653975
101468602368 , . . . .00057

4
21 , 205

84 , 1 5.3230 3
4 ,

3
4 ,

11
4 ,

7
4 ,

17
4 ,

21
4 ,

63
4 ,

2827
4 ,1882717007

28 , . . . .00058
15
8 , 289

120, 1 5.6664 1
5 ,

8
15 , 0, 1, 7

15 ,
1
15 ,

21
25 ,

276
3125 ,

9626315307
12207031250 , . . . .00063

Table 6. Cubic polynomials az3
+ bz + c with rational points of

scaled height less than .0007.

hard to have a lot of points of small height, as follows. If x were a small height
point for az3

+bz, then −x would have the same small height; their iterates would
also have (not quite as) small heights, too. Together with the fixed point at 0, then,
there would be more small height points than the heuristic would say are allowed.
This idea is further supported by Tables 2, 3, and 4: while it is possible to have
eleven preperiodic points or ten points of small height, or even some of each, it does
not seem possible to have more than eleven total such points. Thus, there seems to
be an upper bound for the total number of points of small height, as predicted by
Conjectures 1 and 2.
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