
inv lve
a journal of mathematics

msp

Computing indicators of Radford algebras
Hao Hu, Xinyi Hu, Linhong Wang and Xingting Wang

2018 vol. 11, no. 2



msp
INVOLVE 11:2 (2018)

dx.doi.org/10.2140/involve.2018.11.325

Computing indicators of Radford algebras
Hao Hu, Xinyi Hu, Linhong Wang and Xingting Wang

(Communicated by Kenneth S. Berenhaut)

We compute higher Frobenius–Schur indicators of Radford algebras in positive
characteristic and find minimal polynomials of these linearly recursive sequences.
As a result of the work of Kashina, Montgomery and Ng, we obtain gauge
invariants for the monoidal categories of representations of Radford algebras.

1. Introduction

In group theory, the Frobenius–Schur (FS) indicator provides a criterion, depending
on its possible values 1, 0, or −1, for determining whether an irreducible repre-
sentation of a finite group G is real, complex or quaternionic. This result was
generalized to any semisimple Hopf algebra over an algebraically closed field of
characteristic zero in [Linchenko and Montgomery 2000]. Kashina, Montgomery
and Ng [Kashina et al. 2012] proposed a definition of higher Frobenius–Schur (FS)
indicators for an arbitrary finite-dimensional Hopf algebra, which further generalizes
the notion given in [Kashina et al. 2006] regarding the regular representation of a
semisimple Hopf algebra. Moreover, they proved that these indicators are gauge
invariant under gauge equivalence in the sense of [Kassel 1995]. Later, the properties
of these indicators were further discussed by Shimizu [2015], who mainly focused
on the complex Hopf algebras.

The definition of higher FS indicators of the regular representation of a finite-
dimensional Hopf algebra is straightforward by taking the trace of the Sweedler
powers followed by the antipode; see [Kashina et al. 2012, Definition 2.1]. But to
find their values can be arithmetically challenging over the complex numbers, e.g.,
in the case of the indicators of Taft algebras; see [Kashina et al. 2012, §3]. Besides
Taft algebras, another well-studied Hopf algebra with simple defining relation is the
Radford algebra R(p), which was introduced in [Radford 1977, 4.13] and is over a
base algebraically closed field of prime characteristic p. It was proved in [Wang
and Wang 2014] that R(p) is the only noncommutative and noncocommutative
pointed Hopf algebra of dimension p2.
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In this short note, we find that the higher FS indicators of the Radford algebra
R(p) are

{νn(R(p))}n≥1 = {1, . . . , 1︸ ︷︷ ︸
p−1

, 0, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . . }.

Our approach is via concrete computation involving the left integrals of the Radford
algebra and those of its dual Hopf algebra. Our result verified, in the case of the
Radford algebra, a theorem by Shimizu [2015, Corollary 4.6] on higher FS indicators
over positive characteristic, which states that the sequence of indicators always
appears periodically in positive characteristic. As a result of the work of Kashina,
Montgomery and Ng, we obtain gauge invariants for the monoidal category of the
representation of Radford algebras. Moreover, we also find the minimal polynomial
of the sequence of indicators of the Radford algebra.

2. Preliminaries

Throughout, k is an algebraically closed field, H is a finite-dimensional Hopf algebra
over k. We use the standard notation (H,m, u,1, ε, S), where m : H ⊗ H → H
is the multiplication map, u : k→ H is the unit map, 1 : H → H ⊗ H is the
comultiplication map, ε : H→ k is the counit map, and S : H→ H is the antipode.
The vector space dual of H is also a Hopf algebra and will be denoted by H∗.
The bialgebra maps and antipode of H∗ are given by (m H∗, u H∗,1H∗, εH∗, SH∗)=

(1∗, ε∗,m∗, u∗, S∗), where ∗ is the transpose. We use the Sweedler notation1(h)=∑
h(1) ⊗ h(2). If f, g ∈ H∗, then f g(h) =

∑
f (h(1))g(h(2)) for any h ∈ H and

εH∗( f )= f (1).

2.1. Definition [Montgomery 1993, Definition 2.1.1]. A left integral in H is an
element 3 ∈ H such that h3 = ε(h)3 for all h ∈ H ; a right integral in H is an
element 3′ ∈ H such that 3′h = ε(h)3′ for all h ∈ H. The spaces of left and right
integrals are denoted by

∫ l
H and

∫ r
H , respectively.

2.2. Lemma [Montgomery 1993, Theorem 2.1.3]. The spaces
∫ l

H and
∫ r

H are each
one-dimensional.

2.3. Lemma. Suppose λ ∈ H∗. Then λ is a left integral of H∗ if and only if∑
h(1)λ(h(2))= λ(h) for any h ∈ H. A similar criterion holds for a right integral

of H∗, i.e., λ is a right integral of H∗ if and only if
∑
λ(h(1))h(2) = λ(h) for any

h ∈ H.

Proof. By definition, λ is a left integral in H∗ if and only if f λ= εH∗( f )λ for any
linear function f ∈ H∗. That is, f λ(h) = εH∗( f )λ(h) for any h ∈ H. By duality,
this is equivalent to

∑
f (h(1))λ(h(2))= f (1)λ(h) or f

(∑
h(1)λ(h(2))

)
= f (1λ(h))

since f is linear. Note that f is arbitrary in H∗. We have λ is a left integral in H∗
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if and only if
∑

h(1)λ(h(2))= λ(h) for any h ∈ H. The proof for right integrals is
the same. �

2.4. Definition [Kashina et al. 2012, Definition 2.1]. Let n be a positive integer.
Suppose h1, . . . , hn ∈ H. Then the n-th power of multiplication is defined as

m(n)(h1⊗ · · ·⊗ hn)= h1 · · · hn.

Let h ∈ H. The n-th power of comultiplication is defined to be

1(n)(h)=
{

h, n = 1,
(1(n−1)

⊗ id)(1(h)), n ≥ 2.

The n-th Sweedler power of h is defined to be

Pn(h)= h[n] =
{
ε(h)1H , n = 0,
m(n)
◦1(n)(h), n ≥ 1.

The n-th indicator of H is given by

νn(H)= Tr(S ◦ Pn−1).

In particular, ν1(H)= 1 and ν2(H)= Tr(S).

Let H and K be two finite-dimensional Hopf algebras over k such that the two
representation categories Rep(H) and Rep(K ) are monoidally equivalent. By [Ng
and Schauenburg 2008, Theorem 2.2], H ∼= K F, where K F is a Drinfeld twist by a
gauge transformation F on H which satisfies some 2-cocycle conditions. Then H
and K are said to be gauge equivalent Hopf algebras.

2.5. Theorem [Kashina et al. 2012, Theorem 2.2, Corollary 2.6]. The sequence
{νn(H)} is an invariant of the gauge equivalence class of Hopf algebras of H ; that
is, if H and K are gauge equivalent then {νn(H)} = {νn(K )}. Suppose λ ∈ H∗ and
3 ∈ H are both left integrals (or both right integrals) such that λ(3)= 1. Then

νn(H)= λ(3[n])

for all positive integers n.

2.6. Proposition [Shimizu 2015, Corollary 4.6]. Suppose char k> 0. Then, for any
finite-dimensional Hopf algebra H over k, the sequence {νn(H)} is periodic.

2.7. Definition. A sequence {an}n≥1 is linearly recursive if there exists a nonzero
polynomial f (x)= f0+ f1x + fm−1xm−1

+ fm xm such that

f0an + f1an+1+ · · ·+ fmam+n = 0

for any positive integer n. In such a case, we say that {an}n≥1 satisfies the polynomial
f (x). The monic polynomial of the least degree satisfied by a linearly recursive
sequence is called the minimal polynomial of the sequence.
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2.8. Proposition [Kashina et al. 2012, Proposition 2.7]. The sequence {νn(H)} is
linearly recursive and the degree of its minimal polynomial is at most (dim H)2.
The minimal polynomial is also a gauge invariant; that is, if H and K are gauge
equivalent, then {νn(H)} and {νn(K )} have the same monic minimal polynomial.

Next, we consider a free bialgebra B and the comultiplication of certain mono-
mials in B. This information will be used later in our computation of indicators
of R(p).

2.9. Definition. Let B= k〈g, x〉 be the free k-algebra on two generators g and x .
Equipped with the comultiplication and the counit given by

1(g)= g⊗ g, 1(x)= x ⊗ 1+ g⊗ x, ε(g)= 1 and ε(x)= 0,

the free algebra becomes the free bialgebra (B, 1, ε). Let Ck,l denote the sum
of all monomials with k g’s and l x’s, and C0,0 = 1 and Ck,l = 0 if k or l < 0 by
convention.

2.10. Lemma. In the free bialgebra B, we have

(a) Ck,l = g Ck−1,l + x Ck,l−1 = Ck−1,l g+Ck,l−1 x.

(b) 1(xn)=
∑

k≥0 Ck,n−k ⊗ xk for n ≥ 0.

(c) 1(C p,q)=
∑

k≥0 C p+k,q−k ⊗C p,k .

Proof. Part (a) is clear, since the leftmost (rightmost) factor of any monomial in the
sum Ck,l is either g or x . For (b), we use induction. When n = 0,∑

k≥0

Ck,n−k ⊗ xk
= C0,0⊗ 1= 1⊗ 1=1(1).

When n = 1,∑
k≥0

Ck,n−k ⊗ xk
= C0,1⊗ 1+C1,0⊗ x = x ⊗ 1+ g⊗ x =1(x).

Suppose 1(xn)=
∑

k≥0 Ck,n−k ⊗ xk. Then

1(xn+1)=1(xn)1(x)=
(∑

k≥0

Ck,n−k ⊗ xk
)
· (x ⊗ 1+ g⊗ x)

=

∑
k≥0

Ck,n−k x ⊗ xk
+

∑
k≥1

Ck−1,n−k+1g⊗ xk

=

∑
k≥0

Ck,n−k x ⊗ xk
+

∑
k≥1

(Ck,n−k+1−Ck,n−k x)⊗ xk

=

∑
k≥0

Ck,(n+1)−k ⊗ xk .
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To show (c), we use the fact that

(1⊗ id)(1(xn))= (id⊗1)(1(xn)).

By (b), we have

(1⊗ id)(1(xn))=
∑
k≥0

1(Ck,n−k)⊗ xk
=

∑
p+q=n

1(C p,q)⊗ x p.

On the other hand,

(id⊗1)(1(xn))=
∑
l≥0

Cl,n−l ⊗1(x l)=
∑
l≥0

Cl,n−l ⊗

(∑
p≥0

C p,l−p⊗ x p
)

=

∑
p≥0

∑
l≥p

Cl,n−l ⊗C p,l−p⊗ x p

=

∑
p+q=n

( ∑
l−p=k≥0

C p+k,q−k ⊗C p,k

)
⊗ x p.

It then follows that 1(C p,q)=
∑

k≥0 C p+k,q−k ⊗C p,k . �

2.11. Lemma. In the free bialgebra B, we have

(gix j )[n+1]
=

∑
0≤k1+···+kn≤ j

giCk1+···+kn, j−(k1+···+kn)g
iCk1+···+kn−1,kn· · ·g

iCk1,k2 giC0,k1 .

Proof. By induction on n, using Lemma 2.10, it is easy to see that

1(n+1)(C p,q)=
∑

0≤k1+···+kn≤q

C p+k1+···+kn,q−(k1+···+kn)

⊗C p+k1+···+kn−1,kn ⊗ · · ·⊗C p+k1,k2 ⊗C p,k1 .

Therefore, we have

(gi x j )[n+1]
= m(n+1)(1(n+1)(gi )1(n+1)(x j )

)
= m(n+1)(gi

⊗ · · ·⊗ gi )

(∑
k≥0

1(n)(Ck, j−k)⊗ xk
)

=

∑
0≤k1+···+kn≤ j

gi Ck1+···+kn, j−(k1+···+kn) · · · g
i Ck1,k2 gi C0,k1 . �

3. Radford algebras

In this section, the base field k is algebraically closed of prime characteristic p.

3.1. The Radford algebra R(p) [1977, 4.13] was first discussed over a base field k
of prime characteristic p, and was proved in [Wang and Wang 2014] to be the only
noncommutative and noncocommutative pointed Hopf algebra of dimension p2
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over k. In fact, one can write R(p) as the quotient Hopf algebra B/R, where the
ideal R of B is generated by

g p
− 1, x p

− x, [g, x] − (g2
− g) (R)

if p > 2, or
g2
− 1, x2

− x, [g, x] − (1− g)

if p= 2. It is straightforward to check that the Radford algebra R(p) has dimension
p2 and the linear basis can be chosen as {gi x j

| 0 ≤ i, j ≤ p − 1}. We denote
by ck,l the image of Ck,l (the sum of all monomials with k g’s and l x’s in B)
in R(p) under the projection B→ B/R = R(p). It follows from (R) that, for
0≤ k, l ≤ p− 1,

ck,l =

(k+l
k

)
gk x l
+

∑
0≤i≤p−1
0≤ j≤l−1

ai j gi x j for some ai j ∈ k. (1)

Moreover, the Radford algebra R(p) is self-dual. The dual basis of (R(p))∗ to the
chosen basis {gi x j

| 0≤ i, j ≤ p− 1} of R(p) is {δgi x j | 0≤ i, j ≤ p− 1}, where
δgi x j are characteristic functions, that is,

δgi x j (gm xn)=

{
1 if m = i, n = j,
0 otherwise.

3.2. Lemma. For the Radford algebra R(p), the integral spaces are given by∫ l

R(p)
= k

( ∑
0≤i≤p−1

gi
)( ∑

1≤i≤p−1

(−1)i x i
)
,

∫ r

R(p)
= k

( ∑
1≤i≤p−1

x i
)( ∑

0≤i≤p−1

gi
)
.

For the dual Hopf algebra (R(p))∗, the integral spaces are given by∫ l

R(p)∗
= k δgx p−1 and

∫ r

R(p)∗
= k δx p−1,

Proof. Note that ε(g) = 1, ε(x) = 0, and ε is linear. To show that the element
3=

(∑
0≤i≤p−1 gi

)(∑
1≤i≤p−1(−1)i x i

)
is a left integral in R(p), it is sufficient to

show that g3=3 and x3= 0. The first equation is obvious. To show the second,
one can check that [x, gi

] = igi (1− g). Hence we have[
x,

p−1∑
i=1

gi
]
=

p−1∑
i=1

igi (1− g)=
p−1∑
i=1

igi
−

p∑
j=2

( j−1)g j
= g+

p−1∑
i=2

gi
+ g p
=

p−1∑
i=0

gi,
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and so

x3= x
( ∑

0≤i≤p−1

gi
)( ∑

1≤i≤p−1

(−1)i x i
)

=

( p−1∑
i=0

gi
)
(x + 1)

( ∑
1≤i≤p−1

(−1)i x i
)
=

( p−1∑
i=0

gi
)
(x p
− x)= 0.

Therefore, 3 is a left integral in R(p).
To show that the characteristic function δgx p−1 is a left integral in R(p)∗, it is

sufficient, by Lemma 2.3, to verify that∑
h(1)δgx p−1(h(2))= δgx p−1(h) for h = gi x j

∈ R(p) with 0≤ i, j ≤ p− 1.

By Lemma 2.10, we have 1(gi x j ) = (gi
⊗ gi )1(x j ) =

∑ j
k=0 gi ck, j−k ⊗ gi xk.

Hence

∑
h(1)δgx p−1(h(2))=

j∑
k=0

(
gi ck, j−k · δgx p−1(gi xk)

)
=

{
gcp−1,0 = 1 if i = 1, j = k = p− 1,
0 otherwise.

On the other hand,

δgx p−1(h)= δgx p−1(gi x j )=

{
1 if i = 1, j = p− 1,
0 otherwise.

Therefore, δgx p−1 is a left integral in R(p)∗. The statements on right integrals can
be shown similarly. �

3.3. Theorem. The higher FS indicators of the Radford algebra R(p) are given by

νn(R(p))=
{

1 if n 6≡ 0 (mod p),
0 if n ≡ 0 (mod p).

Proof. By Lemma 3.2, we choose the left integral λ= δgx p−1 of the dual Hopf algebra
(R(p))∗, and the left integral 3=

(∑
0≤i≤p−1 gi

)(∑
1≤i≤p−1(−1)i x i

)
of R(p). It

is clear that λ(3)= 1. By Theorem 2.5, we have

νn+1(R(p))= λ(3[n+1])= δgx p−1

( ∑
0≤i, j≤p−1

(−1) j (gi x j )[n+1]
)
.

By Lemma 2.11 and (1), one sees that, for any 0≤ i, j ≤ p− 1,

(gi x j )[n+1]
∈ Span

(
gk x l

∣∣ 0≤ k ≤ p− 1, 0≤ l ≤ j
)
.
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Hence,

νn+1(R(p))= δgx p−1

( ∑
0≤i≤p−1

(gi x p−1)[n+1]
)
.

Suppose k1, . . . , kn are nonnegative integers such that
∑n

i=1 ki = m. Recall that
the multinomial coefficients are given by( m

k1, . . . , kn

)
:=

(m!)
(k1!) · · · (kn!)

.

Assume that n ≥ 1. Set kn+1 = p− 1− k1− · · ·− kn . By Lemma 2.11, we have∑
0≤i≤p−1

(gi x p−1)[n+1]

=

∑
0≤i≤p−1

0≤k1,...,kn≤p−1

(
gi ck1+···+kn,kn+1 gi ck1+···+kn−1,kn · · ·g

i ck1,k2 gi c0,k1

)

=

∑
0≤i≤p−1

0≤k1,...,kn≤p−1

(( p−1
k1+·· ·+kn

)(k1+·· ·+kn
kn

)
· · ·

(k1+k2
k1

)
gi (gk1+···+kn xkn+1)gi (gk1+···+kn−1 xkn ) · · ·gi (gk1 xk2)gi (xk1)

)
=

∑
0≤i≤p−1

0≤k1,...,kn≤p−1

( p−1
k1, . . . ,kn+1

)
gκx p−1,

where κ = (n+ 1)i + nk1+ (n− 1)k2+ · · ·+ kn . Therefore,

νn+1(R(p))=
∑

0≤k1,...,kn+1≤p−1

( p−1
k1, . . . , kn+1

)
δgx p−1

( p−1∑
i=0

gκx p−1
)
.

Suppose the indices k1, k2, . . . , kn are fixed. Then the inner summation of the above
equation becomes∑

0≤i≤p−1

gκx p−1
=

{
p(g(nk1+(n−1)k2+···+kn)x p−1)= 0 if p | n+ 1,
(1+ g+ · · ·+ g p−1)x p−1 if p -n+ 1.

In a conclusion, by Fermat’s little theorem and for n ≥ 1, we have

νn+1(R(p))=

{
0 if p | n+ 1,∑

k1,...,kn+1

( p−1
k1, . . . , kn+1

)
= (n+ 1)p−1

= 1 if p -n+ 1.

Note that ν1(R(p))= 1. Therefore, we showed that

{νn(R(p))}n≥1 = {1, . . . , 1︸ ︷︷ ︸
p−1

, 0, 1, . . . , 1︸ ︷︷ ︸
p−1

, 0, . . .}. �
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3.4. Proposition. The minimal polynomial of the sequence {νn(R(p))} is

f (x)= x p
− 1.

Proof. The first p + 1 terms of {νn(R(p))} are 1, . . . , 1, 0, 1. The degree of
the minimal polynomial cannot be less than p. Otherwise, {νn(R(p))} satisfies a
polynomial f (x)= f0+ f1x1+ · · ·+ f p−1x p−1. Then

A[ f0 f1 . . . f p−1]
T
= 0,

where A is the matrix with 0’s on the antidiagonal and 1’s elsewhere. Note that the
determinant of A is p−1 or −(p−1). This implies that f0 = f1 = · · · = f p−1 = 0,
a contradiction. Hence the degree of the minimal polynomial is at least p. One can
verify that {νn(R(p))} satisfies the polynomial f (x)= x p

− 1. �
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