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We seek the least-perimeter way to enclose and separate two prescribed areas in
certain hyperbolic surfaces.

1. Introduction

The isoperimetric problem of enclosing a given area in a least-perimeter way
has been investigated in various surfaces. The classical isoperimetric theorem in
the plane asserts that the circle is the shortest curve to enclose a given area in
the plane. While this result is widely known, the solution of the isoperimetric
problem has proved to be elusive in surfaces aside from the plane. By 1999,
the problem had been solved for a handful of Riemannian surfaces, namely, the
Euclidean plane, a round sphere, a round projective plane, the hyperbolic plane,
a circular cone, a circular cylinder, a flat torus or Klein bottle, and a general
surface of revolution [Howards et al. 1999]. Adams and Morgan [1999] obtained
further results in hyperbolic surfaces. The related problem of discovering the least
perimeter needed to enclose and separate two given volumes has invited exploration
as well.

Particular interest has been garnered by the double bubble conjecture. The
double bubble conjecture states that three spherical caps meeting at 2�

3
angles (the

“standard double bubble”) is the least-perimeter way to enclose and separate two
given volumes. This has been believed to be true since the nineteenth century,
but it was first articulated as a conjecture by Joel Foisy [1991], an undergraduate
student at Williams College, in his senior thesis, and it was proved in the planar
case in [Foisy et al. 1993]. Joel Hass, Michael Hutchings, and Roger Schlafly [Hass
et al. 1995] attacked the conjecture in the R3 case using heavily computational
methods, successfully resolving the problem for the case where the two volumes
are equal. Finally, Michael Hutchings, Frank Morgan, Manuel Ritoré, and Antonio
Ros [Hutchings et al. 2002] proved the double bubble conjecture for any ratio of
two volumes in R3. Moreover, Andrew Cotton and David Freeman [2002] have
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shown the conjecture to hold for the hyperbolic plane as well as the case of equal
volumes in hyperbolic 3-space. In certain hyperbolic surfaces however, the standard
double bubble is not perimeter-minimizing. We study this problem, following the
work on single bubbles by Adams and Morgan [1999].

Section 2 discusses the existence and regularity of perimeter-minimizing double
bubbles. Section 3 considers n-punctured spheres. Proposition 3.6 identifies small
perimeter-minimizing double bubbles as horocycles around cusps. Section 4 fo-
cuses on double bubbles on the thrice-punctured sphere. Conjecture 4.1 describes
perimeter-minimizing double bubbles as horocycles for small areas and �-curves
for large areas. Proposition 4.2 shows that, for equal areas, �-curves are shorter
than horocycles for a specific range of areas through direct computations. Proposi-
tions 4.7–4.9 show necessary conditions on the topology of perimeter-minimizing
double bubbles using inequalities obtained in Lemmas 4.3–4.5. Section 5 considers
the once-punctured torus. Proposition 5.1 proves that for relatively small areas two
horocycles around a cusp are shorter than a horocycle with a lens.

2. Existence and regularity

Definition 2.1. A double bubble on a surface consists of two disjoint open regions
with piecewise smooth boundaries. The perimeter refers to the union of the bound-
aries or its length. We do not assume that each region, or that the perimeter, or that
the entire bubble (the union of the regions and the perimeter) is connected. We
call the bubble perimeter-minimizing or sometimes just minimizing if it minimizes
perimeter for fixed area of each region.

Morgan [1994] examined existence and regularity for soap bubble clusters in R2

and on compact Riemannian surfaces, and his results and proofs apply to geometri-
cally finite hyperbolic surfaces.

Theorem 2.2 (existence and regularity). In a complete hyperbolic surface, there
exists a least-perimeter double bubble, enclosing and separating two regions of
prescribed areas. Its perimeter consists of curves of constant curvature meeting
in threes at angles of 2�

3
; all curves separating a specific pair of regions have the

same curvature.

Proof. We explain the extension of Morgan [1994] to the noncompact case. If in
a minimizing sequence a region goes out a cusp, its area goes to 0 and it may be
discarded. If it goes out a flared end, it can be translated back inside a compact
region. �

We are assuming that the sum of the two areas is less than the area of the surface;
the complement is a third region. It remains conjectural in general that each of the
three regions is connected.
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Figure 1. The thrice-punctured sphere can be obtained from the
Poincaré disc (D) model of the hyperbolic plan by identifying the
two ideal triangles as indicated: the purple side is already identified,
blue is glued to blue, and red to red, according to the orientation given.

3. n-punctured spheres

The hyperbolic surfaces we will primarily focus on throughout this paper are
n-punctured spheres, mainly because they are at once both simple (having cusps but
no handles) and interesting. Proposition 3.5 gives the total area of an n-punctured
sphere. Proposition 3.6 shows that for a certain range of areas, perimeter-minimizing
double bubbles on an n-punctured sphere have disconnected boundary, a deviation
from the topological properties of the standard double bubble.

Definition 3.1. An n-punctured sphere is constructed by doubling an ideal n-gon
in hyperbolic 2-space and identifying the boundary.

The n-punctured sphere admits a hyperbolic metric for n � 3, so we assume
henceforth that n� 3. Figure 1 gives an example of this construction in the case of
the thrice-punctured sphere.

We have the following helpful proposition on single bubbles on the n-punctured
sphere.

Proposition 3.2 [Adams and Morgan 1999, Theorem 2.2]. For single bubbles on a
punctured surface, least-perimeter P is less than or equal to area A with equality
precisely for horocycles about cusps. Moreover, if A<� , then a minimizer consists
of horocycles about an arbitrary collection of cusps.

Remark 3.3. Adams and Morgan [1999] further show that in the case of the thrice-
punctured sphere, the hypothesis of this proposition can be extended to A� � .

In the proofs of our results we will make use of the following well-known facts
in this area.

Remark 3.4. A horocycle about a cusp has constant curvature 1 and its length is
equal to the area of the cusp neighborhood.

Proposition 3.5. The total area of the n-punctured sphere is 2.n� 2/� .
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Proof. The area of an ideal triangle in hyperbolic 2-space is � . Since an ideal n-gon
can be triangulated into n�2 ideal triangles, the area of the ideal n-gon is .n�2/� .
The n-punctured sphere is composed of two ideal n-gons glued together and thus
has area 2.n� 2/� . �

Proposition 3.6. Given 0<A1 �A2 <��A1, the least-perimeter way to enclose
and separate areas A1;A2 on the n-punctured sphere is horocycles around cusps.

Proof. Assume to the contrary the perimeter is less than or equal to A1CA2 and the
regions have common boundary. Then the shared boundary can be eliminated with
the remaining boundary enclosing the single area A1CA2. By our assumption the
length of the remaining boundary is strictly less than A1CA2. Since A1CA2 <� ,
this is a contradiction of Proposition 3.2. �

4. The thrice-punctured sphere

The thrice-punctured sphere is equipped with unique hyperbolic structure with
area 2� and constant Gaussian curvature �1. These features make the thrice-
punctured sphere an ideal surface on which to explore the properties of double
bubbles. Conjecture 4.1 says that horocycles are perimeter-minimizing for small
areas and that a � -curve is perimeter-minimizing for large areas, with the transition
point for equal areas given by Proposition 4.2. Proposition 4.8 shows that for
double bubbles with connected perimeter, all three regions must contain a cusp.
Proposition 4.9 further restricts the topology.

Conjecture 4.1. Given two areas 0 < A1 � A2 � 2� � A1 � A2, a perimeter-
minimizing double bubble on the thrice-punctured sphere consists of

(1) horocycles around cusps if A1 is relatively small,

(2) a �-curve with each region containing one cusp (unique up to the three-fold
symmetry) if A1 is relatively large (see Figure 2).

Figure 2. � -curves as pictured are conjectured to minimize perimeter
for relatively large pairs of areas.
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Proposition 4.2. There exists a constant A0 � 1:7038 such that given 0 < A1 D

A2 �
2�
3

, the symmetric � -curve enclosing areas A1;A2 is shorter than horocycles
(of length A1CA2) if and only if A1 DA2 >A0.

Proof. Let H D fxC yi 2 C j y > 0g with the metric ds D
p

dx2
C dy2=y; this

is the upper half-plane model of hyperbolic space. The length of a parametrized
curve � W Œa; b�!H is given by

lengthD
Z b

a

j� 0.t/j

y.t/
dt:

The area of a region R is given by

areaD
“

R

1

y
dx dy:

We consider the following construction in H. The thrice-punctured sphere can
be considered as the quotient of two ideal triangles H (the edges of these triangles
are shown in blue in Figure 3 with the edges e and f being identified with e0 and
f 0 as shown). For computational ease we choose the radii of the semicircles f
and f 0 to be 1.

Given A1 D A2 D
2�
3

, consider the pink �-curve � of Figure 3, composed of
three geodesics which each contain a cusp and meet at angles of 2�

3
. In the upper

half-plane this curve consists of four circular arcs of radius 2 and angle �
6

and two
vertical segments. Each of the arcs is centered at a vertex of the ideal triangle and
runs from a vertical edge toward the center, while the two vertical segments run
from the intersections of the arcs to the edges f and f 0.

By symmetry this curve divides the thrice-punctured sphere into three equal parts
each having area 2�

3
. Due to symmetry the length of � is 6l , where l is the length

of just one of the vertical segments. Computing the length of the segment from
.1;
p

3/ to .1; 1/ using the formula given we obtain l D ln
p

3� ln 1D 1
2

ln 3. Thus
the length of � is 3 ln 3.

For A1 D A2 D
2�
3

, the �-curve has length 3 ln 3 < 4�
3
D A1CA2, while for

A1DA2 <� , the horocycles of length A1CA2 are minimizing by Proposition 3.6.
Moreover, as A1 D A2 decreases, the symmetric �-curve gets longer and the
horocycles get shorter. Therefore there is a constant � < A0 <

2�
3

such that the
� -curve is shorter if and only if A1 DA2 >A0.

Using Mathematica we were able to find an approximate value of A0. For
A1DA2<

2�
3

, we consider the same construction as for �, but shift it downwards a
euclidean distance of p to the red curve in Figure 3. This is the only possible � -curve
enclosing A1 and A2 which satisfies the regularity and constant curvature conditions
of a perimeter-minimizing double bubble. By symmetry, the length is given by
adding four times the length of one arc (we take the one centered at .0;p/) to two
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Figure 3. A �-curve on a thrice-punctured sphere in the upper
half-plane allows us to parametrize the area and perimeter of the
� -curve for equal areas.

times the length of one vertical segment (we take the one starting at .1; 1/). Using the
standard parametrizations for these curves and the length formula given we obtain

Perimeter.p/D 4

Z �
2

�
3

1

sin x� p
2

dx� 2 ln.
p

3�p/:

The area enclosed by the red curve is given by taking four times area of the
region between the red arc and the first half of f . Applying the given formula for
computing area we have

Area.p/D4

Z 1

0

Z p4�x2�p

p
1�.x�1/2

1

y
dy dxD4

Z 1

0

�
1

p
4�x2�p

C
1

1� .x� 1/2
dx:

Given these parametrizations of area and perimeter, we can plot the perimeter
against the area as in Figure 4. Further computations via Mathematica show that a
� -curve is more efficient than horocycles for areas greater than about 3:4076=2. �

Lemma 4.3. In the hyperbolic plane, for a disc of area A and perimeter P the
following statements hold:

(1) If A� � , then P � 2:2A.

(2) If A� �
2

, then P � 3A.

(3) If A� 4�
9

, then P �
p

10.

(4) If A� 4�
15

, then P � 4A.

(5) If A< 8�=.9C 3
p

13/, then P > 4�
3

.
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Figure 4. The �-curve is shorter than horocycles for equal areas
greater than about 1.7.

Proof. Set c D P=A. If we parametrize area and perimeter of such a disc using the
hyperbolic radius, s, then

c D
2� sinh s

4� sinh2 s
2

D coth s
2
:

Notice that coth s
2

is decreasing with s, whereas A D 4� sinh2 s
2

is increasing
with s. Therefore coth s

2
is bounded below by its value at the hyperbolic radius

corresponding to the largest A. Suppose A � � . We solve A � 4� sinh2 s
2

to
find s � cosh�1 3

2
. Hence c � coth

�
1
2

cosh�1
�

3
2

��
� 2:22. Thus P D cA � 2:2A.

Therefore, the first statement holds. Statements (2)–(4) are shown by the same
method.

To show (5), we suppose that A> 8�=.9C3
p

13/. Since P .A/D
p

A2C 4�A

is strictly increasing for all positive A, we have that for A> 8�=.9C 3
p

13/,

P >

s�
8�

9C 3
p

13

�2

C 4�
8�

9C 3
p

13
D

4�

3
: �

Remark 4.4. In Lemma 4.3(1)–(4) both inequalities of each statement may be
made strict and the statements will still hold. The method of proof is the same.

Lemma 4.5. For two regions on the thrice-punctured sphere with areas A1 and A2

such that A1;A2 �A3 D 2� �A1�A2, we have that A1;A2 � � .

Proof. If this was not true, the total area A1CA2CA3 would exceed 2� , which is
the area of the thrice-punctured sphere (Proposition 3.5). �

Lemma 4.6. Given a double bubble with regions of areas 0 < A1;A2 � 2� �

A1�A2 and perimeters Pi , the total perimeter P satisfies P �A1C
1
2
P2.
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Proof. Denote the area and perimeter of the complementary region by A3 and P3.
By Lemma 4.5, A1�� . Thus Proposition 3.2 implies that P1�A1. If A3<� , then

P3 �A3 D 2� �A1�A2 � .2A1CA2/�A1�A2 DA1:

If A3 > � , then

P3 � 2� �A3 D 2� � .2� �A1�A2/DA1CA2 �A1:

Therefore the total perimeter satisfies

P D 1
2
.P1CP2CP3/�

1
2
.2A1CP2/DA1C

1
2
P2: �

Proposition 4.7. On a thrice-punctured sphere, a curve enclosing and separating
regions Ri of perimeters Pi and areas A1, A2 � 2� �A1�A2 has total perimeter
P > A1CA2 if R1 or R2 is a union of topological discs. In particular, it is not
perimeter-minimizing.

Proof. Suppose R2 is the union of topological discs. Let Pi denote the perimeter
of Ri . Since the disc is isoperimetric in the hyperbolic plane, P2 is greater than or
equal to the perimeter of a hyperbolic disc of the same area. By Lemma 4.5, A2�� .
Thus, by Lemma 4.3(1), P2� 2:2A2. By Lemma 4.6, the total perimeter P satisfies

P �A1C
1
2
P2 >A1C

1
2
.2:2/A2 >A1CA2:

Therefore it cannot be perimeter-minimizing, because horocycles on two separate
cusps have perimeter A1CA2. �

Proposition 4.8. In a perimeter-minimizing double bubble with connected perime-
ter containing regions Ri of perimeters Pi and areas A1, A2�A3D 2��A1�A2,
all three regions contain a cusp.

Proof. Both regions must have a component which is not a topological disc;
otherwise horocycles enclosing the same area would be shorter than the perimeter
of our double bubble by Proposition 4.7, contradicting the fact that our bubble is
perimeter-minimizing. These components of regions which aren’t topological discs
must contain cusps (they can’t be annular regions since the perimeter is connected).

Suppose that R3 is the union of topological discs. Then P3 is greater than or
equal to the perimeter of the hyperbolic disc of area A3. Since dP=dA of the
hyperbolic disc is always positive and A3 �

2�
3

, P3 is greater than or equal to the
perimeter of the hyperbolic disc of area 2�

3
, which is 2

p
7�

3
. Therefore we have

P > P3 >
2
p

7�
3

> 4�
3
�A1CA2, a contradiction. �

Proposition 4.9. Consider a double bubble enclosing areas 0 < A1;A2 � 2� �

A1�A2, consisting of four region components Ci of areas A1�a1, a1, a2, A2�a2,
where a1�a2, and each Ci is adjacent only to Ci�1 and CiC1 for 1< i<4. Suppose
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C2
C1 C3

C4 C1 C3
C4

Figure 5. Lower bound on perimeter of four components of regions
with two cusps.

that C1 and C4 have no common boundary and are each connected and contain
cusps, and that the union of C2 and C3 (not necessarily connected) is the union of
topological discs. Then the total perimeter satisfies P >A1CA2, and the double
bubble is not perimeter-minimizing.

Proof. Suppose that
�p

10
2
� 1

�
a2 � a1 and 4�

15
� a2. Then

a1C a2 �

p
10

2
a2 �

p
10

2

4�

15
>

8�

3.3C
p

13/
:

Therefore a1 C a2 > 8�=.3.3 C
p

13//. We conclude that at least one of the
following conditions must be satisfied:

(1) 8�=.3.3C
p

13// < a1C a2.

(2) a1 �
�p

10
2
� 1

�
a2 and a2 <

4�
9

.

(3) a2 <
4�
15

.

Therefore it suffices to show P >A1CA2 for the three cases where at least one of
these conditions is satisfied.

Case 1: Since the union of C2 and C3 is the union of topological discs with boundary
and the disc is isoperimetric in the hyperbolic plane, the length of the boundary
of their union is greater than the perimeter of a hyperbolic disc of area a1C a2.
Therefore, by Lemma 4.3(5), P > 4�

3
>A1CA2.

To show the remaining cases, we remove the unshared perimeter of C2 (see
Figure 5) and consider the sum of P1 and the total perimeter of C3 and C4. Since
A1 � a1 � A1 � � (Lemma 4.5), by Proposition 3.2, P1 � A1 � a1. Since C3 is
the union of topological discs, the total perimeter of C3 and C4 is bounded below
by A2� a2C

1
2
P3, by Lemma 4.6. Thus P �A1� a1CA2� a2C

1
2
P3.

Case 2: Since a2 <
4�
9

, by Lemma 4.3(2) we have P3 >
p

10a2; thus

P �A1� a1CA2� a2C
1
2
P3 >A2� a2CA1� a1C

p
10
2

a2:
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Since a1 �
�p

10
2
� 1

�
a2, we have

P >A2� a2CA1� a1C
�p

10
2
� 1

�
a2C a2

�A2� a2CA1� a1C a1C a2 DA1CA2:

Case 3: By Lemma 4.3(3), we have P3 > 4a2; thus

P �A2� a2CA1� a1C
1
2
P3 >A2� a2CA1� a1C 2a2

�A2� a2CA1� a1C a2C a1 DA1CA2:

We conclude that P > A1 C A2. Hence it is not perimeter-minimizing, as
horocycles on separate cusps have perimeter A1CA2. �

5. Once-punctured surfaces

Some of the methods employed in Section 4, can be applied to other hyperbolic
surfaces of constant Gaussian curvature �1 that share some features of the thrice-
punctured sphere, such as having area of 2� and at least one cusp, but lack its fixed
hyperbolic structure. For example, a once punctured torus has many hyperbolic
structures, yet all have area 2� . Proposition 5.1 shows that for relatively small areas
on such a surface, two horocycles have less perimeter than one horocycle with a
lens.

Proposition 5.1. Given two areas 0 < A1;A2 �
4�
15

on a punctured surface of
area 2� , the union of two horocycles about the cusp enclosing and separating A1

and A2 is shorter than a horocycle with a lens.

Proof. Without loss of generality suppose that A1 is not on the cusp. Since A1 � �

(Lemma 4.5), by Proposition 3.2, our surface has the same isoperimetric profile
for single bubbles as the thrice-punctured sphere. Thus Lemma 4.6 holds, and the
total perimeter, P, of our enclosure satisfies the inequality P � A2 C

1
2
P1. By

Lemma 4.3(4), P1 � 4A1 for A1 �
4�
15

. Thus P �A2C 2A1. �
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