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The method of upper and lower solutions guarantees the interval of existence of
nonlinear differential equations with initial conditions. To compute the solution
on this interval, we need coupled lower and upper solutions on the interval
of existence. We provide both theoretical as well as numerical methods to
compute coupled lower and upper solutions by using a superlinear convergence
method. Further, we develop monotone sequences which converge uniformly and
monotonically, and with superlinear convergence, to the unique solution of the
nonlinear problem on this interval. We accelerate the superlinear convergence by
means of the Gauss–Seidel method. Numerical examples are developed for the
logistic equation. Our method is applicable to more general nonlinear differential
equations, including Riccati type differential equations.

1. Introduction

Qualitative study such as existence, uniqueness of nonlinear differential equations
with initial and boundary conditions play an important role in modeling science
and engineering problems. Explicit solutions of such nonlinear problems are
rarely possible [Adams et al. 2012; Cronin 1994; Holt and Pickering 1985; Lak-
shmikantham et al. 1989; Jin et al. 2004]. Approximate methods such as Picard’s
method provide only local existence. The generalized monotone method combined
with coupled lower and upper solutions provides a method to compute coupled
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minimal and maximal solutions [Bhaskar and McRae 2002; Sokol and Vatsala 2001;
Stutson and Vatsala 2011; West and Vatsala 2004]. Noel, Sheila, Zenia, Dayonna,
Jasmine, Vatsala, and Sowmya [Noel et al. 2012] have developed both theoretical
and numerical approaches to compute coupled minimal and maximal solutions
using the idea of generalized monotone method. See [Muniswamy and Vatsala 2013;
Noel et al. 2012] for details. However, the order of convergence of the sequences
generated is linear. We note that the generalized monotone method is useful when
the nonlinear function is the sum of increasing and decreasing functions.

In this paper, we develop a method when the nonlinear function is the sum of
a convex function and a decreasing function. The sequences constructed yield
quadratic convergence when the decreasing function is not present and yields linear
convergence when the convex term is not present. We develop a methodology to
compute coupled lower and upper solutions whose convergence rate is superlinear
on any desired interval. Using the computed coupled upper and lower solutions, we
can develop sequences which converge uniformly and monotonically to the unique
solution of the nonlinear problem. The rate of convergence of the sequences is
superlinear. In addition, the superlinear convergence can be accelerated by using
the Gauss–Seidel approach. We have presented some numerical examples of the
population model of single species, namely the logistic equation. Our method is
applicable to more general nonlinear problems such as Ricatti type differential
equation.

2. Preliminary results

In this section, we recall known definitions and results which we need to develop
our main results. For that purpose, consider the first-order differential equation of
the form

u′ = f (t, u)+ g(t, u), u(0)= u0 on [0, T ] = J, (2-1)

where f, g lie in C(J ×R,R), the space of continuous functions from J ×R to R.

Definition 2.1. The functions v0, w0 ∈C1(J,R) are called natural lower and upper
solutions of (2-1) if

v′0 ≤ f (t, v0)+ g(t, v0), v0(0)≤ u0,

w′0 ≥ f (t, w0)+ g(t, w0), w0(0)≥ u0.

Definition 2.2. The functions v0, w0 ∈ C1(J,R) are called coupled lower and
upper solutions of (2-1) of type I if

v′0 ≤ f (t, v0)+ g(t, w0), v0(0)≤ u0,

w′0 ≥ f (t, w0)+ g(t, v0), w0(0)≥ u0.
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Next we recall a comparison theorem which will be useful in establishing the
uniqueness of the solution of (2-1). For that purpose we assume

f (t, u)+ g(t, u)= F(t, u).

Theorem 2.3. Let v,w ∈ C1(J,R) be lower and upper solutions of (2-1) respec-
tively. Suppose that F(t, x)− F(t, y)≤ L(x − y) whenever x ≥ y, and L > 0 is a
constant, then v(0)≤ w(0) implies that v(t)≤ w(t), t ∈ J .

Corollary 2.4. Let p(t) ∈ C(J,R) be a function such that p′(t)≤ L(t)p(t), where
L(t) ∈ C(J,R). Then p(0)≤ 0 implies p(t)≤ 0.

Remark. If in Corollary 2.4 all the inequalities are reversed, the conclusion holds
with reversed inequality.

We define the following sector � for convenience. That is,

�=
{
(t, u) | v(t)≤ u(t)≤ w(t), t ∈ J

}
.

Theorem 2.5. Suppose v,w ∈ C1(J,R) are natural upper and lower solutions of
(2-1) such that v(t) ≤ w(t) on J and F ∈ C(�,R). Then there exists a solution
u(t) of (2-1) such that v(t)≤ u(t)≤ w(t) on J , provided v(0)≤ u(0)≤ w(0).

Proof. See [Ladde et al. 1985] for details. �

Remark. If g(t, u) in (2-1) is nonincreasing in u, then the existence of coupled
lower and upper solutions of (2-1) on J implies that they are also natural lower and
upper solutions. From Theorem 2.5 it follows that there exists a solution of (2-1)
such that v(t)≤ u(t)≤ w(t) on J , provided v(0)≤ u(0)≤ w(0).

The next result is to prove the existence of coupled lower and upper solutions by
the generalized monotone method.

Theorem 2.6. Let v0, w0 ∈C1(J,R) be coupled upper and lower solutions of type I
such that v0(t) ≤ w0(t) on J , and assume that f, g are elements of C(J ×R,R)

such that f (t, u) is nondecreasing in u and g(t, u) is nonincreasing in u on J .
There exist monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t)→ v(t) and wn(t)→ w(t)

uniformly and monotonically, and (v,w) are coupled minimal and maximal solu-
tions, respectively, to (2-1). That is, (v,w) satisfy on J the equations

v′ = f (t, v)+ g(t, w), v(0)= u0, (2-2)

w′ = f (t, w)+ g(t, v), w(0)= u0. (2-3)

Here the iterative scheme is given on J by
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v′n+1 = f (t, vn)+ g(t, wn), vn+1(0)= u0, (2-4)

w′n+1 = f (t, wn)+ g(t, vn), wn+1(0)= u0. (2-5)

Proof. See [Noel et al. 2012; Sokol and Vatsala 2001; West and Vatsala 2004] for
details of the proof. �

We now give an existence result based on the generalized monotone method
using natural lower and upper solutions.

Theorem 2.7. Let v0, w0 ∈ C1(J,R) be natural lower and upper solutions with
v0 ≤ w0 on J , and assume that f, g are elements of C(J ×R,R) such that f (t, u)
is nondecreasing in u and g(t, u) is nonincreasing in u on J .

There exist monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t)→ v(t) and wn(t)→ w(t)

uniformly and monotonically, and (v,w) are coupled minimal and maximal solu-
tions, respectively, to (2-1). That is, (v,w) satisfy

v′ = f (t, v)+ g(t, w), v(0)= u0,

w′ = f (t, w)+ g(t, v), w(0)= u0,

on J , provided also that v0 ≤ v1 and w1 ≤ w0 on J .

Proof. See [Noel et al. 2012; West and Vatsala 2004] for details of the proof. �

Noel et al. [2012] have developed computational methods to compute coupled
lower and upper solutions to any desired interval by applying Theorem 2.7, by
redefining the sequences on the interval J . However, the rate of convergence of
these sequences is linear.

Before we recall the next result, which provides quadratic convergence, we need
the Gronwall lemma which will be used to compute the rate of convergence.

Lemma 2.8 (Gronwall lemma). Let v∈C1(J,RN ) and v′≤ Av+σ , where A=(ai j )

is an N × N constant matrix satisfying ai j ≥ 0, i 6= j , and σ ∈ C(J,RN ). Then we
have

v′ ≤ v(0)eAt
+

∫ t

0
eA(t−s)σ(s) ds, t ∈ J. (2-6)

Theorem 2.9. Assume that

(i) v0, w0 ∈ C1(J,R), v0(t) ≤ w0(t) on J , with v0(t) and w0(t) coupled lower
and upper solutions of type I for (2-1), such that v0(t)≤ w0(t) on J ;

(ii) f, g ∈C(�,R), fu, gu, fuu, guu exist, are continuous and satisfy fuu(t, u)≥ 0,
guu(t, u)≤ 0 for (t, u) ∈�=

{
t ∈ J | v0(t)≤ u ≤ w0(t)

}
;

(iii) gu(t, u)≤ 0 on �.



SUPERLINEAR CONVERGENCE 703

Then there exist monotone sequences {vn(t)}, {wn(t)} that converge uniformly to
the unique solution of (2-1). The convergence is quadratic.

Proof. See [Lakshmikantham and Vatsala 1998] for details of the proof. �

In Theorem 2.9 the iterations are as follows:
v′n = f (t, vn−1)+ fu(t, vn−1)(vn − vn−1)

+ g(t, wn−1)+ gu(t, vn−1)(wn −wn−1),

vn(0)= u0,

(2-7)


w′n = f (t, wn−1)+ fu(t, vn−1)(wn −wn−1)

+ g(t, vn−1)+ gu(t, vn−1)(vn − vn−1),

wn(0)= u0.

(2-8)

In this theorem the sequences {vn} and {wn} are solutions of the two linear systems
of coupled equations with variable coefficients, which are not easy to compute. In the
next result under a slightly weaker assumption, we obtain superlinear convergence.

Theorem 2.10. Assume that

(i) v0, w0 ∈ C1(J,R), v0(t) ≤ w0(t) on J , with v0(t) and w0(t) coupled lower
and upper solutions of type I for (2-1), such that v0(t)≤ w0(t) on J ;

(ii) f, g ∈ C(�,R), fu, gu, fuu exist, are continuous and satisfy fuu(t, u)≥ 0, for
(t, u) ∈�=

{
t ∈ J | v0(t)≤ u ≤ w0(t)

}
;

(iii) gu(t, u)≤ 0 on �.

Then there exist monotone sequences {vn(t)}, {wn(t)} that converge uniformly to
the unique solution of (2-1), and the convergence is superlinear.

Proof. See [Muniswamy and Vatsala 2013] for details of proof. �

3. Main results

In this section we will provide a method to compute coupled lower and upper
solutions of (2-1) to any desired interval when we have natural lower and upper
solutions. Natural lower and upper solutions are relatively easy to compute. For
example, equilibrium solutions are natural lower and upper solutions for all time.
This means the solution of the nonlinear problem exists for all time by upper and
lower solution method. In order to develop this method, we modify Theorem 2.10
using natural lower and upper solutions.

Theorem 3.1. Let

(i) v0, w0 ∈ C1(J, R), v0(t) ≤ w0(t) on J , with v0(t) and w0(t) natural lower
and upper solutions of (2-1), such that v0(t)≤ w0(t) on J ;
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(ii) f, g ∈ C(�,R), fu, gu, fuu exist, are continuous and satisfy fuu(t, u)≥ 0 for
(t, u) ∈�=

{
t ∈ J | v0(t)≤ u ≤ w0(t)

}
;

(iii) gu(t, u)≤ 0 on �;

(iv) v0 ≤ v1 and w1 ≤ w0 on J .

Then there exist monotone sequences {vn(t)}, {wn(t)} that converge uniformly to
the unique solution of (2-1). The convergence is superlinear.

Here and in Theorem 2.10 the iterations are computed as follows:

v′n = f (t, vn−1)+ fu(t, wn−1)(vn − vn−1)+ g(t, wn−1), vn(0)= u0, (3-1)

w′n = f (t, wn−1)+ fu(t, vn−1)(wn −wn−1)+ g(t, vn−1), wn(0)= u0. (3-2)

Proof. The proof follows on the same lines as in Theorem 2.10. Here we briefly
prove the superlinear convergence part. In order to prove superlinear convergence,
we let pn(t) = u(t) − vn(t) and qn(t) = wn(t) − u(t) on J , where u, vn , and
wn are solutions of (2-1), (3-1), and (3-2) respectively. It is easy to see that
pn(0) = 0 = qn(0). Using Gronwall lemma and the estimate on | fuu(+, ·)| and
|gu(+, ·)| on J , we can prove that

max
J

(
|pn + qn|

)
≤ L1 max

J

(
|pn−1+ qn−1|

2)
+ L2 max

J

(
|pn−1+ qn−1|

)
,

where L1 and L2 depends on bounds of | fuu(+, ·)| and |gu(+, ·)| on J . If g ≡ 0,
then L2 ≡ 0, we have quadratic convergence. If f ≡ 0, then L1 ≡ 0, which means
we have linear convergence. �

Consider the following example

u′ = u− u2, u(0)= 1
2 , t ∈ [0, T ], T ≥ 1.

It is easy to observe that v0(t) = 0 and w0(t) = 1 are natural lower and upper
solutions. Starting with v0 = 0 and w0 = 1, which are natural lower and upper
solutions, and using the iterations as in Theorem 3.1, we get

v1 = 1− 1
2 et and w1 =

1
2 et .

We can see that

v0 ≤ v1, 0≤ 1− 1
2 et on [0, 0.69],

w1 ≤ w0,
1
2 et
≤ 1 on [0, 0.69].

This means v0≤ v1 and w1≤w0 on [0, 0.69]. Here 0.69< T . This is the motivation
for our next main result: developing a method to compute coupled lower and upper
solutions to any desired interval.
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Theorem 3.2. Let all the hypothesis of Theorem 3.1 hold.
Then there exist monotone sequences {vn(t)} and {wn(t)} on J such that

vn(t)→ v(t) and wn(t)→ w(t)

uniformly and monotonically and (v,w) are coupled minimal and maximal solu-
tions, respectively to (2-1).

The sequences {vn} and {wn} are computed using the following iterative scheme:

v′n = f (t, vn−1)+ fu(t, vn−1)(vn − vn−1)+ g(t, wn−1), vn(0)= u0,

w′n = f (t, wn−1)+ fu(t, vn−1)(wn −wn−1)+ g(t, vn−1), wn(0)= u0.

Proof. We compute the iterations using v0 and w0 in the following form:

v′1 = f (t, v0)+ fu(t, v0)(v1− v0)+ g(t, w0), v1(0)= u0,

w′1 = f (t, w0)+ fu(t, v0)(w1−w0)+ g(t, v0), w1(0)= u0.

After computing v1 and w1, if v0 ≤ v1 and w1 ≤w0 on [0, T ], then there is nothing
to prove. If not, then v1(t1)= v0(t1) and w1(t̄1)= w0(t̄1). It is obvious that t1 and
t̄1 are less than T . We relabel v1(t) and w1(t) as

v1(t)= v1(t) on [0, t1],

v1(t)= v0(t) on [t1, T ],

w1(t)= w1(t) on [0, t̄1],

w1(t)= w0(t) on [t̄1, T ].

It is easy to see that v0 ≤ v1 and w1 ≤ w0 on [0, T ]. Continuing this process, we
can compute vn(t) and wn(t) as

v′n = f (t, vn−1)+ fu(t, vn−1)(vn − vn−1)+ g(t, wn−1), vn(0)= u0, (3-3)

w′n = f (t, wn−1)+ fu(t, vn−1)(wn −wn−1)+ g(t, vn−1), wn(0)= u0, (3-4)

on [0, tn] and [0, t̄n], respectively. Again relabeling vn(t) and wn(t) on [0, T ] as
before, we can prove

v0 ≤ v1 ≤ · · · ≤ vn ≤ u ≤ wn ≤ · · · ≤ w1 ≤ w0

on [0, T ]. Note that this is the redefined sequences {vn(t)} and {wn(t)} on [0, T ].
We can show that the redefined sequences {vn(t)} and {wn(t)} are equicontinuous
and uniformly bounded on J. We will show that the sequence {vn(t)} is uniformly
bounded. Since v0 ≤ vn ≤ w0, and v0, w0 are continuous functions on a closed
bounded set, it follows that 0 ≤ |vn(t)− v0(t)| ≤ |w0(t)− v0(t)| ≤ K1 on [0, T ].
From this, and using the triangle inequality, we can show that

|vn| = |vn − v0+ v0| ≤ |vn − v0| + |v0| ≤ K1+ K2 = K ,

on [0, T ] where K is independent of n and t . This proves that {vn(t)} is uniformly
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bounded. Similarly, we can prove that {wn(t)} is uniformly bounded. The equiconti-
nuity of these sequences follows from the integral representation of vn and wn . This
is achieved using the fact that the functions f (t, u), g(t, u) are continuous on�, and
the uniform boundedness of vn(t) and wn(t). Hence, by the Arzelà–Ascoli theorem,
a subsequence converges uniformly and monotonically. Since the sequences are
monotone, the entire sequence converges uniformly and monotonically to v and w
respectively. Further, we can prove the rate of convergence for these sequences are
superlinear. �

We note that the elements of the sequences {vn(t)} and {wn(t)} are also coupled
lower and upper solutions of (2-1) on [0, T ]. We demonstrate this here.

Since vn−1 ≤ vn on [0, T ] and wn ≤ wn−1 on [0, T ], we get

f (t, vn−1)+ fu(t, vn−1)(vn − vn−1)≤ f (t, vn) on [0, T ]

and
g(t, wn−1)≤ g(t, wn),

using the assumptions on f and g from the hypothesis. This proves

v′n ≤ f (t, vn)+ g(t, wn), vn(0)= u0 on [0, T ].

Using the nature of f (t, u) and g(t, u), we can prove that

f (t, wn−1)+ fu(t, vn−1)(wn −wn−1)≥ f (t, wn) and g(t, wn−1)≥ g(t, vn).

Now from the iterates wn , we can show that

w′n ≥ f (t, wn)+ g(t, vn), wn(0)= u0 on [0, T ].

This proves that vn and wn are coupled lower and upper solutions of type I on the
interval [0, T ].

Remark. Note that we can accelerate the rate of convergence of the sequences in
Theorem 3.2 by using the Gauss–Seidel method.

We will apply the Gauss–Seidel method to Theorem 2.10.

Theorem 3.3. We assume that

(i) v0, w0 ∈ C1(J, R), v0(t) ≤ w0(t) on J , with v0(t) and w0(t) coupled lower
and upper solutions of type I for (2-1), such that v0(t)≤ w0(t) on J ;

(ii) f, g ∈ C(�,R), fu, gu, fuu exist, are continuous and satisfy fuu(t, u)≥ 0 for
(t, u) ∈�=

{
t ∈ J | v0(t)≤ u ≤ w0(t)

}
;

(iii) gu(t, u)≤ 0 on �.
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Then there exist monotone sequences {v∗n(t)}, {w
∗
n(t)} that converge uniformly to

the unique solution of (2-1), and the convergence is faster than superlinear.
The iterative scheme is given by:(
v∗n
)′
= f (t, v∗n−1)+ fu(t, v∗n−1)(v

∗

n − vn−1)+ g(t, w∗n−1), v∗n(0)= u0, (3-5)(
w∗n
)′
= f (t, w∗n−1)+ fu(t, v∗n)(w

∗

n −w
∗

n−1)+ g(t, v∗n), w∗n(0)= u0, (3-6)

starting with v∗0 = v1 on J.

Remark. Here v1(t) is computed using Theorem 2.10.

Proof. Initially, compute v1(t) using

v′1 = f (t, v0)+ fu(t, v0)(v1− v0)+ g(t, w0), v1(0)= u0.

Relabel v1(t) as v∗0(t). Now compute w1(t) using w0(t) and v∗0(t). That is, w1(t)
is the solution of

w′1 = f (t, w0)+ fu(t, v∗0)(w1−w0)+ g(t, v∗0), w1(0)= u0.

Relabel w1(t) as w∗0(t) and continue the process.
It is obvious that v0(t)≤v1(t)=v∗0(t) andw1(t)≤w0(t) on J . Therefore g(v0)≥

g(v∗0) and fu(t, v0) ≤ fu(t, v∗0) from the hypothesis. Let p(t) = w1(t)−w∗0(t).
Then p(0)= 0. Also,

p′(t)= (w1)
′(t)− (w∗0)

′(t)

= fu(t, v0)(w1−w0)+ g(t, v0)− fu(t, v∗0)(w
∗

0 −w0)− g(t, v∗0)

≥ fu(t, v0)(w1−w0)− fu(t, v∗0)(w
∗

0 −w0)

≥ fu(t, v∗0)(w1−w0)− fu(t, v∗0)(w
∗

0 −w0)

= fu(t, v∗0)p(t).

It follows that p′(t)≥ fu(t, v∗0)p(t). Using Corollary 2.4, we know p(t)≥ 0, that is,
w1 ≥ w

∗

0 on J . Continuing the process, we will be able to show that the sequences
{v∗n} and {w∗n} converges faster than the sequences {vn} and {wn} computed using
Theorem 2.10. �

4. Numerical results

Here we develop numerical results as an application of the theoretical main re-
sults in Section 3. All the numerical simulations are done using Euler’s method,
implemented in Matlab.

To begin with, consider the simple logistic equations

u′ = u− u2, u0(0)= 1
2 , (4-1)

u′ = 2u− 3u2, u0(0)= 1
2 . (4-2)
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Figure 1. Comparison between linear and superlinear convergence.

It is easy to observe that v0(t)= 0 and w0(t)= 1 are the equilibrium solutions.
In addition, they are also natural lower and upper solutions. Using the existence
of solution by upper and lower solution method, the solution of (4-1) exists for all
time. In Figure 1, we have computed coupled lower and upper solution using our
superlinear convergence method as well as the linear convergence method as in
[Noel et al. 2012]. In Figure 1, v0 ≤ v1 and w1 ≤w0 on [0, 0.5] by the generalized
monotone method, whereas v0 ≤ v1 and w1 ≤ w0 on [0, 0.7] by the superlinear
convergence method.

Using Theorem 3.2, we computed vi and wi for (4-1), for i = 1, 2, 3. In Figure 2,
we can see that in three iterations, that is, v3 and w3 are coupled lower and upper
solutions of (4-1) on [0, 1].

Using v3 and w3 from Figure 2 as v0 and w0 in Theorem 2.10, we compute the
unique solution of (4-1), in Figure 3. This is achieved in four iterations. In Figure 4,
we use superlinear convergence and the Gauss–Seidel method to compute coupled
lower and upper solutions of (4-1) on [0, 1]. We achieved this in two iterations.
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Figure 2. Coupled lower and upper solutions of (4-1) using Theorem 3.2.
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Figure 3. Four iterations of (4-1) using Theorem 2.10.
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Figure 4. Coupled lower and upper solutions of (4-1) using Theorem 3.3.

Using the coupled lower and upper solution of Figure 4, we have computed the
unique solution of (4-1) on [0, 1] using Theorem 3.3; see Figure 5. This combines
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Figure 5. Three iterations of (4-1) using Theorem 3.3.
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Figure 6. Three iterations of (4-2) using Theorem 3.2.
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Figure 7. Three iterations of (4-2) using Theorem 2.10.

superlinear convergence and the Gauss–Seidel method. We achieved this in three
iterations.

We have used the superlinear convergence method to compute coupled lower and
upper solutions of (4-2) on [0, 1]. We achieved this in Figure 6 in three iterations.

Using the coupled lower and upper solutions of Figure 6, we have computed the
unique solution of (4-2) on [0, 1] using Theorem 2.10. In Figure 7, this is achieved
in three iterations.

5. Conclusion

We have developed a method to compute coupled upper and lower solutions for a
nonlinear differential equation with initial conditions to any desired interval or to the
interval of existence. We note that the natural lower and upper solutions guarantee
the interval of existence of the solution. However, to compute the solutions by the
generalized monotone method or the generalized quasilinearization method, we need
coupled lower and upper solutions of type I on that interval. The method we have
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developed requires the construction of sequences or iterates that are solutions of the
linear equation. The rate of convergence of these sequences is superlinear. Further,
the rate of convergence can be accelerated using the Gauss–Seidel acceleration
method. Linear convergence methods are developed in [Noel et al. 2012]. Although
we have applied our theoretical method to the logistic equation in our numerical
results, our method is applicable to a variety of nonlinear problems, including
Ricatti type differential equations. We plan to extend our method to two or more
systems of differential equations. We anticipate being able to apply it to two
species biological models (the Lotka–Volterra equation, for example), which can
be cooperative, competitive or predator–prey models.
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