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Given a finite field F and a positive integer n, we give a procedure to count the
n×n matrices with entries in F with all eigenvalues in the field. We give an exact
value for any field for values of n up to 4, and prove that for fixed n, as the size
of the field increases, the proportion of matrices with all eigenvalues in the field
approaches 1/n!. As a corollary, we show that for large fields almost all matrices
with all eigenvalues in the field have all eigenvalues distinct. The proofs of these
results rely on the fact that any matrix with all eigenvalues in F is similar to a
matrix in Jordan canonical form, and so we proceed by enumerating the number
of n× n Jordan forms, and counting how many matrices are similar to each one.
A key step in the calculation is to characterize the matrices that commute with a
given Jordan form and count how many of them are invertible.

1. Introduction

Let F be a field and let Mn(F) denote the set of n × n matrices with entries in
F. As an example, consider A =

(
0 −1
1 0

)
∈ M2(R). The roots of its characteristic

polynomial det(A− λI ) are λ=±i , which are the eigenvalues of A. Though the
entries in A are real numbers, the eigenvalues are not. This example serves to
motivate the following question: If Eign(F) denotes the set of elements of Mn(F)

that have all of their eigenvalues in F, what is the cardinality of Eign(F)? For a
field like R that is uncountably infinite, this question is trivial, but in this paper we
examine the case when F is a finite field with q elements. This line of research was
initiated by Olšavský [2003], who determined that for any prime p,

|Eig2(Zp)| =
1
2 p4
+ p3
−

1
2 p2. (1)

Here we present a method for determining |Eign(F)| for any n. We use the fact
that any matrix A∈Mn(F) with all eigenvalues in F is similar to a matrix J in Jordan
canonical form. Thus we can determine |Eign(F)| using the following procedure:
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(1) Enumerate all n× n Jordan forms.

(2) Enumerate all matrices in Mn(F) that are similar to each Jordan form.

In Section 2, we review the definitions and notation necessary to work with
Jordan forms. Then in Section 3 we explain the procedure to determine |Eign(F)|,
giving a general formula in (3). We illustrate the process for the case n = 2, giving
a slightly shorter derivation of (1) than was given in [Olšavský 2003].

We group matrices in Jordan form by what we call their double partition type,
which is defined in Section 3. In Sections 4 and 5 we find formulas for the quantities
required to compute |Eign(F)| for any n. In Section 4 we state a formula for the
number of Jordan forms of a given double partition type. Then in Section 5 we
prove that the number of matrices similar to any matrix in Jordan form depends
only on its double partition type, and give a formula that determines this number
for any double partition type. In Section 6, we use these results to give explicit
formulas for |Eig3(F)| and |Eig4(F)| for any finite field F.

Olšavský [2003] also noted that the proportion of matrices in M2(Zp) with all
eigenvalues in Zp approaches 1/2 as p goes to infinity. In Section 7, we generalize
this result to prove that the proportion of matrices in Mn(F) with all eigenvalues in
F approaches 1/n! as q approaches infinity. As a corollary, we prove that for large
finite fields, if a matrix has all eigenvalues in the field, then almost surely all if its
eigenvalues are distinct.

2. Jordan canonical form

Denote the set of invertible matrices in Mn(F) by GLn(F). We will repeatedly use
the fact that any element of Mn(F) with all eigenvalues in F is similar to a matrix
in Jordan canonical form. Here we review the necessary definitions. For a more
thorough introduction, see [Hungerford 1974, Chapter 7.4].

For 1 ≤ i ≤ n, let Ai be a square matrix. The direct sum of these matrices,
denoted

⊕n
i=1 Ai , is a block diagonal matrix such that the matrices Ai lie on the

diagonal, and all other entries are zero:

n⊕
i=1

Ai =

A1 0 0

0
. . . 0

0 0 An

 .
A Jordan block of size k ≥ 1 corresponding to some eigenvalue λ ∈ F is a k× k

matrix with λs along the diagonal, 1s along the superdiagonal, and 0s everywhere
else (see Figure 1). Let A, J ∈ Mn(F). Then A is similar to J if there exists a
matrix P ∈ GLn(F) such that A = PJP−1. It is well known (see, for example,
[Hungerford 1974, Chapter 7.4, Corollary 4.7 (iii)]) that any matrix A ∈Mn(F) with
all eigenvalues in F is similar to a matrix J which is the direct sum of Jordan blocks,
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λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ




3 1 0 0
0 3 1 0
0 0 3 1
0 0 0 3



Figure 1. A generic Jordan block and a Jordan block with eigen-
value 3.

A =


1 3 3 4
3 3 0 2
0 4 3 1
3 3 3 2

= P J P−1
=


3 2 0 3
0 2 1 0
1 0 0 2
3 2 1 3




1 0 0 0
0 3 1 0
0 0 3 0
0 0 0 2




0 1 4 4
3 3 0 2
4 0 0 1
0 2 1 3

 ,

A =


1 3 3 4
3 3 0 2
0 4 3 1
3 3 3 2

= QJ ′Q−1
=


3 3 2 0
0 0 2 1
1 2 0 0
3 3 2 1




1 0 0 0
0 2 0 0
0 0 3 1
0 0 0 3




0 1 4 4
0 2 1 3
3 3 0 2
4 0 0 1

 .
Figure 2. The matrix A ∈ M4(Z5) is similar to J and J ′, which
are different representations of the same Jordan form.

and this matrix J is unique up to the ordering of the blocks. The Jordan canonical
form (or simply Jordan form) for A is this direct sum of Jordan blocks. We will use
Jn(F) to denote the set of Jordan forms in Mn(F). We note that multiple matrices
may correspond to a given Jordan form (e.g.,

(
1 0
0 2

)
and

(
2 0
0 1

)
are representatives

of the same form), so when we wish to work with a particular matrix in Jn(F), we
will specify an order for the blocks in the direct sum. For example, in Figure 2, the
matrix A ∈ M4(Z5) has the Jordan form that is the direct sum of the Jordan blocks
(1), (2), and

(
3 1
0 3

)
. In the figure, J ∈ J4(Z5) and J ′ ∈ J4(Z5) are two examples of

matrices that are direct sums of these blocks.

3. How to determine |Eign(F)|

Since every matrix in Eign(F) is similar to a matrix in Jordan canonical form, we
can determine |Eign(F)| by first enumerating all Jordan forms in Jn(F) and then
counting how many matrices in Mn(F) are similar to each one. In this section we
explain this process and illustrate it with the example of computing |Eig2(F)|.

For any matrix A ∈ Mn(F), let S(A)⊆ Mn(F) be the set of matrices similar to A,
and let C(A) denote the subgroup of GLn(F) of matrices P such that PA = AP .

Lemma 3.1. For any J ∈ Mn(F), we have |S(J )| = |GLn(F)|/|C(J )|.
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Proof. Fix J ∈Mn(F); we must find the cardinality of S(J )={AJA−1
: A∈GLn(F)}.

For any A, B ∈ GLn(F), AJA−1
= BJB−1 if and only if B−1 AJ = JB−1 A, that is,

if B−1 A ∈ C(J ). Now, B−1 A ∈ C(J ) if and only if A and B are in the same coset
of C(J ) in GLn(F), and thus S(J ) has the same cardinality as the number of cosets
of C(J ) in GLn(F), which is equal to |GLn(F)|/|C(J )| by Lagrange’s theorem. �

It is well known (see, for example, [Stanley 2012, Proposition 1.10.1]) that if F

has q elements, then |GLn(F)| =
∏n−1

i=0 (q
n
− q i ). Thus to find |S(J )| for any J , it

suffices to find |C(J )|, and we obtain the following formula for |Eign(F)|:

|Eign(F)| =
∑

J∈Jn(F)

|S(J )| =
∑

J∈Jn(F)

∏n−1
i=0 (q

n
− q i )

|C(J )|
. (2)

For J ∈ Jn(F), it turns out that |C(J )| depends on what we will call the double
partition type of J , which we define now.

A partition of a positive integer n is a collection of (not necessarily distinct)
positive integers {n1, n2, . . . nk} such that n1+ n2+ · · · + nk = n. We define the
partition type of a matrix J ∈ Jn(F) as the partition of n given by the size of the
Jordan blocks in J . For example, the partition type of the matrix J ∈ J4(Z5) below
is {1, 1, 2} since it has two 1× 1 Jordan blocks and one 2× 2 Jordan block.

J =


3 1 0 0
0 3 0 0
0 0 1 0
0 0 0 1

 .
We define a double partition (or partition of a partition) of a positive integer

n to be a partition where the numbers in the partition are themselves partitioned
into subsets. Denote the set of double partitions of n by DP(n). For example,
{{2, 3}, {1, 1, 3}, {2, 3}, {4}} ∈ DP(19). We define the double partition type (or
simply type) of a matrix J ∈ Jn(F) by grouping all elements of its partition type
into sets where two elements of the partition are placed in the same set if their
corresponding eigenvalues are the same. For example, the double partition type
of the matrix J above is {{1, 1}, {2}} since the two 1× 1 blocks have the same
eigenvalue, and the 2× 2 block has a different eigenvalue. The study of double
partitions dates back at least as far as [Cayley 1855] and [Sylvester 1851], and the
values of |DP(n)| are collected in the Online Encyclopedia of Integer Sequences
(oeis.org), sequence A001970.

The utility of knowing the double partition type of a matrix in Jordan form is
given by the following lemma.

Lemma 3.2. If J1, J2 ∈ Jn(F) have the same double partition type, then |C(J1)| =

|C(J2)|.

http://oeis.org
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The proof of Lemma 3.2 is one of the main results of the paper and will be deferred
until Section 5. This lemma justifies the following definition: For any double
partition type T define c(T ) and s(T ) so that c(T ) = |C(J )| and s(T ) = |S(J )|,
where J is any matrix of type T . Letting t (T ) denote the number of Jordan forms
of type T , we can now rewrite (2) as

|Eign(F)| =
∑

J∈Jn(F)

|S(J )| =
∑

T∈DP(n)

t (T )s(T )=
∑

T∈DP(n)

t (T )

n−1∏
i=0
(qn
− q i )

c(T )
. (3)

We now are prepared to illustrate our procedure for determining |Eign(F)| by
computing |Eig2(F)|. The first step is to enumerate all the double partition types
in DP(n). In the case n = 2, there are two possible partitions, 2 = 1+ 1, and
2 = 2. There are three double partition types: T2,1 = {{1}, {1}}, T2,2 = {{1, 1}}
and T2,3 = {{2}}. We give a general formula for t (T ) in Lemma 4.1, but for n = 2
we can just examine each type. The Jordan forms of type T2,1 are represented by
matrices of the form

(
λ1 0
0 λ2

)
where λ1 6= λ2 and thus t (T2,1)=

(q
2

)
. Jordan forms of

type T2,2 are represented by matrices of the form
(
λ 0
0 λ

)
, and Jordan forms of type

T2,3 are represented by matrices of the form
(
λ 1
0 λ

)
, so t (T2,2)= t (T2,3)= q .

It remains to compute c(T ) for each double partition type. A general formula
for c(T ) is given by (4), but again for n = 2 we can argue ad hoc. A 2× 2 matrix
commutes with a matrix J of type T2,1 if and only if it is of the form

(
a 0
0 b

)
, where

a, b ∈ F, and of course this is true regardless of the specific values of λ1 and λ2.
Since an element of C(J ) must be invertible, there are q − 1 choices each for a
and b, and c(T2,1)= (q − 1)2. Similarly, if J is of type T2,2, C(J )= GL2(F), and
c(T2,2)= (q2

− 1)(q2
− q). Finally, if J is of type T2,3, C(J )=

{(
a b
0 a

)
: a, b ∈ F,

a 6= 0
}
, and so c(T2,3)= q(q − 1).

To complete the example, we apply (3):

|Eig2(F)| =
∑

T∈DP(2)

t (T )
|GL2(F)|

c(T )
=

3∑
i=1

t (T2,i )
(q2
− 1)(q2

− q)
c(T2,i )

=

( q
2

)(q2
− 1)(q2

− q)
(q − 1)2

+ q
(q2
− 1)(q2

− q)
(q2− 1)(q2− q)

+ q
(q2
− 1)(q2

− q)
q(q − 1)

=
1
2q4
+ q3
−

1
2q2.

4. The number of Jordan forms of a given type

Fix n and consider a double partition T = {S1, S2, . . . , Sk} of n where for 1≤ i ≤ k,
Si is a set of positive integers. To determine the number of Jordan forms in Jn(F)

of type T , we count the number of ways to assign eigenvalues to the Si . Of course,
if Si = S j then assigning eigenvalue λ1 to Si and λ2 to S j yields the same Jordan
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form as assigning λ2 to Si and λ1 to S j , so we need to account for any repeated
subsets in T . For example, if n = 19 and T = {{2, 3}, {1, 1, 3}, {2, 3}, {4}}, then
the subset {2, 3} is repeated twice, and there will be( q

2

)
(q − 2)(q − 3)=

( q
2

)( q−2
1

)( q−3
1

)
=

q!
2! 1! 1! (q − 4)!

elements of Jn(F) of type T . The value of t (T ) in the general case is given by the
following lemma.

Lemma 4.1. Let T = {S1, S2, . . . , Sk} be a double partition, where for 1 ≤ i ≤ k,
Si is a set of positive integers. Let B1, . . . , Bl be equivalence classes of the sets in
T so that Si and S j are in the same equivalence class if and only if Si = S j . Let
bi = |Bi |. Then the number of Jordan forms of type T in Jn(F) is 0 if q < k and
otherwise is given by the formula

t (T )=
( q

b1

)( q−b1
b2

)
· · ·

( q−b1−b2−· · ·−bl−1
bl

)
=

q!
b1! b2! · · · bl !(q − b1− b2− · · ·− bl)!

.

Proof. There are
( q

b1

)
ways to assign eigenvalues to the sets in B1,

(q−b1
b2

)
ways to

assign eigenvalues to the sets in B2 without repeating any of the b1 eigenvalues
already assigned to sets in B1, and so forth. �

5. Invertible matrices that commute with a Jordan form

In this section we first characterize the structure of the matrices that commute
with Jordan forms, with the ultimate statement of this characterization coming in
Corollary 5.3. This characterization depends only on the double partition type, and
not the specific eigenvalues, and this observation is sufficient to prove Lemma 3.2.
To determine |C(J )|, we must determine how many of the matrices of the form
specified by Corollary 5.3 are invertible, and this is done starting on page 636.

For any matrix A ∈ Mn(F), let (A)i, j denote the entry of A in the i-th row and
j-th column. We say an n×m matrix A is streaky upper triangular if it has the
following three properties (see Figure 3):

(i) (A)i,1 = 0 if i > 1.

(ii) (A)n, j = 0 if j < m.

(iii) (A)i, j = (A)i+1, j+1 if 1≤ i ≤ n− 1, 1≤ j ≤ m− 1.

We denote the set of n×m streaky upper triangular matrices over F by SUTn,m(F).
In Lemmas 5.1 and 5.2 we examine products of the form Jn A and AJm where A
is n ×m, and Jn and Jm are n × n and m ×m Jordan blocks, respectively (see
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
2 1 0 3
0 2 1 0
0 0 2 1
0 0 0 2
0 0 0 0


0 0 3 3 1

0 0 0 3 3
0 0 0 0 3




2 5 1 0 5
0 2 5 1 0
0 0 2 5 1
0 0 0 2 5
0 0 0 0 2




0 1 3 0
0 0 1 3
0 0 0 1
0 0 0 0



Figure 3. Some examples of streaky upper triangular matrices.

J4 A =


λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ




a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5



=


λa1,1+ a2,1 λa1,2+ a2,2 λa1,3+ a2,3 λa1,4+ a2,4 λa1,5+ a2,5

λa2,1+ a3,1 λa2,2+ a3,2 λa2,3+ a3,3 λa2,4+ a3,4 λa2,5+ a3,5

λa3,1+ a4,1 λa3,2+ a4,2 λa3,3+ a4,3 λa3,4+ a4,4 λa3,5+ a4,5

λa4,1 λa4,2 λa4,3 λa4,4 λa4,5

 ,

AJ5 =


a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a3,5

a4,1 a4,2 a4,3 a4,4 a4,5



λ 1 0 0 0
0 λ 1 0 0
0 0 λ 1 0
0 0 0 λ 1
0 0 0 0 λ



=


λa1,1 λa1,2+ a1,1 λa1,3+ a1,2 λa1,4+ a1,3 λa1,5+ a1,4

λa2,1 λa2,2+ a2,1 λa2,3+ a2,2 λa2,4+ a2,3 λa2,5+ a3,4

λa3,1 λa3,2+ a3,1 λa3,3+ a3,2 λa3,4+ a3,3 λa3,5+ a3,4

λa4,1 λa4,2+ a4,1 λa4,3+ a4,2 λa4,4+ a4,3 λa4,5+ a3,4

 .

Figure 4. Examples of J4 A and AJ5 where A is 4× 5 and J4 and
J5 are Jordan blocks.

Figure 4). We show Jn A = AJm if and only if Jn and Jm have the same eigenvalue
and A ∈ SUTn,m(F), or if Jn and Jm have different eigenvalues and A is the all
zeros matrix. These lemmas enable us to characterize the matrices that commute
with any matrix J ∈ Jn(F)

Lemma 5.1. Let Jn ∈ Jn(F) and Jm ∈ Jm(F) be Jordan blocks with eigenvalue λ,
and suppose A is an n×m matrix. Then Jn A = AJm if and only if A ∈ SUTn,m(F).

Proof. Suppose Jn A = AJm . We will show A ∈ SUTn,m(F).
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First, we examine the individual entries in the first column. For 1≤ i ≤ n−1, we
have (Jn A)i,1 = λ(A)i,1+ (A)i+1,1 and (AJm)i,1 = λ(A)i,1. If these two quantities
are equal, then (A)i+1,1 = 0 for 1≤ i ≤ n− 1, which implies A has property (i).

Next, we examine the individual entries in the last (n-th) row. For 2≤ j ≤m, we
have (Jn A)n, j =λ(A)n, j and (AJm)n, j =λ(A)n, j+(A)n, j−1. If these two quantities
are equal, then (A)n, j−1 = 0 for 2≤ j ≤ m, which implies A has property (ii).

Finally, we examine the other entries. If 1 ≤ i ≤ n − 1 and 2 ≤ j ≤ m, we
have (Jn A)i, j = λ(A)i, j+ (A)i+1, j and (AJm)i, j = λ(A)i, j+ (A)i, j−1. If these two
quantities are equal, then (A)i+1, j = (A)i, j−1 for 1≤ i ≤ n− 1, 2≤ j ≤ m, which
implies A has property (iii).

Conversely, suppose A ∈ SUTn,m(F). Then we verify Jn A = AJm using four
cases.

• For i = n, j = 1, (Jn A)n,1 = λ(A)n,1 = (AJm)n,1.

• For i ≤ n− 1, j = 1, (Jn A)i,1 = λ(A)i,1+ (A)i+1,1 = λ(A)i,1 = (AJm)i,1.

• For i = n, j ≥ 2, (Jn A)n, j = λ(A)n, j = λ(A)n, j + (A)n, j−1 = (AJm)n, j .

• For i ≤ n − 1, 2 ≤ j , (Jn A)i, j = λ(A)i, j + (A)i+1, j = λ(A)i, j + (A)i, j−1 =

(AJm)i, j . �

Lemma 5.2. Let Jn ∈ Jn(F) be a Jordan block with eigenvalue λ and Jm ∈ Jm(F)

be a Jordan block with eigenvalue µ, where λ 6= µ, and suppose A is an n ×m
matrix. Then Jn A = AJm if and only if (A)i, j = 0 for all 1≤ i ≤ n, 1≤ j ≤ m.

Proof. If (A)i, j = 0 for all 1≤ i ≤ n, 1≤ j ≤ m, then Jn A = AJm .
Conversely, suppose Jn A= AJm . First examine the case i =n, j = 1: (Jn A)n,1=

λ(A)n,1 and (AJm)n,1 = µ(A)n,1 imply (A)n,1 = 0.
Next we proceed by induction on the first column ( j = 1). We know (A)n,1 = 0.

For any k ≥ 0, assume (A)n−k,1 = 0. Then

(Jn A)n−(k+1),1 = λ(A)n−(k+1),1+ (A)n−k,1 = λ(A)n−(k+1),1,

while (AJm)n−(k+1),1 = µ(A)n−(k+1),1. If these two quantities are equal, then
(A)n−(k+1),1 = 0. From this we conclude that (A)i,1 = 0 for all 1≤ i ≤ n.

Next we apply the same induction argument to the last row (i = n): For any
j ≥ 1, assume (A)n, j = 0. Then (Jn A)n, j+1 = λ(A)n, j+1, while

(AJm)n, j+1 = µ(A)n, j+1+ (A)n, j = µ(A)n, j+1.

If these two quantities are equal, then (A)n, j+1 = 0. From this we conclude that
(A)n, j = 0 for all 1≤ j ≤ m.

To complete the proof, we show that for all i < n, j > 1, if (A)i, j−1 = 0 and
(A)i+1, j = 0 then (A)i, j = 0. If i < n, j > 1, then (Jn A)i, j = λ(A)i, j + (A)i+1, j ,
while (AJm)i, j =µ(A)i, j+(A)i, j−1. If (A)i, j−1=0 and (A)i+1, j =0 then λ(A)i, j =
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µ(A)i, j , which implies (A)i, j = 0. We have shown if the entries below and to the
left of (A)i, j are both zero, then (A)i, j is zero as well. Since we know the first
column and last row of A contain only zeros, by induction all other entries must be
zero as well. �

If A is a block matrix, let Ai, j denote the block in the i-th row and j-th column.

Corollary 5.3. Suppose n = n1 + n2 + · · · + nk , and J ∈ Jn(F) is a Jordan form
with partition type {n1, n2, . . . , nk}, that is, J is the direct sum of k Jordan blocks
J1 ∈ Jn1(F), J2 ∈ Jn2(F), . . . , Jk ∈ Jnk (F), with eigenvalues λ1, λ2, . . . , λk , some of
which may be the same. We can represent J as a k× k block matrix where J i,i

= Ji

for 1≤ i ≤ k, and J i, j is an ni × n j all-zeros matrix if i 6= j . Then JA = AJ if and
only if A is a k×k block matrix, where for 1≤ i, j ≤ k, the block Ai, j is an element
of SUTni ,n j (F) if λi = λ j , and otherwise Ai, j is an ni × n j matrix containing all
zeros.

Figure 5 contains an illustration of Corollary 5.3. In this example, J ∈ J11(F),
and in the terminology of Corollary 5.3, we have k = 6 and

(n1, n2, n3, n4, n5, n6)= (3, 2, 2, 1, 1, 2),

(λ1, λ2, λ3, λ4, λ5, λ6)= (1, 1, 1, 4, 4, 0).

Proof of Corollary 5.3. Decompose A ∈Mn(F) as a k×k block matrix, where block
Ai, j is ni × n j . Then the equation JA = AJ implies Ji Ai, j

= Ai, j J j . If λi = λ j ,
then Ji Ai, j

= Ai, j J j if and only if Ai, j
∈ SUTni ,n j (F) by Lemma 5.1. If λi 6= λ j ,

then Ji Ai, j
= Ai, j J j if and only if Ai, j contains all zeros, by Lemma 5.2. �

We now show that Lemma 3.2 follows from Corollary 5.3.

J =



1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0



, A =



a b c l m n p 0 0 0 0
0 a b 0 l 0 n 0 0 0 0
0 0 a 0 0 0 0 0 0 0 0
0 s t d e q r 0 0 0 0
0 0 s 0 d 0 q 0 0 0 0
0 u v w x f g 0 0 0 0
0 0 u 0 w 0 f 0 0 0 0

0 0 0 0 0 0 0 h y 0 0
0 0 0 0 0 0 0 z i 0 0

0 0 0 0 0 0 0 0 0 j k
0 0 0 0 0 0 0 0 0 0 j



.

Figure 5. A matrix commutes with the Jordan form J if and only
if it has the form of the matrix A.
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Proof of Lemma 3.2. Implicit in the statement of Corollary 5.3 is the fact that the
characterization of the matrices that commute with J ∈ Jn(F) does not depend
on the specific eigenvalues of the Jordan blocks, only on which blocks share the
same eigenvalue. In other words, it depends only on the double partition type
of J . The quantity |C(J )| equals the number of invertible matrices that fit this
characterization, and since the characterization depends only on the double partition
type of J , if two Jordan forms J1 and J2 have the same double partition type, then
|C(J1)| = |C(J2)|. �

How to determine |C(J)|. It remains to explain how to determine |C(J )| for
J ∈ Jn(F). Simply characterizing the matrices that commute with J is not enough,
since elements of C(J ) must be invertible. Thus we need to determine which of the
matrices of the form given in Corollary 5.3 are invertible. Examining the example
in Figure 5, we note that A can be represented as a block diagonal matrix, where
one block is 7× 7 and the other two blocks are 2× 2. It turns out that for any
J ∈ Jn(F), the matrices in C(J ) can be represented as block diagonal matrices, and
since the determinant of a block diagonal matrix is the product of the determinants
of the matrices on the diagonal, we must characterize when the matrices on the
diagonal are invertible. As in the example in Figure 5, the matrices on the diagonal
are themselves block matrices where each block is streaky upper triangular, and
Lemma 5.4 describes when such a matrix is invertible.

The proof of Lemma 5.4 proceeds by taking any block matrix where each block
is streaky upper triangular and permuting the rows and columns to obtain an upper
triangular block matrix, which is invertible if and only if the matrices on the diagonal
are invertible. We use the fact that switching the position of two rows or columns
of a matrix changes the sign of the determinant. Thus if the columns of a matrix
are permuted in some way, and the rows are permuted the same way, the sign of
the determinant will change an even number of times, and thus will ultimately be
unchanged. To describe the diagonal blocks of the rearranged matrix, we need
the following notation: If A is a b× b block matrix, where each block Ai, j is an
element of SUTn,n(F), then we denote by A′ the b×b matrix made up of the entries
that are on the diagonal of each block Ai, j , that is, (A′)i, j = (Ai, j )1,1. For example,
in Figure 6, A is a 2× 2 block matrix with each block in SUT3,3(F) (i.e., b = 2,
n = 3) and D is a 4× 4 block matrix with each block in SUT2,2(F) (i.e., b = 4,
n = 2). In this case, A′ =

(
3 0
1 4

)
, and D′ is the 4×4 matrix shown in the figure. We

write {b1n1, . . . , bknk} for the collection having bi copies of ni , for 1≤ i ≤ k.

Lemma 5.4. Let {b1n1, . . . , bknk} be a partition of n, with n1 > n2 > · · · > nk .
Suppose A ∈ Mn(F) is a k × k block matrix, where Ai, j is bi ni × b j n j , and each
Ai, j can itself be represented as a bi × b j block matrix, where each block is an
element of SUTni ,n j (F). Then A is invertible if and only if (Ai,i )′ is invertible for
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A=



3 2 4 0 3 0
0 3 2 0 0 3
0 0 3 0 0 0
1 0 2 4 1 4
0 1 0 0 4 1
0 0 1 0 0 4


, D=



1 1 0 2 3 2 0 0
0 1 0 0 0 3 0 0
2 1 4 3 3 4 3 4
0 2 0 4 0 3 0 3
1 1 1 4 2 5 3 1
0 1 0 1 0 2 0 3
1 0 0 1 1 2 2 2
0 1 0 0 0 1 0 2


, D′ =


1 0 3 0
2 4 3 3
1 1 2 3
1 0 1 2

 .

Figure 6. Block matrices A and D where each block is an n× n
streaky upper triangular matrix.

each i , 1≤ i ≤ k. In fact,

det A =
k∏

i=1

(det(Ai,i )′)ni .

Proof. We go by induction on n1. If n1=1, then A= A1,1
= (A1,1)′ and the statement

follows. Now suppose {b1n1, . . . , bknk} is a partition of n, with n1 > n2 > · · ·> nk .
Let A ∈ Mn(F) be a k× k block matrix, where Ai, j is bi ni × b j n j , and each Ai, j

can itself be represented as a bi × b j block matrix, where each block is an element
of SUTni ,n j (F) (see Figure 7).

Let B0 = BN0 = 0, and for 1≤ j ≤ k, let B j denote the sum b1+ b2+ · · ·+ b j ,
and BN j denote the sum b1n1 + b2n2 + · · · + b j n j . Permute the columns of A
so that if 0 ≤ i ≤ Bk − 1, and j is the smallest index so that i < B j , column
BN j−1+ (i − B j−1)n j + 1 becomes column i + 1, and all other columns become
columns Bk + 1 to n, in the same order as they were in the original matrix A.
Permute the rows the same way to obtain a 2 × 2 block matrix D with block
structure

( D1 D2
D3 D4

)
(see Figure 7). Since the rows and columns were rearranged

symmetrically, det D = det A. The minor D1 is a k × k block upper triangular
matrix where for 1 ≤ i ≤ k, (D1)

i,i
= (Ai,i )′. Since n1 > n2 > · · ·> nk and each

block is streaky upper triangular, the (n− Bk)× Bk matrix D3 contains only zeros.
D4 can be represented as a k×k (if nk > 1) or k−1×k−1 (if nk = 1) block matrix
where (D4)

i, j is bi (ni −1)×b j (n j −1), and each (D4)
i, j can itself be represented

as a bi × b j block matrix, where each block is an element of SUTni−1,n j−1(F).
Furthermore, ((D4)

i,i )′ = (Ai,i )′ for each i . Thus by the inductive hypothesis,
det D4 =

∏k
i=1(det(Ai,i )′)ni−1. Since the determinant of an upper triangular block

matrix is the product of the determinants of the blocks on the diagonal,

det A = det D1 det D4 =

k∏
i=1

det(Ai,i )′
k∏

i=1

(det(Ai,i )′)ni−1
=

k∏
i=1

(det(Ai,i )′)ni . �



638 LISA KAYLOR AND DAVID OFFNER

1 2 4 0 4 0 0 3 3 1 0 2
0 1 2 4 0 4 0 0 3 1 0 0
0 0 1 2 0 0 4 0 0 3 0 0
0 0 0 1 0 0 0 0 0 0 0 0

0 2 1 1 1 4 2 4 2 2 3 1
0 0 2 1 0 1 4 0 4 2 0 1
0 0 0 2 0 0 1 0 0 4 0 0
0 1 0 3 4 0 3 0 0 2 1 1
0 0 1 0 0 4 0 0 0 0 0 1
0 0 0 1 0 0 4 0 0 0 0 0

0 0 4 1 0 4 4 0 4 2 3 1
0 0 0 4 0 0 4 0 0 4 0 3



permute
rows
−−−−−→

and
columns



1 4 3 0
0 1 4 3
0 4 0 1
0 0 0 3

2 4 0 0 0 3 1 2
2 1 1 4 2 2 2 1
1 0 3 0 3 0 2 1
0 4 1 4 4 4 2 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 2 4 4 0 3 1 0
0 1 2 0 4 0 3 0
0 0 1 0 0 0 0 0

0 2 1 1 4 4 2 1
0 0 2 0 1 0 4 0
0 1 0 4 0 0 0 1
0 0 1 0 4 0 0 0

0 0 4 0 4 0 4 3


Figure 7. An illustration of Lemma 5.4 with a 12× 12 matrix
A (left). Here n = 12 is partitioned as {1 · 4, 2 · 3, 1 · 2}, that is,
k = 3, (n1, n2, n3) = (4, 3, 2), and (b1, b2, b3) = (1, 2, 1). Then
(B1, B2, B3) = (1, 3, 4), (BN1,BN2,BN3) = (4, 10, 12), and in
the permutation, columns 1, 5, 8, and 11 become columns 1,2,3,
and 4, with the other columns becoming columns 5 through 12,
keeping their original order. The rows are permuted the same way.
In this example, (A1,1)′ = (1), (A2,2)′ = (1440), and (A3,3)′ = (3),
and det A = 14

· (det(1440))3 · 32.

The inductive argument in the proof of Lemma 5.4 implies that the columns of
A can be permuted to obtain a block upper triangular matrix, where the diagonal
blocks consist of ni copies each of (Ai,i )′, for 1≤ i ≤ k. As a corollary, this implies
that Ai,i is invertible if and only if (Ai,i )′ is invertible. For example, in Figure 6,
det A = (det A′)3 and det D = (det D′)2.

Corollary 5.5. Let g(b1n1, . . . , bknk) denote the number of invertible matrices of
the type specified in Lemma 5.4. Then

g(b1n1, . . . , bknk)=

( k∏
i=1

qb2
i (ni−1)

bi−1∏
j=0

(qbi − q j )

)( ∏
1≤i< j≤k

q2bi b j n j

)
.

Proof. First we fix i and count the number of different possibilities for Ai,i . Since
(Ai,i )′ must be invertible, and (Ai,i )′ is bi×bi , there are |GLbi (F)|=

∏bi−1
j=0 (q

bi−q j )

different ways to choose the elements of (Ai,i )′. For each of the b2
i blocks in Ai,i ,

there are ni − 1 other diagonals whose entries may be nonzero, and they may be
chosen arbitrarily, so there are qb2

i (ni−1) ways to choose these other entries. Thus
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there are

f (bi , ni )=

(
qb2

i (ni−1)
bi−1∏
j=0

(qn
i − q j )

)
ways to choose the entries in a diagonal block Ai,i.

All of the other entries in A which are not required to be zero may be chosen
arbitrarily, subject to the constraint that each block is streaky upper triangular. If
i < j , an element of SUTni ,n j (F) has n j diagonals that may be nonzero, and for
i 6= j there are bi b j blocks in each of SUTni ,n j (F) and SUTn j ,ni (F). Thus there are
a total of ∏

1≤i< j≤k

q2bi b j n j

ways to choose these entries. We conclude that

g(b1n1, . . . , bknk)=

( k∏
i=1

f (bi , ni )

)( ∏
1≤i< j≤k

q2bi b j n j

)

=

( k∏
i=1

qb2
i (ni−1)

bi−1∏
j=0

(qbi − q j )

)( ∏
1≤i< j≤k

q2bi b j n j

)
. �

Now we determine |C(J )| for any J ∈ Jn(F). Any matrix in C(J ) can be
represented as a block diagonal matrix, where each block on the diagonal is of
the type specified in Lemma 5.4. To be precise, let n = n1 + n2 + · · · + nl , and
J ∈ Jn(F) have double partition type T given by

{{b1,1n1,1, . . . , b1,k1n1,k1}, {b2,1n2,1, . . . , b2,k2n2,k2}, . . . , {bl,1nl,1, . . . , bl,kl nl,kl }},

where, for 1≤ α ≤ l, we have nα =
∑kα

i=1 bα,i nα,i and nα,i > nα, j if i < j . Denote
the eigenvalue associated with {bα,1nα,1, . . . , bα,kαnα,kα } by λα. We can represent
J as an l × l block diagonal matrix where Jα,α contains the Jordan blocks with
eigenvalue λα . If A commutes with J , then A can be represented as an l × l block
matrix where the block Aα,β is nα × nβ , and Lemma 5.2 guarantees that all off-
diagonal blocks Aα,β , α 6= β contain all zeros. So A is a block diagonal matrix,
which is invertible if and only if each block on the diagonal is itself an invertible
matrix. Thus to determine the number of invertible matrices A ∈ C(J ), it suffices
to determine for each 1≤ α ≤ l the number of invertible matrices Aα,α.

The matrix Aα,α can be represented as a kα × kα block matrix, where (Aα,α)i, j

is bα,i nα,i × bα, j nα, j , and is itself a bα,i × bα, j block matrix where Lemma 5.1
implies each block is an element of SUTnα,i ,nα, j (F). By Lemma 5.4 it is invertible
if and only if the diagonal blocks (Aα,α)i,i are invertible. Corollary 5.5 implies the
number of invertible matrices that have the required block structure is given by
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|C(J )| =
l∏

α=1

g(bα,1nα,1, . . . , bα,kαnα,kα )

=

l∏
α=1

(( kα∏
i=1

qb2
α,i (nα,i−1)

bα,i−1∏
j=0

(qbα,i − q j )

) ∏
1≤i< j≤kα

q2bα,i bα, j nα, j

)
. (4)

Using the matrix J from Figure 5 as an example, the variables in (4) are

l = 3, (n1, n2, n3)= (7, 2, 2), (k1, k2, k3)= (2, 1, 1),

n1 = 7= 1 · 3+ 2 · 2= b1,1n1,1+ b1,2n1,2,

n2 = 2= 2 · 1= b2,1n2,1, n3 = 2= 1 · 2= b3,1n3,1.

Thus for the matrix A in the figure to be invertible, there are |GL1(F)| = q − 1
choices each for a and j , |GL2(F)| = (q2

−1)(q2
−q) choices each for {d, q, w, f }

and {h, y, z, i}, and q choices for each other letter. Thus

|C(J )| = (q − 1)2((q2
− 1)(q2

− q))2q16.

6. Eig3(F) and Eig4(F)

In this section we compute |Eig3(F)| and |Eig4(F)| for any field F with q elements.

Theorem 6.1. The number of 3× 3 matrices with entries in F whose eigenvalues
are all in F is

|Eig3(F)| =
1
6q9
+

5
6q8
+

2
3q7
−

1
6q6
−

5
6q5
+

1
3q4.

Proof. There are three partitions of 3: 3 = 1+ 1+ 1 = 1+ 2 = 3, and 6 double
partitions:

T3,1 = {{1}, {1}, {1}},

T3,2 = {{1, 1}, {1}},

T3,3 = {{1, 1, 1}},

T3,4 = {{2}, {1}},

T3,5 = {{2, 1}},

T3,6 = {{3}}.

For 1≤ i ≤ 6, Lemma 4.1 gives the value of t (T3,i ). Corollary 5.3 gives the form
of C(J ) for J ∈ T3,i , and the value of c(T3,i ) is determined by (4). This information
is summarized in Table 1.

Using (3), we conclude that |Eig3(F)| equals

6∑
i=1

t (T3,i )
(q3
−1)(q3

−q)(q3
−q2)

c(T3,i )
=

1
6q9
+

5
6q8
+

2
3q7
−

1
6q6
−

5
6q5
+

1
3q4. �

Theorem 6.2. The number |Eig4(F)| of 4 × 4 matrices with entries in F whose
eigenvalues are all in F equals

=
1
24q16

+
3
8q15
+

11
12q14

+
5
8q13
−

1
4q12
−

1
8q11
−

5
12q10

+
3
8q9
+

5
24q8
−

1
4q7
−

1
2q6.
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T3,i t (T3,i ) C(J ) : J ∈ T3,i c(T3,i )

T3,1


λ1 0 0

0 λ2 0
0 0 λ3

 ( q
3

) 
a 0 0

0 b 0
0 0 c

 : a, b, c 6= 0

 (q − 1)3

T3,2


λ1 0 0

0 λ1 0
0 0 λ2

 q(q − 1)


a b 0

c d 0
0 0 e

 : e, ad − bc 6= 0

 (q2
− 1)(q2

− q)(q − 1)

T3,3


λ 0 0

0 λ 0
0 0 λ

 q GL3(F) (q3
− 1)(q3

− q)(q3
− q2)

T3,4


λ1 1 0

0 λ1 0
0 0 λ2

 q(q − 1)


a b 0

0 a 0
0 0 c

 : a, c 6= 0

 q(q − 1)2

T3,5


λ 1 0

0 λ 0
0 0 λ

 q


a b c

0 a 0
0 d e

 : a, e 6= 0

 q3(q − 1)2

T3,6


λ 1 0

0 λ 1
0 0 λ

 q


a b c

0 a b
0 0 a

 : a 6= 0

 q2(q − 1)

Table 1. Values of t (T3,i ) and c(T3,i ).

Proof. There are five partitions of 4:

4= 1+ 1+ 1+ 1= 1+ 1+ 2= 2+ 2= 1+ 3= 4,

and 14 double partitions:

T4,1 = {{1}, {1}, {1}, {1}},

T4,2 = {{1, 1}, {1}, {1}},

T4,3 = {{1, 1}, {1, 1}},

T4,4 = {{1, 1, 1}, {1}},

T4,5 = {{1, 1, 1, 1}},

T4,6 = {{2}, {1}, {1}},

T4,7 = {{2}, {1, 1}},

T4,8 = {{2, 1}, {1}},

T4,9 = {{2, 1, 1}},

T4,10 = {{2}, {2}},

T4,11 = {{2, 2}},

T4,12 = {{3}, {1}},

T4,13 = {{1, 3}},

T4,14 = {{4}}.

The proof proceeds in the same way as the proof of Theorem 6.1, with the relevant
information summarized in Table 2. �
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T4,i t (T4,i ) C(J ) : J ∈ T4,i c(T4,i )

T4,1



λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4




( q
4

) 


a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d


 (q − 1)4

T4,2



λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3




( q
2

)
(q − 2)




a b 0 0
c d 0 0
0 0 e 0
0 0 0 f


 (q2

− q)(q2
− 1)(q − 1)2

T4,3



λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2




( q
2

) 


a b 0 0
c d 0 0
0 0 e f
0 0 g h


 (q2

− q)2(q2
− 1)2

T4,4



λ1 0 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ2


 q(q − 1)




a b c 0
d e f 0
g h i 0
0 0 0 j


 (q3

− 1)(q3
− q)(q3

− q2)(q − 1)

T4,5



λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ


 q GL4(F) (q4

−1)(q4
−q)(q4

−q2)(q4
−q3)

T4,6



λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3




( q
2

)
(q − 2)




a b 0 0
0 a 0 0
0 0 c 0
0 0 0 d


 q(q − 1)3

T4,7



λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2


 q(q − 1)




a b 0 0
0 a 0 0
0 0 c d
0 0 e f


 q(q − 1)(q2

− 1)(q2
− q)

T4,8



λ1 1 0 0
0 λ1 0 0
0 0 λ1 0
0 0 0 λ2


 q(q − 1)




a b c 0
0 a 0 0
0 d e 0
0 0 0 f


 q3(q − 1)3

T4,9



λ 1 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ


 q




a b c d
0 a 0 0
0 e f g
0 h i j


 (q2

− q)(q2
− 1)(q − 1)q5

Table 2. Values of t (T4,i ) and c(T4,i ).

(Continued on next page)
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T4,i t (T4,i ) C(J ) : J ∈ T4,i c(T4,i )

T4,10



λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2




( q
2

) 


a b 0 0
0 a 0 0
0 0 c d
0 0 0 c


 q2(q − 1)2

T4,11



λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ


 q




a b c d
0 a 0 c
e f g h
0 e 0 g


 (q2

− q)(q2
− 1)q4

T4,12



λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2


 q(q − 1)




a b c 0
0 a b 0
0 0 a 0
0 0 0 d


 q2(q − 1)2

T4,13



λ 1 0 0
0 λ 1 0
0 0 λ 0
0 0 0 λ


 q




a b c d
0 a b 0
0 0 a 0
0 0 e f


 q4(q − 1)2

T4,14



λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ


 q




a b c d
0 a b c
0 0 a b
0 0 0 a


 q3(q − 1)

Table 2. Values of t (T4,i ) and c(T4,i ) (continued).

7. The proportion of matrices with all eigenvalues in F

Olšavský [2003] noted that as the size of the field Zp increases, the proportion of
matrices in M2(Zp) with all eigenvalues in Zp approaches 1/2, that is,

lim
p→∞

|Eig2(Zp)|

|M2(Zp)|
= lim

p→∞

1
2 p4
+ p3
−

1
2 p2.

p22 =
1
2
.

We generalize this result to show the proportion of matrices with all eigenvalues in
F for any fixed n approaches 1/n! (Note that the leading coefficients for the polyno-
mials |Eig3(F)| and |Eig4(F)| are 1/3! and 1/4!, respectively, so the generalization
is true for these cases).

Theorem 7.1. Let F be a finite field with q elements. Then

lim
q→∞

|Eign(F)|

|Mn(F)|
=

1
n!
.

Proof. We know |Mn(F)| = qn2
and our method for determining |Eign(F)| implies

that it is a polynomial in the variable q: Denote the double partitions in DP(n) by



644 LISA KAYLOR AND DAVID OFFNER

Tn,i for 1 ≤ i ≤ |DP(n)|. For each i , t (Tn,i ) is a polynomial, and since for each
J ∈ Jn(F), C(J ) is a subgroup of GLn(F), the polynomial |GLn(F)| is divisible
by |C(J )|, and thus s(Tn,i ) is also a polynomial. To evaluate the limit, we must
determine the leading coefficient of |Eign(F)|. Let deg f denote the degree (in the
variable q) of the polynomial f . Then, since the degree of a sum of a fixed number
of polynomials is equal to the maximum degree of the polynomials,

deg |Eign(F)| = deg
|DP(n)|∑

i=1

t (Tn,i )s(Tn,i )= max
1≤i≤|DP(n)|

deg(t (Tn,i )s(Tn,i ))

= max
1≤i≤|DP(n)|

deg
(

t (Tn,i )
|GLn(F)|

c(Tn,i )

)
= max

1≤i≤|DP(n)|
deg t (Tn,i )+ deg |GLn(F)| − deg c(Tn,i )

= max
1≤i≤|DP(n)|

n2
+ deg t (Tn,i )− deg c(Tn,i ).

Let Tn,1 be the double partition {{1}, {1}, . . . , {1}}, corresponding to the type of
Jordan form with all n eigenvalues distinct. For all n, we will show the maximum
is attained only for i = 1. Indeed, since deg t (Tn,i ) is equal to the number of
distinct eigenvalues in the type, deg t (Tn,1)= n, and deg t (Tn,i ) < n, for all i > 1.
Furthermore, by (4), deg c(Tn,1) = n, and deg c(Tn,i ) ≥ n for all i > 1. Thus
deg |Eign(F)| = n2

+ deg t (Tn,1)− deg c(Tn,1)= n2, and the leading coefficient of
|Eign(F)| is equal to the leading coefficient of t (Tn,1) · |GLn(F)|/c(Tn,1).

Since t (Tn,1) =
(q

n

)
, |GLn(F)| =

∏n−1
i=0 (q

n
− q i ), and c(Tn,1) = (q − 1)n , the

leading coefficient of t (Tn,i ) · |GLn(F)|/c(Tn,i ) is 1/n!. �

Corollary 7.2. Let Ediffn(F)⊆ Eign(F) denote the set of matrices in Mn(F) with
all eigenvalues in F and all eigenvalues distinct. Then

lim
q→∞

|Ediffn(F)|

|Eign(F)|
= 1.

Thus, for large enough finite fields, nearly all matrices with all eigenvalues in
the field have all different eigenvalues.

Proof. In the notation of the proof of Theorem 7.1,

|Ediffn(F)| = t (Tn,1) · |GLn(F)|/c(Tn,1)= qn2
/n! + o(qn2

).

Thus |Ediffn(F)| and |Eign(F)| are both polynomials in q with the same leading
term. So as q increases the ratio of these cardinalities will approach 1. �
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8. Conclusions

Given a finite field F and a positive integer n, we have given a method for computing
|Eign(F)| using (3). In 4.1 and (4) we gave the formulas necessary for computing
the pieces of (3). In Section 6 we applied our method in the cases n = 3 and
n = 4, and in Section 7, we showed that as the size of the finite field increases, the
proportion of matrices in Mn(F) that have all eigenvalues in F approaches 1/n!.

There are a number of interesting directions for future research. For example,
Theorem 7.1 describes the asymptotic behavior of |Eign(F)| in the case where n is
fixed and q goes to infinity. Is it possible to find an analogous statement in the case
that q is fixed and n increases? It could also be interesting to find a geometric or
combinatorial interpretation for these numbers. In the case q = 2, and n= 1, 2, 3, 4,
|Eign(Z2)| = 2, 14, 352, and 33,632, respectively, and this sequence (or even a
small piece of it) is not found in the Online Encyclopedia of Integer Sequences.
Finally the polynomials for |Eign(F)| could be studied further. For example, is the
smallest nonzero power in |Eign(F)| always 2(n−1) and if so, why? It seems likely
that the coefficients will always sum to 1, but will they always be between −1 and
1, and if so, why? Are there patterns in the magnitudes or signs of the coefficients?
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