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The positive semidefinite minimum rank of a simple graph G is defined to be
the smallest possible rank over all positive semidefinite real symmetric matrices
whose ij-th entry (for i 6= j) is nonzero whenever {i, j} is an edge in G and is
zero otherwise. The computation of this parameter directly is difficult. However,
there are a number of known bounding parameters and techniques which can be
calculated and performed on a computer. We programmed an implementation of
these bounds and techniques in the open-source mathematical software Sage. The
program, in conjunction with the orthogonal representation method, establishes
the positive semidefinite minimum rank for all graphs of order 7 or less.

1. Introduction

Define a graph G = (V, E) with vertex set V = V (G) and edge set E = E(G). The
graphs discussed herein are simple (no loops or multiple edges) and undirected. The
order of G, |G|, is the cardinality of V (G). Two vertices v and w of a graph G are
neighbors if {v,w} ∈ E(G). If H is a graph with V (H)⊆ V (G) and E(H)⊆ E(G)
we call H a subgraph of G. H is an induced subgraph of G if H is a subgraph of
G and if for all pairs v,w ∈ V (H), {v,w} ∈ E(H) if {v,w} ∈ E(G). Given a set
of vertices S ⊆ V (G), G− S is the induced subgraph of G with vertices V (G) \ S.

A graph P = (V, E), where V (P) = {v1, v2, . . . , vn}, is called a path if the
edges of the graph are exactly {vi , vi+1} for i = 1, 2, . . . , n− 1. A cycle is a path
that also has the edge {vn, v1}. A graph G is chordal if every induced cycle has
length no greater than 3. A graph is connected if for any two vertices, v1, v2, there
exists a path with endpoints v1 and v2. A connected graph with no cycles is a tree.
An induced graph that is a tree is an induced tree. A graph with n vertices in which
there is an edge between every vertex is called a complete graph and is denoted Kn .
See Figure 1 for examples.
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(a) (b) (c) (d)

Figure 1. Examples of graphs: (a) a path; (b) a cycle; (c) a tree;
(d) the complete graph on 7 vertices.

Let Sn(R) denote the set of real symmetric n×n matrices. For A= [aij ] ∈ Sn(R),
the graph of A, denoted G(A), is the graph with vertices {1, 2, . . . , n} and edges{
{i, j} : aij 6= 0 and i 6= j

}
.

The positive semidefinite maximum nullity of G is

M+(G)=max{null A : A ∈ Sn(R) is positive semidefinite and G(A)= G}

and the positive semidefinite minimum rank of G is

mr+(G)=min{rank A : A ∈ Sn(R) is positive semidefinite and G(A)= G}.

Clearly mr+(G)+M+(G)= |G|.
The following concept was introduced in [Barioli et al. 2010]: in a graph G where

all vertices in some vertex set S⊆V (G) are colored black and the remaining vertices
are colored white, the positive semidefinite color change rule is: If W1,W2, . . . ,Wk

are the sets of vertices of the k connected components of G−S (k=1 is a possibility),
w ∈Wi , u ∈ S, and w is the only white neighbor of u in the subgraph of G induced
by V (Wi ∪ S), then change the color of w to black, written as u→ w. Given an
initial set B of black vertices, the final coloring of B is the set of vertices colored
black as result of applying the positive semidefinite color change rule iteratively
until no more vertices may be colored black. If the final coloring of B is V (G),
B is called a positive semidefinite zero forcing set of G. The positive semidefinite
zero forcing number of a graph G, denoted Z+(G), is the minimum of |B| for all
B positive semidefinite zero forcing sets of G. In [Barioli et al. 2010] it was shown
that if G is a graph then M+(G)≤ Z+(G).

Example 1.1. Consider the graph G in Figure 2(a) with the set B = {v4} initially
colored black. When the positive semidefinite color change rule is applied, the
connected component W1 of G− B is the induced subgraph of G on the vertices
{v1, v2, v3}. Since v3 is the only white neighbor of v4 in the subgraph of G induced
by W1∪B (this is actually all of G), v4→ v3 as demonstrated in Figure 2(b). For the
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Figure 2. Illustrating Example 1.1.

next iteration, the set of black vertices is B ′ = {v3, v4}. The connected components
of G− B ′ are W ′1, induced by {v1}, and W ′2, induced by {v2}. Vertex v1 is the only
white neighbor of vertex v3 in the subgraph of G induced by W ′1 ∪ B ′ and v2 is
the only white neighbor of vertex v3 in the subgraph of G induced by W ′2 ∪ B ′.
Therefore, v3→ v1 and v3→ v2; see Figure 2(c). Now, the entire graph has been
forced black, as shown in Figure 2(d), and since the process was started by a single
black vertex, Z+(G)≤ 1. However, at least one vertex must be colored to begin the
zero forcing process. Therefore, Z+(G)= 1.

Let G be a graph and S the smallest subset of V (G) such that G− S is discon-
nected. Then |S| = κ(G) is called the vertex connectivity of G. A clique covering
of G is a set of induced subgraphs {Si } of G such that each Si is complete and
E(G) =

⋃
E(Si ). The clique cover number of a graph G, denoted cc(G), is the

minimum of |{Si }| over all {Si } clique coverings of G.
In [Booth et al. 2008] M+(G)was determined for every graph G of order at most 6.

Use of published software (Zq.py; see [Butler and Grout 2011]) for computing
Z+(G) establishes M+(G) = Z+(G) for |G| ≤ 6. We developed a program (see
[Osborne and Warnberg 2011a]) in the open-source computer mathematics software
system Sage (sagemath.org) to compute bounds for positive semidefinite maximum
nullity. The program uses Zq.py [Butler and Grout 2011] and known results for
computing positive semidefinite maximum nullity. These results are summarized
in Section 2. A detailed description of the program may be found in Appendix A.
Sections 2 and 3 provide a survey of techniques for computing positive semidefinite
minimum rank.

In Section 3 we determine M+(G) for |G| ≤ 7 and show M+(G)= Z+(G) for
all such graphs. For all but 13 graphs of order 7, M+(G) can be computed by the
program. We then established M+(G) for the remaining 13 graphs by utilizing
orthogonal representation to find a positive semidefinite matrix A with G(A)= G
and nullity of A = Z+(G). This establishes that M+(G)= Z+(G) for each graph
G of order at most 7. These matrices are listed in Appendix B.

http://www.sagemath.org
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2. Known results used by the program to establish positive semidefinite
minimum rank/maximum nullity

Note that all of our parameters sum over the connected components of a disconnected
graph. Given its relation to the positive semidefinite zero forcing number, the
following results are given in terms of positive semidefinite maximum nullity.
However, given a graph G, M+(G)+mr+(G)= |G|, so all of the following results
may easily be translated to positive semidefinite minimum rank.

Theorem 2.1 [Ekstrand et al. 2013]. Let G be a graph.

(i) Z+(G)= 1 if and only if M+(G)= 1.

(ii) Z+(G)= 2 if and only if M+(G)= 2.

(iii) Z+(G)= 3 implies M+(G)= 3.

Corollary 2.2. If Z+(G)≥ 3, then M+(G)≥ 3.

Observation 2.3 [Ekstrand et al. 2013]. Z+(G)= |G| − 1 if and only if M+(G)=
|G| − 1.

Note that the only graph G having Z+(G)= |G| − 1 is Kn , the complete graph
on n vertices.

For a chordal graph G, it was shown in [Booth et al. 2008] that cc(G)=mr+(G),
in [Hackney et al. 2009] it was shown that OS(G)= cc(G), and in [Barioli et al.
2010] it was shown that Z+(G) + OS(G) = |G|, where OS(G) is the ordered
subgraph number of G (see [Mitchell et al. 2010] for the definition of OS(G)).
Thus Z+(G)=M+(G), which gives the next theorem.

Theorem 2.4 [Barioli et al. 2010; Booth et al. 2008; Hackney et al. 2009]. If G is
chordal, then M+(G)= Z+(G).

Example 2.5. Consider graph G551 in Figure 3, left. Sets of vertices of size 1 or 2
are clearly not positive semidefinite zero forcing sets, so Z+(G551) ≥ 3. Notice
that choosing an initial set of 3 black vertices that are all nonadjacent does not force
anything. By symmetry this reduces to two cases. In the first case we choose {1, 2}
as our adjacent black vertices and as our third we choose any of the remaining
vertices and notice that the graph will not be forced. Similarly, choosing {1, 3}
as our adjacent black vertices and any of the remaining vertices as our third also
fails to force the graph. Thus, Z+(G551) ≥ 4. Observe that {1, 3, 4, 5} forms a
positive semidefinite zero forcing set meaning Z+(G551)≤ 4, hence Z+(G551)= 4.
However, G551 is chordal as its largest cycle is size 3. Therefore, by Theorem 2.4
M+(G551)= 4.

Theorem 2.6 [Lovász et al. 1989; 2000]. For every graph G, κ(G)≤M+(G).
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Figure 3. Graphs G551 (left) and G128 (right).

Example 2.7. By inspection, removing any one vertex from graph G128 (see
Figure 3, right) will not result in a disconnected graph. Therefore, κ(G) ≥ 2.
Further, {3, 4} forms a positive semidefinite zero forcing set for G128. Thus,
Z+(G)≤ 2. This gives 2≤ κ(G)≤M+(G)≤ Z+(G)≤ 2.

For a graph G the neighborhood of v ∈ V (G) is

NG(v)= {w ∈ V (G) | v is adjacent to w}.

Vertices v and w are called duplicate vertices if NG(v)∪ {v} = NG(w)∪ {w}.

Proposition 2.8 [Ekstrand et al. 2013]. If v and w are duplicate vertices in a
connected graph G with |G| ≥ 3, then Z+(G− v)= Z+(G)− 1.

Proposition 2.9 [Booth et al. 2008]. If v andw are duplicate vertices in a connected
graph G with |G| ≥ 3, then mr+(G− v)=mr+(G).

Recall that for any graph G, mr+(G)+M+(G)= |G|, which gives the following
corollary.

Corollary 2.10. If v and w are duplicate vertices in a connected graph G with
|G| ≥ 3, then M+(G− v)=M+(G)− 1.

Example 2.11. In graph G1196 (see Figure 4, left) notice that 2 and 4 are duplicate
vertices, as are vertices 3 and 5. Removal of vertices 2 and 3 results in a graph that
is isomorphic to graph G43 (see Figure 4, right). Z+(G43)= 2 thus M+(G43)= 2
by Theorem 2.1. Therefore, M+(G1196)= 4 by Corollary 2.10.

Cut-vertex reduction is a standard technique in the study of minimum rank. A
vertex v of a connected graph G is a cut-vertex if G− v is disconnected. Suppose
Gi , i = 1, . . . , h, are graphs of order at least two, there is a vertex v such that for
all i 6= j , Gi ∩G j = {v}, and G = ∪h

i=1Gi (if h ≥ 2, then clearly v is a cut-vertex
of G). Then it is observed in [van der Holst 2009] that

mr+(G)=
h∑

i=1

mr+(Gi ).
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Figure 4. Graphs G1196 (left) and G43 (right).
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Figure 5. Graph G419.

Because mr+(G)+M+(G)= |G|, this is equivalent to

M+(G)=
( h∑

i=1

M+(Gi )

)
− h+ 1. (1)

It is shown in [Mitchell et al. 2010] that

OS(G)=
h∑

i=1

OS(Gi ).

Since OS(G)+Z+(G)= |G| (shown in [Barioli et al. 2010]), this is equivalent to

Z+(G)=
( h∑

i=1

Z+(Gi )

)
− h+ 1. (2)

Example 2.12. Equation (2) can be used to compute Z+(G419) and M+(G419)
(see Figure 5(a)). Notice that vertex 5 is a cut vertex of the graph since removing it
results in a disconnected graph with 3 components, namely H1, H2 and H3. When
vertex 5 is reconnected to each of our components it is easy to see that Gi∩G j ={5}
for i, j ∈ {1, 2, 3} with i 6= j , as illustrated by Figures 5(c)–(e). It is also clear
that ∪3

i=1Gi = G419, Z+(G1) = 2, Z+(G2) = 1, and Z+(G3) = 2. Thus, by



COMPUTING POSITIVE SEMIDEFINITE MINIMUM RANK FOR SMALL GRAPHS 601

1

2 3

4 5

6

1 2
3

4

5

6 7

Figure 6. Graphs G200 (left) and G1090 (right).

Equation (2), Z+(G419)= 2+ 1+ 2− 3+ 1= 3. A similar argument shows that
M+(G419)= 3.

Observe that if κ(G)=1, there exists a cut vertex. The next result is an immediate
consequence of the cut-vertex reduction Equations (1) and (2).

Observation 2.13 [Ekstrand et al. 2013]. Suppose Gi , i = 1, . . . , h are graphs,
there is a vertex v such that for all i 6= j , Gi ∩ G j = {v}, and G =

⋃h
i=1 Gi . If

M+(Gi )= Z+(Gi ) for all i = 1, . . . , h, then M+(G)= Z+(G).

Observation 2.14 [Hackney et al. 2009]. If G is a graph then cc(G)≥mr+(G).

Corollary 2.15. |G| − cc(G)≤M+(G).

Example 2.16. In Figure 6, left, notice that graph G200 is not complete so

mr+(G200)≥ 2.

Also, note that the subgraphs induced by S1 = {1, 2, 3, 4, 5} and S2 = {4, 5, 6} are
complete and E(G200)= E(S1)∪E(S2) so cc(G200)≤ 2, hence mr+(G200)= 2.

In [Booth et al. 2008] the tree size of a graph G, denoted ts(G), is defined to
be the number of vertices in a maximum induced tree of G. Also from [Booth
et al. 2008], if T is a maximum induced tree and w is a vertex not belonging to T ,
denote by E(w) the set of all edges of all paths in T between every pair of vertices
of T that are adjacent to w. The following theorem was established by Booth et
al. [2008].

Theorem 2.17 [Booth et al. 2008]. For a connected graph G,

mr+(G)= ts(G)− 1 (3)

if the following condition holds: there exists a maximum induced tree T such that
for u and w not on T , E(u)∩E(w) 6=∅ if and only if u and w are adjacent in G.

Note that Equation (3) may be rewritten as M+(G)= |G| − ts(G)+ 1.
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Example 2.18. To illustrate the previous theorem we consider graph G1090 (see
Figure 6, right). To find ts(G1090) notice that G1090 has two disjoint, induced
K3’s, namely the graphs induced by vertex sets {1, 2, 3} and {5, 6, 7}. This means
in order to find an induced tree, removal of one vertex from each K3 is required. By
inspection, removal of any of the nine pairs

{
{1, 5}, {1, 6}, {1, 7}, {2, 5}, . . . , {3, 7}

}
results in a graph with a cycle, thus ts(G1090)≤ 4. However, the subgraph induced
by {1, 4, 5, 6} is a tree (call it T ), hence ts(G1090)= 4. We show T satisfies the
condition of Theorem 2.17. The vertices not in G1090− T are 2, 3, and 7, which
are all adjacent in G1090.

E(2)=
{
(1, 6), (5, 6), (4, 5)

}
= E(3) and E(7)=

{
(5, 6)

}
.

Therefore, E(2)∩E(3)∩E(7) 6= ∅ and the condition holds because {2, 3, 7} are
pairwise adjacent. Thus M+(G1090)= 4.

3. Computation of positive semidefinite maximum nullity
of graphs of order 7 or less

The program developed by Osborne and Warnberg [2011a] implements the results
from Section 2. Running the program on all graphs of order 7 or less yielded
positive semidefinite maximum nullity for 1239 of 1252 graphs. It may be noted
that the positive semidefinite maximum nullity was already known for the 208
graphs of order 6 or less (see [Booth et al. 2008]). However, the program was able
to successfully compute the positive semidefinite maximum nullity for these graphs
without referencing this information. For the remaining 13 graphs, the method of
orthogonal representations was used to construct a matrix representation exhibiting
nullity equal to the positive semidefinite zero forcing number. These matrices are
shown in Appendix B.

A set EV = { Ev1, . . . , Evn} in Rd is an orthogonal representation of the graph G
if for i 6= j , the dot product of Evi with Ev j is nonzero if the vertices i and j are
adjacent, and zero otherwise. If EV = { Ev1, . . . , Evn} is an orthogonal representation
of the graph G in Rd and B = [ Ev1 . . . Evn], then BT B ∈ S+(G) and rank BT B ≤ d .
Thus, if a representation is found in Rd then mr+(G)≤ d and M+(G)≥ |G| − d .

Example 3.1. Consider graph G17 in Figure 7, left. Note that when we refer to a
graph in the form G17 we are using notation from [Read and Wilson 1998]. To start
constructing an orthogonal representation for G17 let v1, v2, v3, v4 ∈R2 correspond
to vertices 1, 2, 3 and 4 respectively. Choose as many disjoint vertices as possible,
say 1 and 4. By definition v1 · v4 = 0 so let v1 =

[
1
0

]
and v4 =

[
0
1

]
. To find v2 and

v3, set

v2 =

[
ca2

b2

]
and v3 =

[
a3

b3

]
.
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Figure 7. Graph G17 (left); A, a matrix representation of G17 (right).
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Now, v2 is adjacent to v1 and v4 so v1 · v2 6= 0 and v2 · v4 6= 0. Thus a2 6= 0 6= b2.
Similarly, a3 6= 0 6= b3. Since v2 and v3 are not adjacent, we know v2 · v3 =

a2a3+b2b3= 0. With these restrictions it is clear that a2= a3= b2= 1 and b3=−1
is a solution and an orthogonal representation construction is complete. This gives

B =
[

1 1 1 0
0 1 −1 1

]
and BT B = A

(see Figure 7, right). By construction, rank(A) = 2. Thus mr+(G17) ≤ 2 and
M+(G17)≥ |G|−2= 2. Observe that {1, 2} forms a positive semidefinite zero forc-
ing set for graph G17 hence Z+(G17)≤ 2. Finally, 2≤M+(G17)≤ Z+(G17)≤ 2.

In every case, positive semidefinite maximum nullity was found to equal the
positive semidefinite zero forcing number. This has established the next result.

Theorem 3.2. If G is a graph with 7 or fewer vertices, then M+(G)= Z+(G).

See [Osborne and Warnberg 2011b] for a complete spreadsheet containing posi-
tive semidefinite maximum nullity and zero forcing number for all graphs with 7 or
fewer vertices.

Corollary 3.3. Suppose Gi , i =1, . . . , h, are graphs with |Gi |≤7, there is a vertex
v such that for all i 6= j , Gi ∩G j = {v}, and G =

⋃h
i=1 Gi . Then M+(G)= Z+(G).

Proof. Apply Theorem 3.2 to Observation 2.13. �

Note that Theorem 3.2 cannot be extended to graphs with more than 7 vertices
as Z+(V8)= 4 and M+(V8)= 3 (shown in [Mitchell et al. 2010]), where V8 is the
Möbius ladder on 8 vertices (see Figure 8).
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Appendix A: Method used by the program

The program uses the following general method:

(1) Separate the graph into its connected components and work on each component
separately. Results will be summed before reporting.

(2) Compute Z+(G).

(a) If Z+(G)≤ 3, apply the results of Theorem 2.1.

(b) Else, use Corollary 2.2 to establish a lower bound for M+(G).

(3) If Z+(G)= |G| − 1, apply the results of Observation 2.3.

(4) If G is chordal, apply Theorem 2.4.

(5) Compute the vertex connectivity of G (κ(G)).

(a) If κ(G)= Z+(G), apply Theorem 2.6.

(b) Else, if κ(G) is a tighter bound for M+(G), improve the lower bound.

(6) If there are duplicate vertices in the graph, discard all but one copy by applying
Corollary 2.10 and returning to step 2.

(7) Apply the cut-vertex formula iteratively by applying Equation (1) and returning
to step 2 for each component.

(8) Compute the clique cover number of G.

(a) If |G| − cc(G)= Z+(G), apply Corollary 2.15.

(b) Else, if cc(G) is a tighter bound for M+(G), improve the lower bound.

(9) Apply Theorem 2.17 to determine if M+(G)= |G| − ts(G)+ 1.

Appendix B: Matrix representations

Each of the following thirteen matrices satisfies null(A)= 4= Z+(G).



2 −1 −1 0 1 1 0
−1 1 1 0 0 0 1
−1 1 2 1 1 0 1

0 0 1 1 1 0 0
1 0 1 1 2 1 1
1 0 0 0 1 1 1
0 1 1 0 1 1 2



G 1060

1
2 3 4 5 6

7

(continued on next page)
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

1 −1 1 0 0 0 0
−1 3 0 −1 3 1 0

1 0 2 −2 1 0 −1
0 −1 −2 5 0 1 3
0 3 1 0 5 2 1
0 1 0 1 2 1 1
0 0 −1 3 1 1 2



G 1075

12 3

4 5

6 7



1 0 −1 4 0 −1 0
0 1 4 2 0 0 1
−1 4 33 0 −4 −15 0

4 2 0 21 1 0 3
0 0 −4 1 1 4 1
−1 0 −15 0 4 17 4

0 1 0 3 1 4 2



G 1100
1 2

3 4

56 7



1 1 1 2 0 3 0
1 6 7 0 −1 0 1
1 7 10 −1 −3 0 0
2 0 −1 5 1 7 0
0 −1 −3 1 2 0 1
3 0 0 7 0 11 −1
0 1 0 0 1 −1 1



G 1104
1 2

3

4 5

6 7



1 1 1 1 0 −1 0
1 3 2 0 1 0 1
1 2 2 2 1 0 0
1 0 2 6 1 0 −2
0 1 1 1 1 1 0
−1 0 0 0 1 2 0

0 1 0 −2 0 0 1



G 1105
1 2

3

4 5
6 7

(continued on next page)
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

1 1 −1 0 0 0 0
1 3 −2 1 1 3 0
−1 −2 6 −2 1 0 3

0 1 −2 1 0 1 −1
0 1 1 0 1 2 1
0 3 0 1 2 5 1
0 0 3 −1 1 1 2



G 1135

12 3

4 5

6 7



2 1 −3 0 3 −1 0
1 1 −2 0 2 0 1
−3 −2 30 5 0 1 −1

0 0 5 1 1 0 0
3 2 0 1 6 −1 1
−1 0 1 0 −1 1 1

0 1 −1 0 1 1 2



G 1137

1 23

4

56 7



3 1 −3 1 3 1 0
1 1 2 0 2 0 1
−3 2 21 −4 0 −1 0

1 0 −4 1 1 0 1
3 2 0 1 5 0 3
1 0 −1 0 0 1 −2
0 1 0 1 3 −2 6



G 1165
1

2
3

4

5 6

7



1 2 1 1 1 0 0
2 6 1 0 0 2 1
1 1 2 3 0 −1 0
1 0 3 5 −1 −2 0
1 0 0 −1 11 −2 −3
0 2 −1 −2 −2 2 1
0 1 0 0 −3 1 1



G 1167

1
2 3 4 5

6

7

(continued on next page)
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

2 −3 1 0 1 1 0
−3 6 −1 0 −1 0 1

1 −1 1 −1 0 0 0
0 0 −1 3 2 3 1
1 −1 0 2 2 3 1
1 0 0 3 3 5 2
0 1 0 1 1 2 1



G 1168

1 23

4

56 7



1 1 3 0 2 0 0
1 6 0 −2 0 −1 1
3 0 14 2 0 3 1
0 −2 2 1 −1 1 0
2 0 0 −1 21 −5 −4
0 −1 3 1 −5 2 1
0 1 1 0 −4 1 1



G 1169

1
2 34

5
6

7



1 −4 1 1 0 0 0
−4 21 −2 0 1 −3 −1

1 −2 2 2 1 −1 0
1 0 2 6 −1 −3 −2
0 1 1 −1 2 0 1
0 −3 −1 −3 0 2 1
0 −1 0 −2 1 1 1



G 1202

1
2 3 4

5 6
7



1 1 1 0 0 1 −3
1 3 1 1 1 4 0
1 1 3 3 1 0 −4
0 1 3 5 2 0 0
0 1 1 2 1 1 1
1 4 0 0 1 6 2
−3 0 −4 0 1 2 14



G 1205

1

2 3
4 56 7
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