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Let R be a commutative ring. When is a subgroup of .R;C/ an ideal of R? We
investigate this problem for the rings Zd and

Qd
iD1Zni

. In the cases of Z�Z and
Zn �Zm, our results give, for any given subgroup of these rings, a computable
criterion for the problem under consideration. We also compute the probability
that a randomly chosen subgroup from Zn �Zm is an ideal.

1. Introduction

Let R be a commutative ring. The object of this paper is to determine necessary
and sufficient conditions for a given subgroup of .R;C/ to be an ideal of R. Our
motivation for asking this question arose from some problems on Mathieu subspaces
(more is explained in the next paragraph). To begin, consider the ring Z of integers.
Every subgroup of Z is of the form kZ for some integer k, and each of these
subgroups is clearly also an ideal. In fact, the same is true also for the ring Zn (the
ring of integers modulo n). It turns out that these are the only rings R in which
every subgroup of .R;C/ is also an ideal of R; see Proposition 2.1. In particular,
when we consider product rings, we get some subgroups that are not ideals. For
instance, the diagonal f.x;x/ j x 2 Zg in Z�Z is clearly a subgroup of .Z�Z;C/

but not an ideal in the ring Z�Z. In this paper, we consider the product rings Zd

(in Section 3) and
Qd

iD1Zni
(in Section 4), and for various subgroups of these rings,

we give necessary and sufficient conditions for a given subgroup to be an ideal. In
the cases of Z�Z and Zn �Zm, our necessary and sufficient conditions are also
computable for any given subgroup of these rings. As one would expect, our results
show that in general an arbitrary subgroup of a ring is seldom an ideal. In fact,
we make this statement precise in Theorem 5.4, where we compute explicitly the
probability that a randomly chosen subgroup from Zn�Zm is an ideal. For instance,
when p is a prime and the ring is Zp �Zp, this probability is only 4=.pC 3/. We
will use several basic facts and tools from abstract algebra, which can be found in
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[Dummit and Foote 2004]. We also use a theorem in group theory due to Goursat;
a good exposition of this theorem can be found in [Petrillo 2011], and we review it
in Theorem 4.4. Although we focus mainly on the rings Z�Z and Zn�Zm, where
possible we offer some generalizations. By a subgroup of a ring R, we always
mean a subgroup of the additive group .R;C/.

This problem came up naturally when Chebolu and his collaborators (Yamskulna
and Zhao) were recently working on some problems involving Mathieu subspaces in
some rings. A Mathieu subspace is a generalization of an ideal: for a commutative
ring R, a Z-submodule M of R is said to be a Mathieu subspace of R if whenever an

belongs to M (for all n � 1), then ran belongs to M for all n sufficiently large.
Every ideal is a Mathieu subspace, but the converse is not necessarily true. The
notion of a Mathieu subspace was introduced by Wenhua Zhao [2010], and it
proved to be a central idea in the research on several landmark conjectures in
algebra and geometry, including the Jacobian conjecture. As a result, Mathieu
subspaces received serious attention and extensive writing; see [Zhao 2012] and
the references therein. Chebolu and his collaborators were led to the problem
of determining when a subgroup of a ring is a Mathieu subspace. Since ideals
are important and relatively well-understood classes of Mathieu subspaces, it was
natural to investigate the same question for ideals. Thus the problem we study in
this paper is an interesting offshoot of our Mathieu subspaces project.

2. Generators

In the introduction, we noted that the rings Z and Zn have the property that every
subgroup in them is also an ideal. It is not hard to show that these are the only rings
with this property.

Proposition 2.1. Let R be a unital commutative ring, i.e., a commutative ring with
a multiplicative identity. If every subgroup of .R;C/ is also an ideal, then R is
isomorphic to either Z or Zn for some positive integer n.

Proof. Since R is a unital ring, there is a natural map �WZ!R that sends 1 to 1R ,
the multiplicative identity of R. The image of this homomorphism is exactly the
subgroup of .R;C/ that is generated by 1R . If every subgroup of .R;C/ is an ideal,
then, in particular, the subgroup generated by 1R is also an ideal. However, the only
ideal that contains 1R is the entire ring R. This means � is surjective. From the
first isomorphism theorem, we have Z= ker� ŠR. It follows that R is isomorphic
to Z or Zn for some integer n. (In the former case, R has characteristic 0, and in
the latter, R has characteristic n.) �

We will now show that every subgroup of Zd or
Qd

iD1 Zni
is generated by at

most d elements. We will recall some standard results from abstract algebra, which
can be found in [Dummit and Foote 2004].
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Theorem 2.2. Let R be a PID and let M be a free R-module of rank r . Then every
submodule of M is also free and has rank at most r .

This theorem takes care of Zd . For
Qd

iD1 Zni
, we need the following corollary,

which can be derived easily from the above theorem.

Corollary 2.3. Let R be a PID and let M be a finitely generated R-module. If M

is generated by r elements, then every submodule of M is generated by at most r

elements.

Corollary 2.4. Every subgroup of
�Qd

iD1 Zni
;C
�

or of .Zd ;C/ is generated by at
most d elements.

Proof. The ring
Qd

iD1 Zni
is a Z-module that is clearly generated by d elements;

the standard basis forms a generating set. Therefore by the above corollary, every
subgroup of

Qd
iD1 Zni

is generated by at most d elements. The corresponding
statement for Zd is a special case of the above theorem. �

This corollary gives a natural stratification of the class of all nonsubgroups of
these rings, which is based on the minimal number of generators of a given subgroup.
This stratification will be helpful in our analysis.

3. The ring Z � Z

In this section, we determine when a given additive subgroup of the ring Zd is an
ideal. The trivial subgroup, which consists of the single element .0; 0; : : : ; 0/, is
also trivially an ideal, so we will consider nonzero subgroups. As explained in the
previous section, a nonzero subgroup of Zd is free of rank at most d . We will be
begin with rank-1 subgroups, where the problem is straightforward.

Proposition 3.1. Let L be a subgroup of Zd generated by .a1; : : : ; ad /. Then L is
an ideal if and only if all but one of the ai are zero.

Proof. If all but one of the ai are zero, then L is clearly an ideal in one of the
factors of Zd . On the other hand, if we have more than one nonzero ai , say ai

and aj , then consider ei D .0; : : : ; 0; 1; 0 : : : ; 0/, which has 1 at the i -th spot. If L

is an ideal, then ei.a1; : : : ; ad /D .0; : : : ; 0; ai ; 0; : : : ; 0/ should belong to L. This
is a contradiction, so we are done. �

More generally, the following is true.

Lemma 3.2. Let R be an integral domain. A subgroup of .R;C/ generated by a
nonzero element a is an ideal of R if and only if R is isomorphic to Z or Zp for
some prime p.

Proof. Let hai be the additive subgroup of .R;C/ generated by a (¤ 0). Let r be an
arbitrary element of R. If hai is an ideal, then we should have raDna for some inte-
ger n. This equation implies that .r�n1R/aD0. Since we are working in an integral
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domain and a is nonzero, we get r �n1R D 0, or r D n1R . Since r is arbitrary, this
implies that .R;C/ is a cyclic group generated by 1R . This means R is isomorphic
to Z or Zn for some n. But since R is an integral domain, n has to be a prime. �

Now we move on to subgroups of rank at least 2 in Zd , where the problem is
more interesting. We begin with an example to show the subtlety in the problem.

Example 3.3. Consider the ring Z�Z and let S and T denote the following rank-2
subgroups of .Z�Z;C/:

S D
˝
.2; 0/; .3; 1/

˛
;

T D
˝
.2; 0/; .2; 1/

˛
:

We claim that S is not an ideal but T is. If S is an ideal, then the element .0; 1/
(D .0; 1/.3; 1/) should belong to it. That means the pair of equations 2xC 3y D 0

and y D 1 have to be consistent over Z. However, it is easy to see that this is not
the case. On the other hand, T is an ideal in Z � Z. In fact, T D 2Z � Z. See
Theorem 3.8 for the general result.

We begin by classifying ideals of Zd whose additive groups are free of rank k.

Proposition 3.4. Let I be an ideal in Zd . Then I is free of rank k .1 � k � n/

if and only if I is of the form
Qd

iD1 diZ, where exactly k of the numbers di are
nonzero.

Proof. Recall that every ideal in Zd is of the form
Qd

iD1 diZ, where the di are
integers. The rank of

Qd
iD1 diZ is exactly the number of di that are nonzero. �

In view of this proposition, to determine when a subgroup of rank k in Zd is
an ideal, it is enough (after deleting the zero coordinates) to consider the problem
when d D k. The latter is addressed in the next two theorems. We begin with
a lemma that we will need in these theorems. Recall that an integer matrix A is
said to be unimodular if it is invertible over the ring of integers. This statement is
equivalent (as can be seen by Cramer’s formula for the inverse) to saying that the
determinant of A is either 1 or �1. In the following lemma, a subgroup of Zn of
rank n will be called a lattice of Zn.

Lemma 3.5. Let A and B be two n�n matrices over the integers that are invertible
over the rationals. The columns of A and those of B form two bases for a lattice L

if and only if there exists a unimodular matrix X such that AX D B.

Proof. Since the columns of A and B form a basis for L, there exist integer square
matrices X and Y such that AX DB and BY DA. Multiplying the first equation on
the right-hand side by Y , we get AXY DBY . But BY DA, so we get AXY DA.
Since A is invertible over the rationals, we multiply the inverse (over the rationals)
of A on both sides to conclude that XY D I . This means X is invertible over Z

(i.e, it is unimodular) and AX D B. For the other direction, let Y be the inverse
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of X over Z, so we have AX DB and BY DA. The first equation tells us that the
column space of B is contained in that of A, and the second equation says that the
column space of A is contained in that of B. �

Theorem 3.6. Let H be a subgroup of rank k in Zk . Let the columns of a k � k

matrix A be a Z-basis for H . Then the following are equivalent:

(1) H is an ideal in Zk .

(2) There exists a unimodular matrix U such that AU is a diagonal matrix.

(3) There is a sequence of elementary row operations (over Z) that can convert A

into a diagonal matrix.

Proof. Let H (as in the statement of the theorem) be an ideal in Zk . Then by
Proposition 3.4, H is of the form

Qk
iD1 diZ for some integers di . Since H has

rank k, all these integers have to be nonzero. H can be written in this form if and
only if the columns of A and those of the diagonal matrix DDDiagonal.d1; : : : ; dk/

form a basis for H . By the above lemma, this happens if and only if there is a
unimodular matrix U such that AU D D. Hence we have the equivalence of
statements (1) and (2). The equivalence of (2) and (3) for the field of real numbers
is well-known (the famous reduced row echelon form of an invertible matrix).
The reader can verify that the proof works over Z when properly interpreted. For
instance, the role played by nonzero real numbers in the world of Z are the units˙1.
This gives the equivalence of statements (2) and (3). �

Since Z is a Euclidean domain where we can talk about gcds, we can take the
above theorem one step further. Let A� denote the adjoint matrix of A. Recall that
the formula for the inverse of A (an invertible matrix) is given by

A�1
D

1

det.A/
A� D

1

det.A/
..a�ij //:

Theorem 3.7. Let H be a subgroup of rank k in Zk . Let the columns of a k � k

matrix A be a Z-basis for H . Then the following are equivalent:

(1) H is an ideal in Zk .

(2) There exists a unimodular matrix U such that AU is a diagonal matrix.

(3) There is a sequence of k nonzero integers d1; d2; : : : ; dk such that

(a) det.A/D˙d1d2 � � � dk ,
(b) det.A/=di divides gcd.a�

1i
; : : : ; a�

ki
/ for all i .

Proof. We already saw the equivalence of (1) and (2) in Theorem 3.6. Now we will
show that (2) and (3) are equivalent. Let H and A be as in the statement of the
theorem. There exists a unimodular matrix U such that AU is a diagonal matrix if
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and only if for some diagonal matrix DDDiagonal.d1; : : : ; dk/, the matrix A�1D

is unimodular. Using Cramer’s formula for the inverse, we can equivalently say that

X D
1

det.A/
A�D

is unimodular. Since X is unimodular, its determinant is ˙1. Taking determinants
of both sides of the above matrix equation will give (a). Moreover, the entries of X

should be all integers. For that to happen, det.A/ should divide all the entries in
each of the columns di.a

�
1i
; : : : ; a�

ki
/T , or equivalently det.A/=di should divide all

the entries in each of the columns .a�
1i
; : : : ; a�

ki
/T . Since Z is a Euclidean domain,

the last statement is equivalent to (b). �

We can tell exactly when condition (2) of Theorem 3.7 holds in the case of Z�Z.
That gives the following result, which along with the rank-1 result proved earlier,
gives a full answer to our problem for the ring Z�Z.

Theorem 3.8. Let L be a rank-2 subgroup of Z�Z that is generated by vectors
.a; b/ and .c; d/. Then L is an ideal in Z � Z if and only if ad � bc divides
gcd.a; c/ gcd.b; d/.

Proof. Let L be a rank-2 subgroup of Z � Z that is generated by vectors .a; b/
and .c; d/, and let A be the 2� 2 matrix with these two columns. From the above
theorems, and using the formula for the inverse of a 2� 2 matrix, we conclude
that L is an ideal if and only if there exist nonzero integers d1 and d2 such that

(1) ad � bc D˙d1d2,

(2) .ad � bc/=d1 divides gcd.b; d/ and .ad � bc/=d2 divides gcd.a; c/.

We claim that nonzero integers d1 and d2 exist with these properties if and only
if ad � bc divides gcd.a; c/ gcd.b; d/. If d1 and d2 exist such that (1) and (2)
hold, then from (2) we get .ad � bc/2=.d1d2/ divides gcd.a; c/ gcd.b; d/, but
.ad � bc/2=.d1d2/D ad � bc. This proves one direction. For the other, direction,
suppose ad � bc divides gcd.a; c/ gcd.b; d/. Then an elementary number theory
fact tells us we can write ad � bc as d1d2, where d1 divides gcd.a; c/ and d2

divides gcd.b; d/. �

We now explain how one can arrive at Theorem 3.8 more directly by solving
linear equations over Z. Recall that our problem boils down to the following
question. Given an integer matrix A with nonzero determinant, when does there
exist a unimodular matrix X such that AX is a diagonal matrix? To address this,
we let X D .xij / and consider the matrix equation�

a c

b d

� �
x11 x12

x21 x22

�
D

�
u 0

0 v

�
:
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This gives us the set of equations

ax12C cx22 D 0; (3-1)

bx11C dx21 D 0; (3-2)

x11x22�x12x21 D 1: (3-3)

(X is unimodular, so its determinant is either 1 or �1. However, by swapping
the columns of A if necessary, we may assume that the determinant of X is 1,
which gives us the third equation.) L is an ideal if and only if the above system of
equations has a solution in integers xij . Let us begin with (3-1): ax12C cx22 D 0

if and only if ax12 D�cx22. Then

x12 D
�c

gcd.a; c/
˛; x22 D

a

gcd.a; c/
˛ for some integer ˛:

Similarly, using (3-2), we get

x11 D
�d

gcd.b; d/
ˇ; x21 D

b

gcd.b; d/
ˇ for some integer ˇ:

Substituting these values in the determinant condition (3-3), we get

1D x11x22�x12x21

D
�d

gcd.b; d/
ˇ

a

gcd.a; c/
˛�

�c

gcd.a; c/
˛

b

gcd.b; d/
ˇ

D ˛ˇ
�

�ad

gcd.a; c/ gcd.b; d/
�

�bc

gcd.a; c/ gcd.b; d/

�
:

Hence,
gcd.a; c/ gcd.b; d/D�˛ˇ.ad � bc/: (3-4)

Thus we see from (3-4) that the set of equations (3-1)–(3-3) is consistent over Z

if and only if det.A/D ad � bc divides gcd.a; c/ gcd.b; d/ in Z. In that case, we
can take ˛ D�1 and

ˇ D
gcd.a; c/ gcd.b; d/

ad � bc
:

This completes the alternative proof of Theorem 3.8.
The following corollary follows immediately from Theorem 3.8.

Corollary 3.9. Let .a; b/ and .c; d/ be two vectors in Z�Z and L be the lattice
generated by these two vectors.

(1) If ad � bc D˙1, then L is an ideal in Z�Z.

(2) If ad � bc is a prime, then L is an ideal if and only if ad � bc divides either
gcd.a; c/ or gcd.b; d/.
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4. The ring Zn � Zm

Let n and m be positive integers and consider the ring Zn �Zm. Our problem is
to determine when a subgroup of .Zn �Zm;C/ is an ideal. We have seen that a
nonzero subgroup of Zn �Zm is generated by either one or two elements, so we
have two cases to consider. First, consider a subgroup L in the ring Zn �Zm that
is generated by .a; b/. If either aD 0 in Zn or b D 0 in Zm, the problem is trivial
because L is simply an ideal in one of the components of Zn�Zm. So let us assume
that both a and b are nonzero in their respective component rings. Then we have
the following theorem.

Theorem 4.1. Let 1� a< n and 1� b <m. The subgroup generated by .a; b/ in
the ring Zn �Zm is a ideal if and only if

gcd
�

n

gcd.a; n/
;

m

gcd.b;m/

�
D 1:

Proof. Since our rings are principal ideal rings, every ideal in Zn �Zm is of the
form d1Zn�d2Zm, where d1 and d2 are some integers. For brevity, we will denote
this ideal by hd1i � hd2i.

Returning to our problem, let us assume that the line L generated by .a; b/ is an
ideal of Zn �Zm. From above, we have

LD hd1i � hd2i:

Consider the restrictions to L of the natural projection maps: �1WZn �Zm! Zn

and �2WZn �Zm! Zm. We will compute �1.L/ in two different ways. On the
one hand, since L D hd1i � hd2i, we have �1.L/ D hd1i. On the other hand, L

is generated by .a; b/, so the first components of the elements of L pick up all
multiples of a. Therefore �1.L/ D hai. This shows that hai D hd1i. Similarly,
working with the second projection map, we conclude that hbi D hd2i.

To summarize, L spanned by .a; b/ is an ideal if and only if

h.a; b/i D hai � hbi:

The inclusion h.a; b/i � hai � hbi is obvious. Therefore, equality holds if and
only if both sides have the same cardinality. These cardinalities are given by the
following formulas (ord x denotes the additive order of x):ˇ̌˝

.a; b/
˛ˇ̌
D lcm.ord a; ord b/D

ord a ord b

gcd.ord a; ord b/
;

jhai � hbij D ord a ord b:

Equating these two expressions, clearly L spanned by .a; b/ in Zn�Zm is an ideal
if and only gcd.ord a; ord b/D 1. The theorem now follows from the fact that the
order of an element c in .Zs;C/ is given by s=gcd.c; s/. �
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Remark 4.2. When m and n are relatively prime, Theorem 4.1 implies that every
line in Zn �Zm is an ideal. This is indeed the case because for relatively prime
integers m and n, we have Zn �Zm Š Znm.

More generally, the following theorem is true:

Theorem 4.3. The subgroup generated by the element .a1; a2; : : : ; ak/ in the ring
Zn1
�Zn2

� � � � �Znk
is an ideal if and only ifY

1�i<j�n

gcd
�

ni

gcd.ai ; ni/
;

nj

gcd.aj ; nj /

�
D 1:

Proof. From the proof of Theorem 4.1, it follows that the subgroup generated by
the element .a1; a2; : : : ; ak/ in Zn1

�Zn2
� � � � �Znk

is an ideal if and only ifY
i

ord ai D lcm
i

ord ai :

Showing that this last equation holds if and only ifY
1�i<j�n

gcd.ord ai ; ord aj /D 1

can be done as an exercise. Then using the formula mentioned above for the order of
an element in Zs , we now get the condition given in the statement of the theorem. �

We now investigate when a subgroup of Zn �Zm generated by two elements is
an ideal. To this end, the following theorem from group theory, due to Goursat,
will be useful. We will also use this theorem in the next section, where we compute
some probabilities.

Theorem 4.4 (Goursat [Petrillo 2011]). Let G1 and G2 be any two groups. There
exists a bijection between the set S of all subgroups of G1 �G2 and the set T of
all 5-tuples .A1;B1;A2;B2; �/, where Ai is a subgroup of Gi , Bi is a normal
subgroup of Ai , and � is a group isomorphism from A1=B1 to A2=B2.

Let �i WG1 � G2 ! Gi denote the projection homomorphisms. The desired
bijection in this theorem is given as follows. For a subgroup U of G1 �G2, we
define a 5-tuple .AU1

;BU1
;AU2

;BU2
; �U /, where

AU1
D Im.�1jU /;

BU1
D �1

�
ker.�2jU /

�
;

AU2
D Im.�2jU /;

BU2
D �2

�
ker.�1jU /

�
;

�U .a1BU1
/D a2BU2

; when .a1; a2/ 2 U:
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Conversely, given a 5-tuple .A1;B1;A2;B2; �/, the corresponding subgroup U

of G1 �G2 is given by

U� D
˚
.a1; a2/ 2A1 �A2 j �.a1B1/D a2B2

	
:

Corollary 4.5. Let G1 �G2 be a finite group and let .AU1
;BU1

;AU2
;BU2

; �U /

correspond to the subgroup U of G1 �G2. Then we have

jU j D jAU1
jjBU2

j:

Proof. It is clear from the correspondence in Goursat’s theorem that

jU j D jAU1
=BU1

jjBU1
jjBU2

j D jAU1
jjBU2

j: �

Given elements ˛ and ˇ in Zn, consider the linear map �˛;ˇWZ�Z!Zn defined
by �˛;ˇ.x;y/D ˛xCˇy. Then we have the following theorem.

Theorem 4.6. The subgroup of Zn �Zm generated by .a; b/ and .c; d/ is an ideal
of Zn �Zm if and only if

.ker�a;c/.ker�b;d /D Z�Z:

Proof. Let H denote the subgroup generated by .a; b/ and .c; d/ in Zn � Zm.
Suppose H is an ideal in Zn�Zm. Then there exists ˛ in Zn and ˇ in Zm such that
H D h˛i � hˇi. Taking projection maps, we can see that ˛ D gcd.a; c/ mod n and
ˇ D gcd.b; d/ mod m. Thus H is an ideal if and only if

h.a; b/; .c; d/i D hgcd.a; c/i � hgcd.b; d/i:

As in Theorem 4.1, the left-hand side is easily seen to be contained in the right-hand
side, and we have equality if and only if both sides have the same cardinality.
The cardinality of the right-hand side is ord.gcd.a; c// ord.gcd.b; d//. The cardi-
nality of the left-hand side can be computed using Corollary 4.5: it is given by
ord.gcd.a; c//

ˇ̌
�2.ker�1jH /

ˇ̌
. Equating these two expressions, we conclude that H

is an ideal if and only if ord.gcd.b; d//D
ˇ̌
�2.ker�1jH /

ˇ̌
. The left-hand side of

this equation is the cardinality of the set

S D fbxC dy j x;y 2 Zg � Zm;

and the right-hand side is the cardinality of the set

T D fbxC dy j x;y 2 Z such that axC cy D 0 2 Zng � Zm:

S and T have the same cardinality precisely when the image of �b;d WZ�Z! Zm

is the same as the image of �b;d restricted to the kernel of �a;c WZ�Z! Zn. That
happens exactly when ker.�a;c/ intersects every coset in Z�Z= ker.�b;d /, which
is true if and only if .ker�a;c/.ker�b;d /D Z�Z. �
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We can get a finite-type condition that is equivalent to the one in Theorem 4.6. To
get this, set lD lcm.m; n/. Then given elements ˛ and ˇ in Zn, define the linear map
 ˛;ˇWZl�Zl!Zn as  ˛;ˇ.x;y/D˛xCˇy. We now have the following corollary.

Corollary 4.7. The subgroup of Zn�Zm generated by .a; b/ and .c; d/ is an ideal
of Zn �Zm if and only if ˇ̌

.ker a;c/.ker b;d /
ˇ̌
D nm:

Proof. This follows from the proof of the previous theorem. Note that the maps
�a;c and �b;d factor through  a;c and  b;d respectively. �

Goursat’s theorem for more than two components [Bauer et al. 2011] has a very
complicated structure, and in particular, it is not helpful to solve our problem.

5. Probability that a subgroup is an ideal

As one would expect, the above results suggest that a subgroup of a ring is rarely
an ideal. Now we will make this precise by computing explicitly the probability
that a randomly chosen subgroup of Zn �Zm is an ideal using the approach and
results from [Petrillo 2011]. Let PR denote the probability that a randomly chosen
subgroup of a finite ring R is an ideal. This probability is given by

PR D
total number of ideals in R

total number of subgroups in .R;C/
:

Our interest is in the ring Zn �Zm. If either n or m is 1, then clearly PR D 1.
So we will assume that n> 1 and m> 1. Let S D fp1; : : : ;pkg denote the set of
all distinct primes which divide mn. Then the prime factorizations of m and n are

mD p
r1

1
� � �p

rk

k
and nD p

s1

1
� � �p

sk

k
;

where the exponents are nonnegative integers, and the Chinese remainder theorem
gives the decomposition

Zn �Zm D .Zp
r1
1

�Z
p

s1
1

/� � � � � .Z
p

rk
k

�Z
p

sk
k

/:

Lemma 5.1. PZn�Zm
D

kY
iD1

PZ
p

r1
1

�Z
p

s1
1

:

Proof. This follows from two facts. First, note that every ideal I in Zn � Zm is
of the form I D

Qk
iD1 Ii , where Ii is an ideal of the ring Z

p
ri
i

� Z
p

si
i

. Next we
use a theorem of Suzuki [1951] that says if G1 and G2 are two finite groups with
relatively prime orders, then every subgroup of G1 �G2 is of the form H1 �H2,
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where Hi is a subgroup of Gi . In particular, every subgroup H of .Zn �Zm;C/ is
of the form

Qk
iD1 Hi , where Hi is a subgroup of Z

p
ri
i

�Z
p

si
i

. Then we have

PZn�Zm
D

total number of ideals in Zn �Zm

total number of subgroups in .Zn �Zm;C/

D

kY
iD1

total number of ideals in Z
p

ri
i

�Z
p

si
i

total number of subgroups in .Z
p

ri
i

�Z
p

si
i

;C/

D

kY
iD1

PZ
p

ri
i

�Z
p

si
i

: �

In view of Lemma 5.1, it is enough to compute

PZ
p

ri
i

�Z
p

si
i

:

We do this in the next two lemmas, beginning by computing the number of ideals.

Lemma 5.2. The number of ideals in Zpr �Zps is equal to .r C 1/.sC 1/.

Proof. Every ideal in Zpr �Zps is of the form aZpr � bZps , where a is a divisor
of pr and b is a divisor of ps . This gives .r C 1/.s C 1/ for the total number
of ideals. �

Next we have to compute the number of subgroups in Zpr �Zps . This number
can be obtained using the above-mentioned Goursat’s theorem.

Lemma 5.3 [Petrillo 2011]. The total number of subgroups of Zpr �Zps (r � s) is

prC1
�
.s� r C 1/.p� 1/C 2

�
�
�
.sC r C 3/.p� 1/C 2

�
.p� 1/2

:

Proof sketch. Goursat’s theorem can be greatly simplified in the case under con-
sideration. There is a unique subgroup of order pk in Zpr for any 0� k � r and
these subgroups form a linear chain. Moreover, the group of automorphisms of Zpk

corresponds to the units in this ring, and we have pk�pk�1 of them. We now have
to count the 5-tuples .A1;B1;A2;B2; �/ that correspond to subgroups in Goursat’s
theorem. If jAi=Bi j D 1, the number of subgroups is .r C 1/.sC 1/ because we
have rC1 choices for A1=B1 and sC1 choices for A2=B2 (clearly � is trivial). If
jAi=Bi j D pk for 1� k � r , we have r � kC 1 choices for A1=B1 and s� kC 1

choices for A2=B2, and finally pk �pk�1 choices for �, so in this case we have
.r � kC 1/.s� kC 1/.pk �pk�1/ subgroups. In total we have

.r C 1/.sC 1/C

rX
kD1

.r � kC 1/.s� kC 1/.pk
�pk�1/

subgroups. The rest is straightforward algebra; see [Petrillo 2011]. �
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Combining the above lemmas, we get our formulas for PZpr �Zps and PZn�Zm
.

Theorem 5.4. Let p be a prime and r; s; n;m be positive integers, with r � s. Then

PZpr �Zps D
.r C 1/.sC 1/.p� 1/2

prC1
�
.s� r C 1/.p� 1/C 2

�
�
�
.sC r C 3/.p� 1/C 2

� ;
PZn�Zm

D

kY
iD1

.ri C 1/.si C 1/.pi � 1/2

p
riC1
i

�
.jsi � ri jC 1/.pi � 1/C 2

�
�
�
.si C ri C 3/.pi � 1/C 2

� :
We now record two special cases, which can be derived from Theorem 5.4 using

routine algebra.

Corollary 5.5. Let p be a prime and let r be a positive integer. Then

PZpr �Zpr D
.r C 1/2.p� 1/2

prC1.pC 1/� 2r.p� 1/� 3pC 1
and PZp�Zp

D
4

pC 3
:

It is clear from the above expressions that these probabilities are small, as
expected. For instance, by choosing a large prime, the value of PZp�Zp

can be
made arbitrarily small. Similarly for a fixed prime p, the numerator of PZpr �Zpr

is a polynomial function in r , whereas the denominator is an exponential function
in r . Thus limr!1 PZpr �Zpr D 0.

The main obstruction in generalizing these formulas to the rings RD
Qk

iD1 Zni
is

the lack of a closed formula for the number of subgroups in
�Qk

iD1Zpi ;C
�

when
k � 3. However, when the integers ni are all square-free, one can compute PR

easily. This is because Lemma 5.1 helps us to reduce the problem of computing
PR to the problem of computing PS , where S D

Qr
iD1 Zp for some prime p and

positive integer r (� k). The latter is a vector space over Fp, where subgroups
are same as vector subspaces. The number of subspaces in .S;C/ is given by the
well-known formula

rX
iD1

�r

i

�
p
;

where
�
r
i

�
p

is the Gaussian binomial coefficient, which counts the number of
i -dimensional subspaces of Fr

p. Explicitly its value is given by�r

i

�
p
D
.pr � 1/.pr �p/ � � � .pr �pr�1/

.pi � 1/.pi �p/ � � � .pi �pi�1/
:

Since the number of ideals in S is 2r , we get this formula:

Proposition 5.6. PZr
p
D

2rPr
iD1

�
r
i

�
p

:
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