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We study the vertex-connectivity and edge-connectivity of the zero-divisor graph0R

associated to a finite commutative ring R. We show that the edge-connectivity
of 0R always coincides with the minimum degree, and that vertex-connectivity
also equals the minimum degree when R is nonlocal. When R is local, we provide
conditions for the equality of all three parameters to hold, give examples showing
that the vertex-connectivity can be much smaller than minimum degree, and prove
a general lower bound on the vertex-connectivity.

1. Introduction

Let R be a commutative ring with unit element 1 6= 0. The set of zero-divisors in R
does not in general possess a convenient algebraic structure; hence, nonalgebraic
methods are often needed to study this set. One attempt in this direction involves the
so-called zero-divisor graph 0R , whose definition was first given by Beck [1988]
and later adjusted slightly by Anderson and Livingston [1999]. The vertices of 0R

are precisely the nonzero zero-divisors of R, with two vertices adjacent if and
only if the product of the ring elements they represent is zero. The idea is that
by studying combinatorial properties of 0R , one might hope to draw conclusions
about the structure of the set of zero-divisors in R. Since the paper [Anderson and
Livingston 1999], considerable work has been done on this topic; for details, see
the recent survey articles [Anderson et al. 2011; Coykendall et al. 2012].

One of the first results proved was that for any R, the graph 0R is connected,
and in fact has diameter at most 3 [Anderson and Livingston 1999, Theorem 2.3].
A more refined combinatorial notion than connectedness is that of connectivity.
For a graph G, the vertex-connectivity, denoted κ(G), is the size of the smallest
subset of vertices whose removal renders the graph disconnected or leaves a single
vertex, while the edge-connectivity, denoted λ(G), is the size of the smallest subset
of edges whose removal renders the graph disconnected. In general, connectivity

MSC2010: 05C25, 13A99.
Keywords: zero-divisor graph, connectivity, finite ring.

415

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2016.9-3


416 REZA AKHTAR AND LUCAS LEE

of either type is rather difficult to compute; however, when graphs have a lot of
symmetry — as is the case with zero-divisor graphs — it is sometimes possible to
perform calculations, or at least give meaningful bounds.

The vertex connectivity of 0(Zn), with n ≥ 2, was studied by Aaron Lauve
[1999], who later discovered a mistake in his proof of the key formula in Section 4.
The present article started as a project to correct this mistake, but later devel-
oped into a more comprehensive study of both the vertex- and edge-connectivity
of 0(R) for arbitrary finite rings. An obvious starting point is the set of bounds
κ(G) ≤ λ(G) ≤ δ(G) (see Proposition 2.2), valid for any graph G; here δ(G) is
the minimum degree of a vertex in G. In this article, we show that for all finite
rings R, we have λ(0R)= δ(0R), and for nonlocal R, we also have κ(0R)= δ(0R).
When R is local, however, κ(0R) is not nearly as well-behaved. For example,
if R is a principal ideal domain, we always have κ(0R) = δ(0R); however, one
can construct infinite families of rings for which κ(0R) is of order δ(0R)

3/4. We
give more precise conditions under which κ(0R)= δ(0R) holds, and show that for
any R, the vertex-connectivity κ(0R) must at least be of order δ(0R)

1/3.
Problems related to the focus of the present article have been studied in the

recent literature. The structure of minimal vertex cuts in 0R was studied in [Coté
et al. 2011]; however, that article does not investigate the size of such cuts, as is the
focus of the present article. Our results are of a distinctly different flavor and thus
complement rather than duplicate those of [Coté et al. 2011]. The papers [Axtell
et al. 2011; Redmond 2012] are more focused in scope, and study graphs whose
vertex-connectivity is 1.

2. Preliminaries

Throughout this paper, all rings are finite and commutative with 1 6= 0, and all
graphs are finite, with no loops or multiple edges.

If R is a ring, we denote by Z(R) the set of zero-divisors in R.

Definition 2.1. Let R be a ring. The zero-divisor graph of R, denoted 0R , is the
graph whose vertex set is the set Z(R)− {0}, and in which {x, y} is an edge if x
and y are distinct zero-divisors of R such that xy = 0.

By abuse of notation, we blur the distinction between elements of Z(R)−{0}
and elements of V (0R). For x ∈ Z(R)− {0}, we denote by ann x the annihilator
of x . Hence, the degree of x (viewed as a vertex of 0R) is |ann x −{0, x}|.

We also recall various conventions and definitions from graph theory; see [West
1996] or any reference on graph theory for further details. For a graph G, we
denote by V (G) its vertex set and by E(G) its edge set. For a vertex v, we denote
by NG(v) (or simply N (v) if the context is clear) the set of neighbors of v in G.
We denote by δ(G) the minimum vertex degree in G.
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If S ⊆ V (G), we write G− S to denote the graph with vertex set S = V (G)− S
and edge set E(G)−

{
{x, y} : {x, y} ∩ S 6= ∅

}
. If T ⊆ E(G) is any subset, we

denote by G− T the graph with vertex set V (G) and edge set E(G)− T . A vertex
cut is a subset S ⊆ V (G) such that G− S is disconnected, and a disconnecting set
of edges of G is a subset T ⊆ E(G) such that the graph G − T is disconnected;
an edge cut is a disconnecting set of edges which is minimal (with respect to
inclusion). Writing [A, B] for the set of edges in G with one endpoint in each of the
subsets A, B of V (G), it is easily shown (see [West 1996, Remark 4.1.8]) that any
edge cut in G must be of the form [S, S ] for some subset S ⊆ V (G). The vertex-
connectivity of G, denoted κ(G), is the size of the smallest set S ⊆ V (G) such that
S is a vertex cut or G−S has only one vertex. Similarly, the edge-connectivity of G,
denoted λ(G), is the size of the smallest edge cut in G. For convenience, we write κR

(respectively, λR , δR) instead of κ(0R) (respectively, λ(0R), δ(0R)). A well-known
result relating these parameters is the following statement, due to Whitney.

Proposition 2.2 [West 1996, Theorem 4.1.9]. For any graph G, we have

κ(G)≤ λ(G)≤ δ(G).

3. Results

Theorem 3.1. Let R be a finite nonlocal ring. Then κR = λR = δR .

Proof. By the structure theorem for Artin rings, R ∼= R1× · · ·× Rk , where k ≥ 2
and each Ri is a finite local ring. In light of Proposition 2.2, it suffices to show
κR ≥ δR . To this end, let S ⊆ V (0R) be a subset with |S|< δR; we will show that
H = 0R − S is connected. For i , with 1≤ i ≤ k, define

Ci =
{
(0, . . . , 0, ai , 0, . . . , 0) ∈ R1× · · ·× Rk : ai ∈ Z(Ri )−{0}

}
.

We claim that every vertex in H is adjacent to a vertex in Ci ∩ V (H) for some
1≤ i≤k. Since vertices of Ci are clearly adjacent to vertices of C j when i 6= j , it will
then follow that H is connected. Toward this goal, suppose b= (b1, . . . , bk)∈V (H),
and fix i , with 1≤ i ≤ k, such that bi 6= 0. If we define b′ = (1, . . . , 1, bi , 1, . . . , 1),
then clearly N0R (b

′)⊆Ci . In particular, this implies |Ci | ≥ δ > |S|, so H must con-
tain some vertex v ∈ N0R (b

′). Since N0R (b)⊇ N0R (b
′), we see that v ∈ N0R (b)∩Ci ,

as desired. �

From this point on, R will denote a finite local ring with maximal ideal m. Since R
is Artinian, it follows from Nakayama’s lemma (see [Atiyah and Macdonald 1969,
Proposition 8.6]) that mn

= 0 for some positive integer n. We will reserve the
symbol r for the smallest n > 0 satisfying this property. If r = 1, then R is a
field and 0R is the empty graph. If r = 2, then 0R is a complete graph; so clearly
κR = λR = δR = |m| − 2. For the balance of the article, we assume r ≥ 3, so in
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particular, m2
6=0. Sincemr−1

⊆annm, it follows immediately that AR = annm−{0}
is nonempty, and also that 0R is not complete. Viewed as a subset of V (0R), we have
that AR is a dominating set in 0R . Clearly any vertex cut in 0R must contain AR;
thus, writing αR = |AR| and using Proposition 2.2, we have the elementary bounds

αR ≤ κR ≤ λR ≤ δR. (1)

The following condition is important in that its presence forces all the inequalities
in (1) to be equalities, but its absence typically has the opposite effect:

There exists x ∈m such that ann x = annm. (2)

Proposition 3.2. Suppose condition (2) holds. Then αR = κR = λR = δR .

Proof. If x2
= 0, then x ∈ ann x = annm. Thus, m= ann x = annm, and so m2

= 0.
Hence, we may assume x2

6= 0. In this case,

δR ≤ deg(x)= |ann x −{x, 0}| = |ann x −{0}| = |annm−{0}| = αR. �

If R is a principal ideal ring, condition (2) is certainly satisfied; thus, we have this:

Corollary 3.3. Let p be a prime number and n ≥ 3. Then

κ(Z/pnZ)= λ(Z/pnZ)= p− 1.

It turns out that for local rings, the edge-connectivity is much better behaved
than the vertex-connectivity. Recalling that vertices of AR are dominant in 0R , the
determination of λR is strictly graph-theoretic and follows immediately from the
following easily verified fact:

Proposition 3.4. Let G be a graph with a dominant vertex. Then λ(G)= δ(G).

Proof. Choose S ⊆ V (0R) such that T = [S, S ] ⊆ E(0R) is an edge cut. We may
assume without loss of generality that S contains a dominant vertex v. Since v is
adjacent to all vertices of S, we must have |T | ≥ |S|. On the other hand, every
vertex in S has at least δ− |S| + 1 neighbors in S; so δ ≥ |T | ≥ |S|(δ− |S| − 1).
Rearranging the inequality |S|(δ− |S| + 1)≤ δ gives δ(|S| − 1)≤ |S|(|S| − 1). If
|S| > 1, then cancellation gives δ ≤ |S| and so |S| = |T | = δ. If |S| = 1, then all
edges incident at the sole vertex in S must be in T , so |T | = δ in this case also. �

Corollary 3.5. Let R be a local ring with m2
6= 0. Then λR = δR .

We now turn our attention to the vertex-connectivity of 0R . It is natural to ask
how tight the bounds αR ≤ κR ≤ δR are. In the absence of condition (2), the lower
bound is usually not met.

Proposition 3.6. Let R be a local ring with r ≥ 4 such that condition (2) fails.
Then κR > αR .
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Proof. First suppose r ≥ 5. Any vertex cut must contain AR , so it suffices to show
that H = 0R − AR is connected. Because mr−1

= mr−2m 6= 0, there exists some
x ∈mr−2 such that x 6∈ AR . Moreover, x is a finite sum of products of the form uv,
where u ∈ mr−3 and v ∈ m. Since x 6= 0 and AR ∪ {0} is an ideal (hence closed
under addition), at least one of these products must not be in AR . Thus, we may
assume without loss of generality that x = uv, where u ∈mr−3 and v ∈m. Clearly u
and v are also vertices of H , and because r ≥ 5, we have ux ∈ m2r−5

⊆ mr
= 0,

so u is adjacent to x in H .
We claim that there is a path in H from every y ∈ V (H) to x . If y = u or y = x ,

this is clear, so assume otherwise. Since condition (2) fails, y has a neighbor z
in H , so yz = 0. Now consider the product zu. If zu = 0, then y, z, u, x is a path.
If zu 6= 0 but zu ∈ AR , then zx = (zu)v = 0 and y, z, x is a path. Finally, if zu 6= 0
and zu 6∈ AR , then zu is a vertex of H ; moreover, y(zu)= 0 and x(zu)= (xu)z= 0,
so y, zu, x is a path.

Now suppose r = 4. Then m4
= 0 but m3

6= 0, so there exists x ∈m2 such that x
is a vertex of H = 0R − AR . It suffices to show that there is a path from any vertex
of H to x . To this end, let y be a vertex of H distinct from x . Since condition (2)
fails, y has a neighbor z in H , i.e., yz = 0. If zm ⊆ AR , then zm2

= 0 and z is
adjacent to x . If zm 6⊆ AR , then there exists w ∈m such that zw is a vertex of H .
Now zw is a neighbor of y; however, zw ∈m2, so it is also a neighbor of x . �

Remark. The hypothesis r ≥ 4 in Proposition 3.6 is necessary: when r = 3,
there exist rings R not satisfying condition (2) for which κR = αR and others for
which κR > αR .

As an example of the former, let F2 be the field with two elements and consider

R =
F2[x, y]
(x2, y2)

.

By abuse of notation, we will use elements of F2[x, y] to describe the cosets they
represent in R. Then m = (x, y) has eight elements and m2

= annm = {0, xy}.
Thus, 0R has seven vertices, with xy a dominant vertex; moreover, 0R −{xy} is a
graph on six vertices with three connected components {x, x+ xy}, {y, y+ xy} and
{x+ y, x+ y+xy}, so κR = αR = 1. Note also that for any t ∈ R, ann t contains (t).
Since (t) has at least four elements for any t 6= 0, there is no way for the equality
ann t = annm to hold for any t ∈ V (0R). Hence, condition (2) necessarily fails.

As an example of the latter, consider

R =
F2[x, y, z, w]

(x2, y2, z2, w2, xy, yz, zw,wx)
.

It is easily seen that R is a local ring satisfying t2
= 0 for all t ∈ R, whose maximal

ideal m = (x, y, z, w) satisfies m3
= 0, m2

6= 0. Moreover, annm = (xz, yw),
so αR = 3. As in the previous example, t ∈ ann t for all t ∈ R, so it is easily seen
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that condition (2) is not satisfied. Now let H = 0R − AR; we will show that H is
connected, and hence that κR > 3. Observe first that every vertex of H is of the form
c1x+c2 y+c3z+c4w+c5xz+c6 yw, where the ci are elements of F2, and c1, . . . , c4

are not all 0. Evidently each such vertex is adjacent to c1x + c2 y + c3z + c4w.
Since x, y, z, w, x is a cycle in H , it will suffice (to show that H is connected) to
construct a path from any vertex of the form c1x + c2 y+ c3z+ c4w (with not all ci

equal to 0) to one of the vertices of the abovementioned cycle. If v1, v2 are distinct
elements of {x, y, z, w} which are adjacent in H , then v1 + v2 is adjacent to v1.
If v1, v2 are not adjacent, then choose v3 from this set, distinct from v1 and v2;
then v3 will be adjacent to v1+v2. If v1, v2, v3 are distinct elements of {x, y, z, w},
then we may assume without loss of generality that v2 is adjacent to both v1 and v3.
It follows that v1 + v2 + v3 is adjacent to v2. Finally, x + y + z +w is adjacent
to x + z. Thus H is connected, and so κR > 3= αR .

The next family of examples shows that both bounds αR ≤ κR ≤ δR can be
quite loose.

Proposition 3.7. Let F be a field of order f = 2s and

R =
F[x, y, z]
(x2, y2, z2)

.

Then αR = f − 1, κR = f 3
− 1, and δR = f 4

− 2.

Proof. Observe that R is a local ring with maximal ideal m = (x, y, z) such that
t2
= 0 for all t ∈ R. Moreover, m2

= (xy, xz, yz), m3
= (xyz), and m4

= 0.
Clearly R is generated (as an F-vector space) by {1, x, y, z, xy, xz, yz, xyz};

from this description, it is easily seen that |R| = f 8, |m| = f 7, |m2
| = f 4, and

|m3
| = f . Also, annm = m3, so αR = f − 1. Now since t2

= 0 for all t ∈ R, it
follows that ann t ⊇ (t); because |ann t | · |(t)| = |R|, we have |ann t | ≥ |R|1/2 = f 4

for all t ∈ R. Direct computation shows that ann x = (x), so x is a vertex in 0R of
minimum degree δR = f 4

− 2.
Let S = (ann x ∩m2)−{0}. Also, any element in (x)− S−{0} is associate to x

and hence has the same neighborhood in 0R; in fact, (x)− S−{0} is a clique and a
connected component of 0R − S. Thus there is no path in 0R − S from x to y, and
so κR ≤ |S| = f 3

− 1.
Now suppose T ⊆ V (0R) is a set of vertices such that |T | < f 3

− 1. Given
t ∈ m, consider the multiplication-by-t map m2

→ tm2. This is an R-module
homomorphism whose kernel is ann t ∩m2; hence

|m3
| ≥ |tm2

| =
|m2
|

|ann t ∩m2|
,

and so |ann t ∩m2
| ≥ |m2

|/|m3
| = f 3. Taking into account that 0 and possibly t

itself are elements of ann t , this implies that every vertex of H = 0R − T has a
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neighbor (in H ) lying in m2. To show that H is connected, let a and b be vertices
of H . Then a has a neighbor c ∈m2 in H and b has a neighbor d ∈m2 in H . Now
cd ∈m4

=0, so c and d are adjacent in H , proving that there exists a path from a to b.
This shows that κR = f 3

− 1. �

In the example of Proposition 3.7, κR is roughly (1/|F |)δR , so by taking F to be
arbitrarily large, we see that there is no hope for a general upper bound on κR which is
linear in δR; in fact, in this family, κR is roughly δ3/4

R . It is natural, then, to ask for the
maximum value of a, with 0< a ≤ 3/4, such that κR can be bounded below (for all
finite rings R) by a function of order δa

R . As a first step in this direction, we offer this:

Proposition 3.8. Let R be a finite ring. Then κR ≥
( 1

2δR
)1/3
− (
√

3)−1.

The proof relies crucially on the following observation:

Lemma 3.9. Let R be a ring and S a vertex cut of 0R such that V (G) is the disjoint
union of two nonempty sets A and B with no edges between A and B. Suppose
|S|< δR . If a ∈ A and b ∈ B, then ab ∈ S, |ann a| ≥ |B|/|S| and |ann b| ≥ |A|/|S|.

Proof. The hypothesis |S|< δR implies that a has some neighbor x ∈ A and that b
has some neighbor y ∈ B. Then ab 6= 0, but ab is a neighbor of both x ∈ A
and y ∈ B; thus, ab ∈ S. Now let B = {b1, . . . , bn}. Since each of the products
ab1, . . . , abn is an element of S, some element s ∈ S appears at least |B|/|S| times
in this list; without loss of generality, we may assume that ab1 = · · · = abk = s,
where k ≥ |B|/|S|. Thus, 0, b2−b1, . . . , bk−b1 are distinct elements of ann a and
hence |ann a| ≥ k ≥ |B|/|S|. The proof of the remaining assertion is similar. �

Proof of Proposition 3.8. If κR = δR , there is nothing to prove, so assume κR < δR

and let S ⊆ V (0R) = m− {0} be a minimal vertex cut. Partition the vertices of
H = 0R − S into two disjoint nonempty sets A and B such that there are no edges
between A and B; we may assume without loss of generality that B is the larger of
these two sets, i.e.,

|A| ≤
|m| − 1− |S|

2
≤ |B|.

Now if x ∈ A and y ∈ B, Lemma 3.9 implies that H contains no vertices from
ann x ∩ ann y. Since the zero element is not a vertex of 0R , we have, again using
Lemma 3.9, that

|S| ≥ |ann x ∩ ann y| − 1=
|ann x ||ann y|
|ann x + ann y|

− 1≥
|B|/|S| · |A|/|S|

|m|
− 1.

Thus,

|S|3≥
|A||B|
|m|
−|S|2≥ |A|

|m|−1−|S|
2|m|

−|S|2

=
|A|
2
−
|S|
2
|S|+1
|S|
|A|
|m|
−|S|2≥

|A|
2
−
|S|
2
−|S|2.
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However, the neighbors of x ∈ A in 0R are all members of A∪S. Thus, |A|+|S|≥
δR + 1 and so, continuing the calculation from above, we have

|S|3+ |S|2+
|S|
2
≥
|A|
2
≥
δR − |S| + 1

2
,

which, upon rearrangement, gives

2
(
|S|3+ |S|2+ |S| + 1

2

)
≥ δR.

Hence, 2(|S|+1/
√

3)3≥ δR . Rearranging the inequality gives the desired result. �
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