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A “dead end” in the Cayley graph of a finitely generated group is an element
beyond which no geodesic ray issuing from the identity can be extended. We
study the so-called “strong dead-end depth” of group elements and its relationship
with the set of infinite quasigeodesic rays issuing from the identity. We show that
the ratio of strong depth to word length is bounded above by 1

2 in every finitely
generated group and that for any element g in a finitely generated group G,
there is an infinite (3, 0)-quasigeodesic ray issuing from the identity and passing
through g. Applying the Švarc–Milnor lemma to a finitely generated group acting
geometrically on a geodesically connected metric space, we obtain the result that
for any two points in such a space, there is an infinite quasigeodesic ray starting
at one and passing through the other with quasigeodesic constants independent of
the points selected.

1. Introduction

Background and summary of results. Let G be a group and X a finite generating
set for G. The Cayley graph for G with respect to X is the graph with vertex set G
and an edge from g to gx for every x ∈ X ∪ X−1. Throughout, we will use 0(G, X)
or simply 0 to denote the Cayley graph of G with respect to X . Assigning all edges
in 0(G, X) length 1 determines a metric on 0(G, X), and therefore on G, which
we denote by d( · , · )= dX ( · , · ). The metric d determines a length function lX = l
on G defined by l(x)= d(e, x), where e is the identity of G.

Many results on discrete groups rely upon an understanding of the structure of
geodesics in the Cayley graph. In particular, the question arises of the existence (or
nonexistence) of elements g beyond which no geodesic ray from the identity to g can
be extended to a longer geodesic. In the current literature, such elements are called
dead ends. Dead ends have been applied to, for example, the construction in [Lyons
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et al. 1996] of a random walk on the lamplighter group that is biased towards
the identity but that escapes from the identity faster than a simple random walk.
Dead ends also played a role in the proof that infinite commensurable hyperbolic
groups are bi-Lipschitz equivalent [Bogopol’skiı̆ 1997].

A property of arbitrary metric spaces similar to the nonexistence of dead ends in
a group is the geodesic extension property, which states that every finite geodesic
segment is contained in an infinite geodesic line. The geodesic extension property
appears frequently in the study of nonpositively curved spaces, and especially
in the study of CAT(0) spaces and CAT(0) groups. For example, it is shown
in [Bridson and Haefliger 1999; Hosaka 2012] that if X is a CAT(0) space with
the geodesic extension property, then any geometric action on X of a group of
the form G = G1 × G2 induces a splitting of X as X = X1 × X2 with a geo-
metric action of G1 on X1 and of G2 on X2. With further assumptions on G,
the action of G1 ×G2 on X1 × X2 is the product action. We refer the reader to
Chapter II.6 of the book [Bridson and Haefliger 1999] for a thorough discussion
of the role of infinite geodesics in the study of the geometry of nonpositively
curved spaces.

One difficulty of extending the above results involving dead ends or geodesic
extension to larger classes of groups is that quasi-isometries take geodesics to quasi-
geodesics, not geodesics. Therefore, it is possible for a group to have dead ends with
respect to one generating set but not another. Even worse, there exist groups with
unbounded dead-end depth with respect to one generating set, but no dead ends with
respect to another [Riley and Warshall 2006]. This quasi-isometry noninvariance
prevents one from using or studying dead ends by way of a geometric action of the
group in question on a space, since such an action provides only the quasi-isometric
equivalence of the group with the space.

In this paper, we address this problem in two ways. We first analyze the behavior
of the strong depth, σ(g), of an element g, introduced by Lehnert [2009]. Informally,
this is the minimum distance back towards the identity that any path in 0(G, X)
from g to an element of greater length must travel. Warshall [2011] introduced a
similar notion, the retreat depth, which is the minimum distance, d, towards the
identity that one must travel to enter an unbounded component of the complement
of the ball of radius l(g)−d . Strong depth and retreat depth are similar and seem to
behave roughly the same. Therefore, although we have chosen to phrase all of our
theorems in terms of strong depth, they can be restated in terms of retreat depth.

Even though strong depth depends on the generating set, just as for ordinary
dead ends, its ratio to length turns out to be well-behaved for all generating sets. In
Section 2 we prove the following:

Theorem 2.2. Let G be an infinite group and X a finite generating set for G. Then
for all g ∈ G \ {e}, we have σ(g)/l(g)≤ 1

2 .
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The second way in which we address the strong dependence of dead ends on the
quasi-isometry class or the generating set is to relax the question of extending a
geodesic path between two elements and instead ask whether there exist universal
constants L and A for which one can find an infinite (L , A)-quasigeodesic ray
passing through any arbitrary pair of points. If so, then we say that the space in
question has uniform quasigeodesic ray extension. In Section 3, we show that every
infinite, finitely generated group has uniform quasigeodesic ray extension:

Theorem 3.3. Let G be an infinite group and X a finite generating set for G. Then
for all g ∈ G there exists an infinite (3, 0)-quasigeodesic ray in 0(G, X) starting at
the identity of G and passing through g.

Applying the Švarc–Milnor lemma to a “nice” metric space X admitting a
geometric action of a finitely generated group G, we obtain the following corollary:

Corollary 3.8. Let (X, dX ) be a metric space in which any two points can be joined
by a geodesic segment and G a finitely generated group acting by isometries on X.
If there exists a ball B(x0, R) in X whose G-translates cover X with the property
that for every r > 0 the set {g : B(x0, r)∩ g · B(x0, r) 6= ∅} is finite, then X has
uniform quasigeodesic ray extension.

Definitions. In this section, we review the definitions of the various types of dead
ends and dead-end depths that we deal with and summarize some of their basic
properties. In what follows, all graphs are assumed to be endowed with the metric d
induced by declaring each edge to have length 1.

Definition 1.1. Let 0 be a graph. A path in 0 is a function ρ : I → 0, where I is
the intersection of a (possibly infinite) interval of the real line with Z such that for
each i, j ∈ I with |i − j | = 1, we have that ρ(i) and ρ( j) span an edge in 0.

For convenience and to aid the memory and imagination, we often express a
path as

ρ = . . . , ak, ak+1, ak+2, ak+3, . . . ,

where ai = ρ(i). We use similar notation for finite paths and paths infinite on only
one end.

Definition 1.2. If ρ = a0, a1, a2, . . . , am and τ = x0, x1, x2, . . . , xn are paths with
am = x0, then the concatenation of ρ and τ is ρτ = a1, a2, . . . , am, x1, . . . , xn .

Definition 1.3. Let ρ = a1, a2, . . . , an be a path in a graph 0. The path length
between two vertices ai and a j in ρ is defined as pρ(ai , a j )= |i − j |.

Definition 1.4. Let γ = a1, a2, . . . , an be a (possibly infinite) path in the graph 0.
We say that γ is a geodesic in 0 if for all i, j , we have pγ (ai , a j )= d(ai , a j ).
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We now specialize to the case where G is a finitely generated group, X is a fixed
generating set for G and 0(G, X) is the Cayley graph of G with respect to X . All
of these definitions are dependent on the generating set X , but if there is only one
generating set in question, we often omit it from the notation.

Definition 1.5. For g ∈G the word length of g (with respect to X ) is l(g)= lX (g)=
d(e, g) with distance measured in 0(G, X).

Definition 1.6. Let G be a group and X a finite generating set for G. Let g ∈ G
and n ∈ N. The sphere of radius n centered at g (with respect to generating set X )
is Sg(n) := {h ∈ G : dX (g, h)= n}.

Definition 1.7. Let G be a group and X a finite generating set for G. Let g ∈ G
and n ∈N. The ball of radius n centered at g (with respect to generating set X ) is
Bg(n) := {h ∈ G : dX (g, h)≤ n}.

Definition 1.8. Let G be a group and X a finite generating set for G. The dead-end
depth (with respect to X ) of an element g ∈ G with lX (g)= n is the least integer k
such that there exists a path of length k in 0(G, X) from g to Se(n+1). We denote
the dead-end depth of g as δX (g) or simply δ(g) if only one generating set is under
investigation. An element g ∈ G with δ(g) > 1 is called a dead end.

Definition 1.9. Let G be a group and X a finite generating set for G. We say that G
has bounded dead-end depth with respect to X if there exists N ∈ N such that, for
all g ∈ G, we have δ(g)≤ N . If no such N exists, we say that G has unbounded
dead-end depth with respect to X .

As previously mentioned, the dead-end elements, dead-end depth, and retreat
depth of a group are strongly dependent on the generating set. Riley and Warshall
[2006] constructed a group that has bounded dead-end depth with respect to one
finite generating set but unbounded dead-end depth with respect to another finite
generating set. Lehnert [2009] introduced the following notion of strong depth and
showed that Houghton’s group H2 has unbounded strong depth.

Definition 1.10. Let 0 be the Cayley graph of a group G with respect to the finite
generating set X and let g ∈ G with d(e, g) = n. The strong depth of g (with
respect to X ) is the minimum k such that there exists a path in 0(G, X) from g to
an element of Se(n+ 1) that does not enter Be(n− k). We denote the strong depth
of g with respect to X as σX (g) or simply σ(g) if the context is clear.

2. Strong depth

There are two “easy” inequalities satisfied by dead-end depth and strong depth. The
first inequality follows from the definitions and states that for every element g of
a finitely generated group G, we have that σ(g) ≤ 1

2δ(g). The second inequality
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Figure 1. Schematic of a geodesic passing through an element g
with σ(g) > 1

2 l(g).

states that for every element g of a finitely generated group G, we have that
δ(g)≤ 2l(g)+ 1. This is observed by taking a geodesic path from g to the identity
and concatenating a geodesic path to an element of greater length than g. To our
knowledge, these are the only two inequalities involving dead-end depth known
to hold in all finitely generated groups and for all generating sets. In this section,
we establish another property of strong depth that holds for every finite generating
set of any infinite finitely generated group. Our argument uses the fact that every
infinite finitely generated group contains an infinite geodesic line passing through
the identity. A sketch of the proof of this fact can be found in [de la Harpe 2000].
We record this as:

Lemma 2.1. Let G be an infinite group and X a finite generating set for G. Then
the Cayley graph 0(G, X) contains a bi-infinite geodesic line passing through
the identity.

Theorem 2.2. Let G be an infinite group and X a finite generating set for G. Then
for all g ∈ G \ {e}, we have σ(g)/l(g)≤ 1

2 .

Proof. Suppose towards a contradiction that there exists a nonidentity g ∈ G with
σ(g)/l(g) > 1

2 . By Lemma 2.1, select an infinite geodesic line

γ = . . . , w2, w1, e, v1, v2, . . .

in G. Since G acts on 0 by isometries, g · γ is an infinite geodesic line that passes
through g. Let a be the element in {g · wk : k ∈ N} of least length. If two or
more such elements exist, select a to be the closest such element to g along g · γ .
Similarly, we let b be the element of {g ·vk : k ∈N} of least length, again taking the
closest such element to g along g · γ if more than one least length element exists.
A schematic of this is shown in Figure 1.
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Since σ(g) > 1
2 l(g), we have

l(a) < 1
2 l(g), (1)

l(b) < 1
2 l(g). (2)

Inequalities (1) and (2), together with the facts that d(a, g) ≥ l(g)− l(a) and
d(b, g)≥ l(g)− l(b), give

d(a, g) > 1
2 l(g), (3)

d(b, g) > 1
2 l(g). (4)

Now consider the distance along g · γ between a and b. Since g · γ is a geodesic,
inequalities (3) and (4) give

pg·γ (a, g)= d(a, g) > 1
2 l(g), (5)

pg·γ (b, g)= d(b, g) > 1
2 l(g). (6)

Since the total path length between a and b is simply the sum of pg·γ (a, g) and
pg·γ (b, g), equations (5) and (6) give

d(a, b)= pg·γ (a, b)= pg·γ (a, g)+ pg·γ (b, g)

> 1
2 l(g)+ 1

2 l(g)= l(g). (7)

By the triangle inequality, the distance between a and b is less than or equal to
the sum of their lengths. So, by (1) and (2),

d(a, b)≤ l(a)+ l(b)

< 1
2 l(g)+ 1

2 l(g)= l(g). (8)

Thus (7) and (8) provide a contradiction, which proves that σ(g)/l(g)≤ 1
2 for

all g ∈ G \ {e}. �

In practice, groups containing elements with large ratios of strong depth to length
seem difficult to find. Indeed, all elements of sufficiently large length of the families
of dead ends studied in the papers referenced on page 368 have ratios of strong
depth to length that are less than 1

6 . Moreover, we were able to modify the families
or generating sets in question to get families of elements with ratios of strong depth
to length only as large as 1

4 . This leads one to consider the “limiting” ratio of strong
depth to length

�(G)= lim sup
l(g)→∞

{
σ(g)
l(g)
: g ∈ G

}
and ask if there are groups for which �(G)= 1

2 .
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Imagining what such a group would look like, one envisions a group G with
a sequence of elements (gn) of increasing length for which it is more and more
difficult to reach elements of larger length without retreating closer and closer to
halfway back to the identity. If the group had many such elements, one might expect
it to be difficult to construct a family of paths, one through each group element,
which escape from identity uniformly quickly. In the next section, we examine
a property, which we call uniform quasigeodesic ray extension, that guarantees
the existence of such a family. Unfortunately, however, we cannot establish a
connection between �(G)= 1

2 and a group not having uniform quasigeodesic ray
extension. Indeed, the best connection we are able to establish is that uniform
quasigeodesic ray extension implies that �(G) < 1, which is weaker than the
conclusion of Theorem 2.2 for finitely generated groups.

3. Uniform quasigeodesic ray extension

One difficulty in the study of dead ends and in the use of geodesic completeness
is that neither existence of dead ends nor the geodesic completeness property is
invariant under quasi-isometry. Thus, one cannot apply one of the main strategies of
geometric group theory: analyzing a group by understanding its action on a space
(or vice versa). In this section we suggest a way of dealing with this difficulty by
relaxing the condition of finding geodesic paths to that of finding quasigeodesic
paths, all of which have the same multiplicative and additive constants. We begin
by reviewing the terminology involved with quasi-isometries and quasigeodesics.

Definition 3.1. Let (X, dX ) and (Y, dY ) be metric spaces. A function f : X→ Y
is an (L , A)-quasi-isometric embedding if there exist constants L ≥ 1 and A ≥ 0
such that, for all x1, x2 ∈ X ,

1
L

dX (x1, x2)− A ≤ dY ( f (x1), f (x2))≤ LdX (x1, x2)+ A.

We refer to L as the multiplicative constant and A as the additive constant for f .
The function f is an (L , A,C)-quasi-isometry if there exists an additional constant
C ≥ 0 such that, for all y ∈ Y , there exists x ∈ X with dY (y, f (x))≤ C .

Definition 3.2. Let (X, dX ) be a metric space. A quasigeodesic is a (λ, ε)-quasi-
isometric embedding g : I→ X , where I = (a, b)∩Z for some a, b∈R∪{∞,−∞}.

We remark that if γ is a geodesic in a graph 0 in the sense of Definition 1.4 then
γ is a (1, 1)-quasigeodesic in the sense of Definition 3.2.

Theorem 3.3. Let G be an infinite group and X a finite generating set for G. Then
for all g ∈ G there exists an infinite (3, 0)-quasigeodesic ray in 0(G, X) starting at
the identity of G and passing through g.
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Figure 2. Schematic of the path in Theorem 3.3.

Proof. Let G be an infinite group and X a finite generating set for G and let
0 = 0(G, X) be the Cayley graph of G with respect to X . Let γ be an infinite
geodesic line in 0 that passes through the identity as given by Lemma 2.1. Let
g ∈ G be an arbitrary element. Since G acts on the Cayley graph by isometries,
g · γ is an infinite geodesic line passing through g. Let a be an element on g · γ
such that, for all b on g · γ , we have l(a)≤ l(b).

Let ρ be any geodesic from the identity to a and let π be the geodesic ray along
g · γ that starts at a and passes through g. Figure 2 shows a schematic illustration
of these geodesic segments. Define γ ′ : N∪ {0} → G by

γ ′(t)=
{
ρ(t) if 0≤ t ≤ l(a),
π(t − l(a)) if t > l(a).

This infinite segment is indicated by the dotted lines in Figure 2. Observe that γ ′

is infinite by construction. We break the problem into cases to prove that γ ′ is a
(3, 0)-quasigeodesic by showing that the following inequality holds for all x and y
in the domain of γ ′:

1
3 |x − y| ≤ d(γ ′(x), γ ′(y))≤ 3|x − y|. (9)

Case 1: x ≤ l(a) and y ≤ l(a). In this case, γ ′(x) and γ ′(y) are defined by ρ.
Since ρ is a geodesic, we have

1
3 |x − y| ≤ |x − y| = d(ρ(x), ρ(y))= |x − y| ≤ 3|x − y|.

Because ρ(x)= γ ′(x) and ρ(y)= γ ′(y), we have d(ρ(x), ρ(y))= d(γ ′(x), γ ′(y)).
Therefore, inequality (9) is satisfied.

Case 2: x > l(a) and y > l(a). This case is similar to the previous one.

Case 3: x ≤ l(a) and y > l(a). Note that the right inequality of (9) is trivially true
by the definitions of distance and path length because γ ′ is a path. For the left
inequality of (9), first note that l(γ ′(x))≤ l(a)≤ l(γ ′(y)). Therefore any geodesic
path between γ ′(x) and γ ′(y) must intersect Se(l(a)). Since a lies on Se(l(a)),
this implies that d(γ ′(x), a)≤ d(γ ′(x), γ ′(y)). Because the portion of ρ between
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γ ′(x) and a is a geodesic, we have

|x − (l(a))| = d(γ ′(x), a)≤ d(γ ′(x), γ ′(y)). (10)

By inequality (10) and the triangle inequality,

|l(a)− y| = d(a, γ ′(y))

≤ d(a, γ ′(x))+ d(γ ′(x), γ ′(y))≤ 2d(γ ′(x), γ ′(y)). (11)

By inequalities (10) and (11),

1
3 |x − y| = 1

3

(
|x − (l(a))| + |l(a)− y|

)
≤

1
3

(
d(γ ′(x), γ ′(y))+ 2d(γ ′(x), γ ′(y))

)
= d(γ ′(x), γ ′(y)).

Therefore, inequality (9) is satisfied in this case as well.

Therefore, for all x and y in the domain of γ ′, inequality (9) holds and γ ′ is an
infinite (3, 0)-quasigeodesic that starts at the identity and passes through g. �

We have just shown that for any element g in an infinite group G with finite
generating set X , there is a (3, 0)-quasigeodesic ray in 0(G, X) starting at the
identity and passing through g. We now generalize this property by relaxing the
additive and multiplicative constants of the quasigeodesic rays and prove that a
large class of metric spaces have this property.

Definition 3.4. A metric space (X, d) has uniform quasigeodesic ray extension if
there exist real numbers L ≥ 1 and A ≥ 0 such that for any x1, x2 ∈ X , there is an
infinite (L , A)-quasigeodesic ray that starts at x1 and passes through x2. We refer
to L as the multiplicative constant and A as the additive constant.

We note that if G is an infinite finitely generated group, then G has uniform
quasigeodesic ray extension with respect to any finite generating set. This is because,
for any g1, g2 ∈ G, Theorem 3.3 provides an infinite (3, 0)-quasigeodesic ray γ
starting at e and passing through g−1

1 g2. Translating γ by g1 provides an infinite
quasigeodesic ray starting at g1 and passing through g2. We record this as:

Corollary 3.5. Let G be an infinite group and X a finite generating set for G. Then
0(G, X) has the uniform quasigeodesic ray extension property.

We now prove that uniform quasigeodesic ray extension is invariant under quasi-
isometry.

Theorem 3.6. Let (X, dX ) be a metric space having uniform quasigeodesic ray
extension with constants L and A. If a metric space (Y, dY ) is quasi-isometric
to (X, dX ), then there exist L ′ ≥ 1 and A′ ≥ 0 such that (Y, dY ) has uniform
quasigeodesic ray extension with constants L ′ and A′.
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The proof of this theorem requires the following lemma, whose proof is a standard
exercise in quasi-isometries and quasigeodesics.

Lemma 3.7. Let ρ : N→ X be an (L , A)-quasigeodesic ray in a metric space X
and f : X → Y be an (ε, λ)-quasi-isometry from X to a metric space Y . Then
ρ ′ = f ◦ ρ : N → Y is an (L ′, A′)-quasigeodesic ray for constants L ′ and A′

depending only on L , A, ε, and λ.

We now prove Theorem 3.6.

Proof. Let (X, dX ) be a metric space with (L , A)-uniform quasigeodesic ray ex-
tension, (Y, dY ) a metric space and f : X → Y an (L ′, A′,C)-quasi-isometry.
Consider y1, y2 ∈ Y . Since f is a quasi-isometry, there exist x1, x2 ∈ X such that
dY (y1, f (x1))≤C and dY (y2, f (x2))≤C . Since X has uniform quasigeodesic ray
extension, there is an infinite (L , A)-quasigeodesic γ that starts at x1 and passes
through x2. By Lemma 3.7, γ ′ = f ◦γ is an infinite (λ, ε)-quasigeodesic that starts
at f (x1) and passes through f (x2) with λ and ε depending only on L , A, L ′, and A′.
Select l ∈ N with γ ′(l)= f (x2). We define γ ′′ : N→ Y by

γ ′′(t)=



y1 if t = 1,
γ ′(t − 1) if 2≤ t ≤ l + 1,
y2 if t = l + 2,
γ ′(l) if t = l + 3,
γ ′(t − 3) if t ≥ l + 4.

Setting the multiplicative constant λ′=λ and the additive constant ε′= ε+2C+3/λ,
one can readily verify that γ ′′ is a (λ′, ε′)-quasigeodesic. Since the constants of γ ′′

depend only on λ, ε, and C , and not the particular y1 and y2 selected, (Y, dY ) has
(λ′, ε′) uniform quasigeodesic ray extension. �

The Švarc–Milnor lemma is usually phrased in terms of a group G, not known
beforehand to be finitely generated, acting properly discontinuously by isometries
and with compact quotient on a proper geodesic metric space X , as, for example,
in [de la Harpe 2000, Theorem IV.B.23]. In this case, one concludes that G is
finitely generated and, when endowed with the word metric with respect to a finite
generating set, quasi-isometric with X . However, if one already knows G to be
finitely generated, one can drop the requirement that X be proper, replace the
condition of a cocompact action with the existence of a ball Bx0(R) of finite radius
whose G-translates cover X , and rephrase a properly discontinuous action as one
such that, for every r > 0, the set {g : Bx0(r) ∩ g · Bx0(r) 6= ∅} is finite. If the
action of G satisfies the above conditions, then G is quasi-isometric with X . In this
case, by Corollary 3.5 and Theorem 3.6, one may also conclude that X has uniform
quasigeodesic ray extension. We formalize this in our final corollary.
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Corollary 3.8. Let (X, dX ) be a metric space in which any two points can be joined
by a geodesic segment and G a finitely generated group acting by isometries on X.
If there exists a ball Bx0(R) in X whose G-translates cover X with the property that
for every r > 0 the set {g : Bx0(r)∩ g · Bx0(r) 6= ∅} is finite then X has uniform
quasigeodesic ray extension.
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