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Stephanie Perez and Robert Styer

(Communicated by Kenneth S. Berenhaut)

We examine the persistence of a number, defined as the number of iterations of
the function which multiplies the digits of a number until one reaches a single
digit number. We give numerical evidence supporting Sloane’s 1973 conjecture
that there exists a maximum persistence for every base. In particular, we give
evidence that the maximum persistence in each base 2 through 12 is 1, 3, 3, 6, 5,
8, 6, 7, 11, 13, 7, respectively.

1. Introduction

Neil J. A. Sloane [1973] considered the function that multiplies the digits of a
number and formally conjectured that the number of iterates needed to reach a fixed
point is bounded. In particular, in base 10, he conjectured that one needs at most
11 iterates to reach a single digit. The problem did arise earlier; see [Gottlieb 1969,
Problems 28–28; Beeler et al. 1972].

Definition 1. Let n =
∑r

j=0 d j B j , with 0 ≤ d j < B for each d j , be the base B
expansion of n. We define the digital product function as f (n)=

∏r
j=0 d j .

The persistence of a number n is defined as the minimum number k of iterates
f k(n)= d needed to reach a single digit d .

Theorem 1. If n ≥ B, then n > f (n). If 0≤ n < B, then f (n)= n is a fixed point.
Thus, every n has a finite persistence.

Proof. Let n =
∑r

j=0 d j B j , with 0≤ d j < B for each d j and r > 0. Since r > 0,

n ≥ dr Br > dr

r−1∏
j=0

d j = f (n).

If n < B, then clearly f (n)= n. So, by induction on n one can show that every n
has a finite persistence. �

For the remainder of this section, assume the base B equals 10.
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persistence least n with given persistence ln ln n

2 25 1.1690
3 39 1.2984
4 77 1.4688
5 679 1.8750
6 6788 2.1774
7 68889 2.4106
8 2677889 2.6947
9 26888999 2.8395

10 3778888999 3.0934
11 277777788888899 3.5043

Table 1. Smallest number with a given persistence.

Example. Let n = 23487. Then

f (23487)= 2 · 3 · 4 · 8 · 7= 1344,

f (1344)= 1 · 3 · 4 · 4= 48,

f (48)= 4 · 8= 32,

and finally, f (32) = 3 · 2 = 6. In other words, f 4(23487) = 6, so 23487 has
persistence 4.

One easily sees that n = 23114871, n = 642227 and n = 78432 also have
persistence 4 since each of these has f (n)= 1344. Thus, adding or removing the
digit 1 does not change the persistence, nor does rearranging the digits or replacing
digits that are products of smaller digits by these smaller digits.

In particular, since 288888899777777 has persistence 11, so do

1288888899777777, 11288888899777777 and 111288888899777777,

etc. Hence, there are an infinite number of integers with persistence 11.
We note some other immediate observations.
Let n = 543210. Then f (n) = 0, so it has persistence 1. More generally, any

number with a 0 digit has persistence 1.
Let n = 54321. Then f (54321)= 120, so f 2(54321)= 0. More generally, in

base 10, any number with a 5 digit, with an even digit, and with no 0 digit, has
persistence 2.

Some preliminary calculations suggest that persistence depends on the size of
the number. We list the smallest number with a given persistence (avoiding the
contentious issue of defining the persistence of single digit numbers) in Table 1.
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Figure 1. The double logarithm of the smallest number with per-
sistence p versus p seems linear.

Table 1 and Figure 1 might suggest that the persistence grows roughly as the
double logarithm of the number; using a linear fit to the log-log of the data, one
might expect to find a number of size about 3 · 1017 with persistence 12. Sloane
[1973] showed, however, that no number less than 1050 has persistence 12; this was
extended by Carmody [2001] to 10233, and Diamond [2010] extended it to 10333,
while we extend it to 101500.

This paper has grown out of the senior research paper of the first author, intrigued
by the mention of the problem in [Guy 2004, Problem F25].

2. Results

This section summarizes some results which give bounds for the persistence in
various bases. We used Maple to calculate these results.

Since a large random number almost always has a 0 digit, we can prove the
following theorem.

Theorem 2. In any base B, the density of positive integers up to N with persistence
greater than 1 approaches zero as N approaches infinity.

Proof. Assume B > 2; the next theorem deals with base B = 2.
Consider all numbers with k digits in base B, that is, all integers N with Bk−1

≤

N < Bk . There are precisely (B−1)k integers in this range without a 0 digit. Thus,
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considering all integers in the range 0 < N < Bk , there are

k∑
j=1

(B− 1) j
=

(B− 1)((B− 1)k
− 1)

B− 2

integers without a 0 digit. Thus, the density of integers with persistence greater
than 1 up to Bk is

(B− 1)((B− 1)k
− 1)

(B− 2)Bk =
B− 1
B− 2

((
1−

1
B

)k

−
1

Bk

)
< 2

(
1−

1
B

)k

.

As k approaches infinity, this last term goes to zero, proving the asymptotic density
goes to zero. �

We now prove the well-known result that every number in base B = 2 has
persistence 1 (some authors define the persistence of a single digit to be 0, so we
only consider numbers with two or more digits).

Theorem 3. In base 2, each number n > 2 has persistence 1.

Proof. Either n has all digits equal to 1, in which case f (n)= 1, or n has at least
one 0 digit, in which case f (n)= 0. �

Base 2 is the only base where we can prove Sloane’s conjecture, but we can
support his conjecture in other bases. In particular, Beeler and Gosper [1972,
Item 57] showed that any number in base 3 with persistence greater than 3 must
have more than 30739014 digits. We extend this to 109 digits.

Theorem 4. In base 3, if n < 3109
, then n has persistence at most 3, and if n < 3109

has persistence 3, then f (n)= 23 or 215.

Proof. As noted above, if n has a digit of 0, then it has persistence 1, and if n has a
digit of 1, then the persistence is unchanged if we remove all 1 digits. Thus, we
may assume n has every digit equal to 2, so f (n)= 2k for some k. One can verify
that the powers of 2 below 87 have persistence 1 except 23 and 215, which have
persistence 2. Beeler and Gosper showed that each power of 2 between 287 and
230739014 contains a 0 in its base 3 expansion, and hence has persistence 1. With
today’s faster computers, we easily extend this to all powers of 2 up to 109. �

Theorem 5. In base 4, if n < 4109
, then n has persistence at most 3. If n < 4109

has
persistence 3, then f (n)= 2a3b, where (a, b)= (0, 3), (1, 3), (1, 5), (0, 6), (0, 10),
or (1, 11).

Proof. We have already noted that we need not consider any n with a digit of 0 or
1. Further, if n in base 4 has the digit 2 at least twice, then f (n) has low-order digit
0, so f ( f (n))= 0. Thus, we may assume n has at most one digit 2 and the rest of
the digits are 3; in other words, f (n)= 2a3b with a ∈ {0, 1}. We now calculate the
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persistence of 3b and of 2 · 3b for all b ≤ 109 and note that none have persistence
greater than 1 except for the listed values. For b > 1000, we do not actually calculate
the persistence; we merely verify that there is a 0 digit in the last 64 digits. �

Theorem 6. In base 5, if n < 510000, then n has persistence at most 6. If n < 510000

has persistence 6, then f (n)= 24032.

Proof. As before, we need not consider any n with a digit of 0 or 1. If n has a digit
of 4, we may replace it by two digits 2. Thus, we may assume n has all digits equal
to 2 or 3, in other words, f (n)= 2a3b for a ≥ 0 and b ≥ 0. We now calculate the
persistence of 2a3b for a and b with da/2e + b ≤ 1000; the factor of 1/2 arises
because each digit 4 is replaced by two digits 2. For large a+ b, we merely verify
that there is a 0 digit in the last 64 digits. The calculations show that each such
2a3b has persistence less than 5 except for 24032, which has persistence 5; hence, n
has persistence at most 6 for all n < 510000. �

Theorem 7. In base 6, if n < 610000, then n has persistence at most 5. If n < 610000

has persistence 5, then f (n) = 2a5b, where (a, b) = (7, 1), (1, 4), (0, 5), (7, 2),
(4, 4), (9, 3), (7, 4), (0, 8), or (17, 2).

Proof. As before, we eliminate digits of 0 or 1, and replace digits of 4 by two
digits 2. If n has a digit of 3 and an even digit, then f ( f (n)) = 0, so we may
assume n either has all digits equal to 2 or 5, or else n has all digits equal to 3
or 5. In other words, f (n)= 2a5b or 3a5b for a ≥ 0 and b ≥ 0. We now calculate
the persistence of 2a5b for a and b with da/2e + b ≤ 10000 (the factor of 1/2
covers the case where each digit 4 is replaced by two digits 2), and also calculate
the persistence of 3a5b where a+ b ≤ 10000. The calculations show that all such
expressions have persistence less than 4 except for the listed values, which have
persistence 4; hence, n has persistence at most 5 for all n < 610000. �

Theorem 8. In base 7, if n < 71000, then n has persistence at most 8. If n < 71000

has persistence 8, then f (n) = 2a3b5c, where (a, b, c) = (9, 3, 12), (9, 17, 4),
(11, 8, 10), (10, 20, 5), (10, 8, 16), (19, 25, 1), (1, 44, 0), (27, 0, 20), (39, 24, 1),
or (11, 39, 3).

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
and now also replace digits 6 by digits 2 and 3. So, we may assume n has all digits
equal to 2, 3 or 5. In other words, f (n)= 2a3b5c for a ≥ 0, b ≥ 0, and c ≥ 0. We
now calculate the persistence of 2a3b5c; since we replaced digits of 4 by 2 · 2 and
digits of 6 by 2 · 3, we must consider a, b, c with

a+ b+ c−min(a, b)−
⌊a−min(a, b)

2

⌋
≤ 1000.
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We calculate the persistence of each such 2a3b5c to find that all such expressions
have persistence less than 6 except for the listed values, which have persistence 6;
hence, n has persistence at most 7 for all n < 71000. �

Theorem 9. In base 8, if n < 81000, then n has persistence at most 6. If n < 81000

has persistence 6, then f (n)= 335472.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
and now also replace digits 6 by digits 2 and 3. So, we may assume n has all
digits equal to 2, 3, 5 or 7. If there are three or more digits 2, then f ( f (n)) = 0.
Therefore,

f (n)= 2d3a5b7c for a ≥ 0, b ≥ 0, c ≥ 0, and d ∈ {0, 1, 2}.

We consider a, b, c with a+ b+ c ≤ 1000 to guarantee we are considering up to
1000 digits. We calculate the persistence of each such 2d3a5b7c to find that all such
expressions have persistence less than 5 except for 335472, which has persistence 5;
hence, n has persistence at most 6 for all n < 81000. �

Theorem 10. In base 9, if n < 91000, then n has persistence at most 7. If n < 91000

has persistence 7, then f (n)=2a5b7c, where (a,b, c)=(1,1,5), (3, 3, 4), (24, 1, 1),
(4, 6, 4), (11, 5, 3), or (16, 7, 1).

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, and now also replace 8 by three digits 2. So, we
may assume n has all digits equal to 2, 3, 5 or 7. If there are two or more digits 3,
then f ( f (n)) = 0, so we may assume f (n) = 2a5b7c or f (n) = 3 · 2a5b7c for
a ≥ 0, b ≥ 0, and c ≥ 0. We now calculate the persistence of 3d2a5b7c for d = 0
or 1; in order to guarantee that we consider all numbers up to 1000 digits, we must
consider a, b, c with da/3e+ b+ c ≤ 1000. We calculate the persistence of each
such 3d2a5b7c to find that all such expressions have persistence less than 6 except
for the listed values (all having d = 0), which have persistence 6; hence, n has
persistence at most 7 for all n < 91000. �

We now deal with base 10. Diamond [2010] calculated the persistence of all
numbers 2a3b7c and 3a5b7c with a ≤ 1000, b ≤ 1000 and c ≤ 1000. We verify his
calculations and extend them to cover all numbers up to 1500 digits.

Theorem 11. In base 10, if n < 101500, then n has persistence at most 11. If
n < 101500 has persistence 11, then f (n)= 2432075 or 2193476.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2, and now
also replace 9 by two digits 3. In base 10, if we have both a digit 2 and a digit 5,
then f ( f (n))= 0. So, we may assume f (n)= 2a3b7c or f (n)= 3a5b7c for a ≥ 0,
b ≥ 0, and c ≥ 0. To consider all n with less than 1500 digits, we only need to
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consider f (n)= 2a3b7c with ba/3c+bb/2c+ c ≤ 1500, as well as f (n)= 3a5b7c

with da/2e+ b+ c ≤ 1500. We find that all such expressions have persistence at
most 9, except for the listed exceptions which have persistence 10; hence, n has
persistence at most 11 for all n < 101500. �

Theorem 12. In base 11, if n <11250, then n has persistence at most 13. If n <11250

has persistence 13, then f (n)= 242313520717, 2913375776, or 23233535718.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2, and now also
replace 9 by two digits 3. We may assume f (n)= 2a3b5c7d for a, b, c, d ≥ 0. To
consider all n with less than 250 digits, we only need to consider f (n)= 2a3b5c7d

with ba/3c+bb/2c+c+d ≤ 250. We find that all such expressions have persistence
at most 11, except for the listed exceptions which have persistence 12; hence, n
has persistence at most 13 for all n < 11250. �

Theorem 13. In base 12, if n < 12250, then n has persistence at most 7. If n < 12250

has persistence 7, then f (n)= 2558119 or 355176.

Proof. As before, we eliminate digits of 0 or 1, replace digits of 4 by two digits 2,
replace digits 6 by digits 2 and 3, replace the digit 8 by three digits 2, and now
also replace 9 by two digits 3. We may assume f (n)= 2a5b7c11d or 3a5b7c11d

or 6 · 3a5b7c11d for a, b, c, d ≥ 0. To consider all n with less than 250 digits, we
only need to consider f (n) = 2a5b7c11d with ba/3c + b+ c+ d ≤ 250, and for
f (n)= 3a5b7c11d or 6 ·3a5b7c11d , we consider ba/2c+b+ c+d ≤ 250. We find
that all such expressions have persistence at most 5, except for the listed exceptions
which have persistence 6; hence, n has persistence at most 7 for all n < 12250. �

3. Conclusion

These calculations support Sloane’s conjecture that the persistence is bounded for
a given base. This makes sense since when a product of powers like 2a3b7c has
many digits, one expects to find a 0 digit among them. For instance, in base 10, we
saw that 2432075

= 937638166841712 has persistence 10, but

2332075
= 468819083420856, 2431975

= 312546055613904,

2432074
= 133948309548816

all have a digit of 0. In general, almost all such powers will have a persistence of 1.
We used simple Maple programs, so the calculations for each theorem above

took several hours to a few days to run on a laptop.
The first author tried to develop a method to work backwards, in order to answer

questions such as which numbers iterate to the digit 1. We can devise many such
interesting questions. Paul Erdős [Weisstein] asked what would happen if one
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multiplies only the nonzero digits (i.e., ignore the zero digits). Presumably this
Erdős multiplicative persistence is no longer bounded, and the question of which
numbers iterate to the digit 1 becomes more interesting. See [Wagstaff 1981] for
another fascinating variation. We hope this paper inspires others to pursue the many
fascinating problems related to multiplicative persistence.
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