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Abstract: In this article we study the asymptotic predictive optimality of
a model selection criterion based on the cross-validatory predictive density,
already available in the literature. For a dependent variable and associated
explanatory variables, we consider a class of linear models as approximations
to the true regression function. One selects a model among these using the
criterion under study and predicts a future replicate of the dependent variable
by an optimal predictor under the chosen model. We show that for squared
error prediction loss, this scheme of prediction performs asymptotically as well
as an oracle, where the oracle here refers to a model selection rule which
minimizes this loss if the true regression were known.
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1. Introduction

The ultimate goal of modeling in any scientific or sociological investigation is to
discover the underlying regular pattern or phenomenon, if any, which controls the
data generating mechanism. Although it is almost impossible to imagine that a
single model or combinations of a handful will fully capture the intricate functioning
of nature or sociological issues, one can always hope to be able to come close. Given
a choice of several models and a set of data, a popular method is to choose the model
which explains or fits the given data best (in some well-defined sense). However,
it is of prime importance that any model that is chosen should be able to predict
future observations from the same experiment or process reasonably well and that
it does not merely fit the observed data. This is the purpose of predictive model
selection.
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One of the most prominent approaches to predictive model selection is cross-
validation (see [17]) and variants thereof. As the name cross-validation suggests,
parameters of the population are estimated under each model by using a part of
the data (the “estimation set”), while the rest of the data (the “validation set”)
are predicted using the estimates based on the first group. This is done repeatedly
by using “validation sets” comprising different parts of the data, e.g., the whole
data could simply be divided into 10 disjoint parts, each part consisting of an equal
number of observations and predicted using the rest. If, for a particular model,
such predictions match best with the actually observed values, i.e., if the average
prediction error is the smallest for it among all the candidate models, it is selected.
Optimality properties of classical cross-validatory techniques have been studied,
e.g., in [12] and [16].

In the Bayesian literature, several approaches to model selection have been stud-
ied with the predictive aspect in mind; see, e.g., [1, 4, 5, 8–10, 13, 14]. The purpose
of this paper is to study the predictive properties of a model selection criterion (see
(1.2) below) based on the average of the (log) cross-validatory predictive densities
(see (1.1) below) and already available in the literature. Different types of averages
(e.g. arithmetic mean, (log) geometric mean) of cross-validatory predictive densities
have been studied by several authors ([2], [3], [5], [9] and [14]). Chakrabarti and
Ghosh [5] considered an average with respect to disjoint validation sets and studied
what should be the optimal proportion of the sample kept for validation in large
sample sizes, for the selection of a model closest to the true model (in terms of
Kullback-Leibler divergence), and for the selection of the more parsimonious model
if two models are equidistant from the truth. Using squared error prediction loss,
we show that model selection using criterion (1.2) has an optimality property in
predicting a future replicate of the dependent variable (for fixed values of the in-
dependent variables), when the true regression is being approximated by a class
of candidate linear models. The proofs of the optimality results partly use some
general techniques of Li [12] which were later adopted in [16].

In the Bayesian setup, the ordinary predictive density under a model is defined as
the integral of the likelihood function of the observed data with respect to the prior
distribution of the parameters under the model. Between two competing models,
the one having a larger predictive density for the given data seems to be the more
appropriate description of the unknown data generating process. In non-subjective
Bayesian analysis, it is common to use noninformative priors for the parameters
which are typically improper and defined only up to unknown multiplicative con-
stants. In such situations, use of the ordinary predictive density as a model selection
criterion will be inappropriate. To get rid of this difficulty, one updates the improper
prior by getting a proper posterior based on part of the data (called the training
sample) and then integrates the likelihood function of the rest of the data with
respect to this posterior, thus giving the cross-validatory predictive density. This
is like getting the predictive distribution of part of the data using information ob-
tained from the rest of it. This method of obtaining a cross-validatory predictive
density can also be used when one puts a proper prior on the parameters of the
model. The cross-validatory predictive density can then be used to get pseudo-Bayes
Factors, after appropriate averaging with respect to the different possible choices of
the training sample. This line of thought owes its origin to Geisser [7] and Geisser
and Eddy [8] and came to prominence through what are referred to as partial Bayes
Factors or Intrinsic Bayes Factors ([2], [3], [9], [11] and [15]).

In the next few paragraphs, we describe our setup and the model selection cri-
terion we study. We follow the notations of Shao [16].
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Let yn = (y1, . . . , yn)′ be a vector of observations on the dependent (response)
variable and let Xn = (x′

1, . . . ,x
′
n)′ be an n × pn matrix of explanatory variables

(which are potentially responsible for the variability in the y’s), with xi associated
with yi. Let μn denote E(yn|Xn), the (unknown) average value of the response
variable given the values of the explanatory variables. We further assume that given
Xn, en = yn − μn has mean vector 0 and the components of ei are independent
with common variance σ2, which could be known or unknown. We are interested
in capturing the functional relationship, if any, between μn and Xn which will be
most suitable for predictive purposes. We restrict our search within a class of normal
linear models. Our model space, denoted An, is indexed by α, where each α consists
of a subset of size pn(α) (1 ≤ pn(α) ≤ pn) of {1, 2, . . . , pn} and the true mean μn

is assumed to be linearly related to the corresponding explanatory variables. More
specifically, under model α ∈ An, yn ∼ N(μn(α) = Xn(α)βn(α), σ2In) where
Xn(α) is the submatrix of Xn consisting of the pn(α) columns specified by α and
βn(α) ∈ �pn(α). A Bayesian puts a prior on the unknown parameters within each
model. We consider standard non-subjective priors (see e.g., [1]) given by

πα(βn(α)) ∝ 1 if σ2 is known, and

πα(βn(α), σ2) ∝ 1
σ2

if σ2 is unknown.

Consider, for example, the case with σ2 unknown. Let πα((βn(α), σ2)|yk+1, . . . , yn)
denote the posterior distribution of the parameters under the model given the obser-
vations (yk+1, . . . , yn). The cross-validatory predictive density of (y1, . . . , yk) given
(yk+1, . . . , yn) under model α, denoted by the expression fα(y1, . . . , yk|yk+1, . . . , yn),
is given by

(1.1)
∫

fβn(α),σ2(y1, . . . , yk)πα((βn(α), σ2)|yk+1, . . . , yn) dβn(α) dσ2,

where fβn(α),σ2(y1, . . . , yk) denotes the density of the k dimensional normal vector,
with mean vector given by the first k components of μn(α) and variance-covariance
matrix σ2Ik, evaluated at y1, . . . , yk. Similarly, the predictive density of any subset
(yt1 , . . . , ytk

) of y, given the rest of the components of y under this model can be
calculated, where (t1, . . . , tk) denotes a subset of (1, . . . , n). Since a good criterion
should not depend too much on the choice of the training sample, we consider
the geometric mean of the cross-validatory predictive densities thus obtained by
varying the choice of the training sample. The ratio of such geometric means for
two models is precisely the Geometric Intrinsic Bayes Factor ([2], [3]). For model
α, the criterion which we intend to study equals the logarithm of this geometric
mean. Thus if we consider a total of r training samples, this logarithm is given by

(1.2) CV(α) =
1
r

r∑
i=1

log fα(yt1i , . . . , ytki
|{yt : t /∈ (t1i, . . . , tki)}),

where (yt1i , . . . , ytki
) is the set of y observations not included in the i-th training

sample. One selects the model α̂n ∈ An which maximizes CV(α).
Once a model is thus selected, we use the mean of the predictive distribu-

tion of ynew
n , given the observed yn under the selected model, as the predictor

for a future replicate ynew
n of the response variable for the same value Xn of

the explanatory variables. An easy calculation shows that this turns out to be
the least squares estimate X(α̂n)β̂n(α̂n) where β̂n(α) = Pn(α)yn and Pn(α) =
Xn(α)(Xn(α)′Xn(α))−1Xn(α) is the usual projection matrix.
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Our goal is to evaluate this prediction scheme under the true regression us-
ing squared error prediction loss. Under the true μn, the future replicate ynew

n

will be independent of the original observations yn. The quality of any predic-
tor δ(yn) of ynew

n based on yn can be evaluated by the average prediction er-
ror Eμn

( 1
n ||ynew

n − δ(yn)||2), where Eμn
denotes expectation with respect to the

joint distribution of (ynew
n ,yn) when μn is the true unknown mean. This expec-

tation will be small if, for any fixed yn, Eμn
( 1

n ||ynew
n − δ(yn)||2|yn) is also small.

As observed before, the predictor δ(yn) we want to evaluate is the same as the
least squares predictive estimate of ynew

n under the chosen model α̂n. Now note
that for any given fixed model α, the least squares predictive estimate is given by
δ(yn) = δ(yn)(α) = μ̂n(α) = Xn(α)β̂n(α). A simple algebra shows that the above
conditional expectation is, up to a constant which does not depend on α, equal to

(1.3) Ln(α) =
||μn − μ̂n(α)||2

n
.

Hence the conditional expectation will be minimized for a certain α if Ln(α) is
minimized. If we knew the true μn, we could find the model which minimizes this
Ln(α) for each yn. We shall call this the oracle model, denoted αL

n . The best any
procedure can achieve is to do as well as the oracle in the limit in terms of the loss
as the sample size grows to infinity.

We show in the following sections of this article that under certain conditions,
minimizing CV(α) with respect to α is asymptotically equivalent to minimizing
Ln(α). Using this fact it is shown that the ratio of Ln(αL

n) to Ln(α̂n) tends to 1
in probability, whereby establishing the optimum asymptotic behavior of criterion
(1.2) in the problem of prediction of a set of future observations.

In Sections 2 and 3 we consider the case where the true model is not in the model
space – the proposed models are only approximations to the truth. In Section 2 we
consider the case when σ2 is known. We show that under certain assumptions, the
model selection procedure under study performs as well as the oracle asymptotically
in the sense that the ratio of their losses tends to one in probability. In Section 3,
we consider the more realistic situation when σ2 is unknown. Under appropriate
conditions it is shown that this procedure also achieves the oracle asymptotically in
this case. As a validation of this method, we next consider in Section 4 the question
of whether, under the assumption that the true model is indeed included in the
model space, we do equally well in terms of hitting the oracle loss asymptotically.
It is shown that this model selection procedure chooses the correct model with
smallest dimension with probability tending to one in addition to being asymptot-
ically optimal in terms of hitting the oracle. Some concluding remarks are made in
Section 5. Technical proofs of most of the results are given in the Appendix.

For notational simplicity we write y, μ, e, X(α), β(α) and P (α) in place of yn,
μn, en, Xn(α), βn(α) and Pn(α) respectively, dropping the suffix n for the rest of
the paper.

2. Basic results – case with σ2 known

In this section we take the “model false” point of view that the models are only
approximations to the truth but none of them is actually true. We show that under
certain conditions, the model selection procedure under study is asymptotically
optimal in the sense of performing as well as the oracle defined above.
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As described in the introduction, the model selection criterion under considera-
tion is an average of the cross-validatory predictive density

fα(y1, . . . , yk|yk+1, . . . , yn)

under model α, over suitable choices of the “training sample” {yk+1, . . . , yn}. We
do not recommend here any particular choice of the training samples; our results
hold as long as each yi, 1 ≤ i ≤ n, appears in the same number of training samples
chosen (which will be assumed throughout the paper).

Let yi, i = 1, . . . , r be the r training samples (each of size n−k). For each yi, let
μi and ei be the subvector of μ and e corresponding to the labels of the components
of yi and Xi(α) be the submatrix of X(α) consisting of the corresponding rows of
it. Also, let β̂i(α) = [X ′

i(α)Xi(α)]−1X ′
i(α)yi, Pi(α) = Xi(α)[X ′

i(α)Xi(α)]−1X ′
i(α),

i = 1, . . . , r. It will be assumed throughout that (n − k) → ∞ and X ′
i(α)Xi(α) is

nonsingular for each i and α. With the standard non-subjective prior π(β(α)) =
constant, we have a closed form expression for the cross-validatory predictive den-
sity. An alternative equivalent criterion, which is to be minimized with respect to
α, is

Γ(α) =
1
n

(y − X(α)β̂(α))′(y − X(α)β̂(α))

− 1
r

r∑
i=1

1
n

(yi − Xi(α)β̂i(α))′(yi − Xi(α)β̂i(α))

+
1
r

r∑
i=1

σ2

n
log

(
|X ′(α)X(α)|
|X ′

i(α)Xi(α)|

)
.(2.1)

Note that Γ(α) is equal to the negative of the criterion (1.2) up to an additive
constant. We will prove that minimization of Γ(α) is equivalent to minimization
of the loss Ln(α) (defined in (1.3)) in an appropriate asymptotic sense and this
will lead to the desired asymptotic (predictive) optimality of the criterion under
consideration.

Note that the loss Ln(α) defined in (1.3) can be written as

nLn(α) = nΔn(α) + e′P (α)e

where nΔn(α) = μ′(I − P (α))μ and let

nRn(α) = E(nLn(α)) = nΔn(α) + σ2pn(α).

One of the key assumptions under which we prove our results is the following
condition ([12], [16]):

(2.2)
∑

α∈An

1
[nRn(α)]m

→ 0

for some positive integer m for which E(e4m
1 ) < ∞. We also assume

(2.3)
pnλn

min
α∈An

nRn(α)
→ 0,

where λn = log(n/(n − k)).
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For certain remarks justifying these assumptions, see [12] and [16]. In particular,
it is argued in these papers using several concrete examples, that condition (2.2)
is a natural one when the dimension pn of the largest model grows with sample
size. Also, if pn remains bounded, nRn(α) is expected to go to ∞ for all α as
the sample size increases, if the candidate models are separated from the truth.
That min

α
nRn(α) → ∞ is assumption A.3′ of Li [12] and as remarked therein, it

is a quite reasonable assumption if pn grows with n. Condition (2.3) requires that
min

α
nRn(α) → ∞ at a suitable rate. Under condition (3.3) below ([16], condition

(2.5)), (2.3) holds if (pnλn)/n → 0.
It is important to note that we also need to assume (n − k)/n → 0 to prove our

results (see e.g. (6.10)). This addresses an important question about the required
size of the training sample. We, however, do not claim that it is a necessary condition
for asymptotic predictive optimality.

We now consider the criterion Γ(α) as defined in (2.1). Since X(α)β̂(α) = P (α)y,

1
n

(y − X(α)β̂(α))′(y − X(α)β̂(α))

=
1
n

y′(I − P (α))y

=
1
n

e′e + Ln(α) − 2
n

e′P (α)e +
2
n

e′(I − P (α))μ.(2.4)

Similarly,

1
r

r∑
i=1

1
n

(yi − Xi(α)β̂i(α))′(yi − Xi(α)β̂i(α))

=
n − k

n2
e′e +

1
nr

r∑
i=1

μ′
i(I − Pi(α))μi −

1
nr

r∑
i=1

e′
iPi(α)ei

+
2
nr

r∑
i=1

e′
i(I − Pi(α))μi.(2.5)

We first state two auxiliary results.

Lemma 2.1. Under conditions (2.2) and (2.3),

1
n

(y − X(α)β̂(α))′(y − X(α)β̂(α)) =
1
n

e′e + Ln(α) + op(Ln(α))

uniformly in α ∈ An.

By saying Zn(α) = op(Ln(α)) uniformly in α, we mean max
α

|Zn(α)|/Ln(α)
p→ 0.

Lemma 2.2. Suppose that conditions (2.2) and (2.3) hold and (n − k)/n → 0.
Then

1
r

r∑
i=1

1
n

(yi − Xi(α)β̂i(α))′(yi − Xi(α)β̂i(α)) =
n − k

n2
e′e + op(Ln(α)),

uniformly in α ∈ An.
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Proofs of Lemma 2.1 and Lemma 2.2 are given in the Appendix.
In order to prove the main result of this section we need to assume another

condition which is given below.
Let

(2.6) ain(α) = log
{

(n − k)pn(α)|X ′(α)X(α)|
npn(α)|X ′

i(α)Xi(α)|

}
.

We assume

(2.7) max
α∈An

1
r

r∑
i=1

ain(α)

nRn(α)
→ 0.

Remark 2.1. Let x′
1(α), . . . ,x′

n(α) be the n rows of X(α). If these n rows are
“similar”, e.g., if they can be thought of as (independent) realizations of a random
vector x and pn is small compared to both n − k and n, then∣∣∣∣X ′(α)X(α)

n

∣∣∣∣ =
∣∣∣∣ 1
n

n∑
j=1

xj(α)x′
j(α)

∣∣∣∣ ≈ |E(xx′)|

and similarly
∣∣∣∣X ′

i(α)Xi(α)
n − k

∣∣∣∣ ≈ |E(xx′)|.

In this case, it follows that ain(α) ≈ 0. In such a situation, assumption (2.7) seems
to be quite reasonable.

Now note that (2.3) and (2.7) will imply that the third term in the right hand
side of (2.1) is also of the order op(Ln(α)) uniformly in α ∈ An. Thus

Γ(α) = constant + Ln(α) + op(Ln(α)) uniformly in α ∈ An

which implies minimization of Γ(α) is essentially equivalent to minimization of
Ln(α) in an appropriate asymptotic sense and we have the following result.

Theorem 2.1. Suppose that conditions (2.2), (2.3) and (2.7) hold and (n−k)/n →
0. Then we have the following results.

(a) Γ(α) = k
n2 e′e + Ln(α) + op(Ln(α)) uniformly in α ∈ An.

(b) The model selection rule under study is asymptotically optimal in the sense
that

Ln(α̂n)
min

α∈An

Ln(α)
p→ 1

where α̂n is as defined in Section 1.

Proof of Theorem 2.1 is given in the Appendix.

3. Case with σ2 unknown

We now consider the more realistic situation when the variance σ2 is unknown.
The standard non-subjective prior in this case is π(β(α), σ2) ∝ 1

σ2 under model
α. Interestingly, the results in this case follow from the basic results obtained in
Section 2. We consider here the (“model false”) setup and assumptions of Section
2.
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Let yi, i = 1, . . . , r be the r training samples chosen. The cross-validatory pre-
dictive density under model α for a training sample yi is given by

|X ′
i(α)Xi(α)| 12

|X ′(α)X(α)| 12
× [(y − X(α)β̂(α))′(y − X(α)β̂(α))]−

n
2

[(yi − Xi(α)β̂i(α))′(yi − Xi(α)β̂i(α))]−
n−k

2

up to a multiplicative constant.
Our criterion (to be minimized with respect to α), which is an average over the

r training samples, is given by

(3.1) Γ(α) = log[S(α)] − n − k

nr

r∑
i=1

log[Si(α)] +
1
nr

r∑
i=1

log
|X ′(α)X(α)|
|X ′

i(α)Xi(α)|

where S(α) = (y−X(α)β̂(α))′(y−X(α)β̂(α)) and Si(α) = (yi−Xi(α)β̂i(α))′(yi−
Xi(α)β̂i(α)).

Note that Γ(α) = (k/n) log(nσ2) + Γ1(α) where

(3.2) Γ1(α) = log
[
S(α)
nσ2

]
− n − k

nr

r∑
i=1

log
[
Si(α)
nσ2

]
+

1
nr

r∑
i=1

ain(α) +
1
n

pn(α)λn,

ain(α) is as defined in (2.6) and λn = log(n/(n − k)). Therefore, minimizing Γ(α)
(with respect to α) is equivalent to minimizing Γ1(α) for all σ. Let

un(α) = log
[

e′e

nσ2
+

1
σ2

Ln(α)
]

.

In order to prove the asymptotic optimality of this method, we first note in Lemma
3.1 below that Γ1(α) is asymptotically equivalent to un(α) and this in turn implies
the desired conclusion as stated in Theorem 3.1. We prove these results by invoking
certain conditions which we describe below.

We first make the following assumption (see [16], condition (2.5)):

(3.3) lim inf
n→∞

min
α

Δn(α) > 0

where Δn(α) is as defined in Section 2. This may be thought of as an identifiability
condition on the models in the model space, as appears in the discussion of Mervyn
Stone on [16]. We further assume that

(3.4)
n − k

n
log n → 0,

pnλn

n
→ 0 and

1
n

n∑
i=1

μ2
i is bounded,

(3.5)
1
nr

r∑
i=1

ain(α) → 0,

and

(3.6)
r∑

i=1

log(Si) > 0

with probability tending to 1, where Si is equal to Si(α) with α as the full model,
i.e., α = {1, . . . , pn}. One can give sufficient conditions for (3.6) based on the
relative magnitude of r and (n − k) as n → ∞, to the effect that r is not too large
compared with n−k which is the case for most practically implementable schemes.
We, however, do not record the details here. The final results of this section are
now stated below.
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Lemma 3.1. Under conditions (3.3)–(3.6),

(3.7) Γ1(α) = un(α) + op(un(α)) uniformly in α.

Theorem 3.1. Under conditions (3.3)–(3.6),

(3.8)
Ln(α̂n)
Ln(αL

n)
p→ 1.

Both Lemma 3.1 and Theorem 3.1 are proved in the Appendix.

4. The “model true” case and consistency

We now show that if some model in the model space is true, the model selection
procedure under study chooses the correct model of the smallest dimension in ad-
dition to being asymptotically optimal. Thus this procedure not only captures the
truth but at the same time is as parsimonious as possible. Although the assumption
of a true model may not seem to be very realistic, our result in this section provides
a validation of the method. We, however, consider only the simpler case when σ2

is known.
As in [16], let Ac

n ⊂ An denote all the proposed models that are actually correct.
Thus for α ∈ Ac

n, μ = X(α)β(α) for some β(α) ∈ �pn(α). In Section 2 we assumed
that Ac

n is empty. It is important to note that all the results of Section 2 with An

replaced by An −Ac
n hold under the corresponding assumptions with An replaced

by An −Ac
n. In particular, if

(4.1)
∑

α∈An−Ac
n

1
[nRn(α)]m

→ 0

for some positive integer m for which E(e4m
1 ) < ∞ and

(4.2)
pnλn

min
α∈An−Ac

n

nRn(α)
→ 0,

with λn = log(n/(n − k)), then

(4.3) Γ(α) =
k

n2
e′e + Ln(α) + op(Ln(α))

uniformly in α ∈ An −Ac
n.

For α ∈ Ac
n, (I − P (α))μ = 0 and (I − Pi(α))μi = 0 ∀ i. Therefore, from (2.1),

(2.4) and (2.5) we have for α ∈ Ac
n

(4.4) Γ(α) =
k

n2
e′e− 1

n
e′P (α)e+

1
nr

r∑
i=1

e′
iPi(α)ei +

σ2

nr

r∑
i=1

log
(
|X ′(α)X(α)|
|X ′

i(α)Xi(α)|

)
.

Also Ln(α) = 1
ne′P (α)e for α ∈ Ac

n.
We now assume that

(4.5) lim sup
n→∞

∑
α∈Ac

n

1
[pn(α)]m

< ∞.
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for some positive integer m such that E(e4m
1 ) < ∞ (condition (3.10) of Shao [16]),

and

(4.6) max
α∈Ac

n

1
r

r∑
i=1

ain(α)

pn(α)λn
→ 0

with λn = log( n
n−k ) and ain(α) as defined in (2.6). See Remark 2.1 in this context.

Let αc
n be the model α in Ac

n with smallest dimension. Using the above, we now
have
Proposition 4.1. Under conditions (4.1), (4.2), (4.5) and (4.6)

(4.7) Γ(α) =
k

n2
e′e +

1
n

λnσ2pn(α) + op(
1
n

λnσ2pn(α))

uniformly in α ∈ Ac
n, and

(4.8) Γ(αc
n) =

k

n2
e′e + op(Ln(α)) uniformly in α ∈ An −Ac

n.

Proof of Proposition 4.1 is given in the Appendix.
Keeping in mind the above facts, we now proceed towards proving that this

model selection rule chooses the most parsimonious correct model as claimed in
Theorem 4.1 below. Towards this we first observe that (4.3) and (4.8) imply

max
α∈An−Ac

n

(Γ(αc
n) − k

n2
e′e)/(Γ(α) − k

n2
e′e) < 1

with probability tending to 1. It then follows that

(4.9) P [Γ(αc
n) ≤ Γ(α) ∀α ∈ An −Ac

n] → 1.

We now try to find some conditions under which

(4.10) P [Γ(αc
n) ≤ Γ(α) ∀α ∈ Ac

n] → 1.

Let n[Γ(α) − Γ(αc
n)] = Zn(α). It is enough to show that

(4.11) P [Zn(α) ≥ 0 ∀α ∈ Ac
n] → 1.

Now,

P [Zn(α) < 0 for some α ∈ Ac
n]

≤
∑

α∈Ac
n

P [Zn(α) < 0]

≤
∑

α∈Ac
n

P [|Zn(α) − E(Zn(α))| > E(Zn(α))]

≤
∑

α∈Ac
n

E|Zn(α) − E(Zn(α))|2m

[E(Zn(α))]2m
.(4.12)

From (4.4)

(4.13) Zn(α) − E(Zn(α)) =
1
r

r∑
i=1

e′
i[Pi(α) − Pi(αc

n)]ei − e′[P (α) − P (αc
n)]e
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and E(Zn(α)) can be written as

1
σ2

E(Zn(α)) = [pn(α) − pn(αc
n)]λn +

1
r

r∑
i=1

[ain(α) − ain(αc
n)]

where ain(α) is as defined in (2.6). If we assume

(4.14)
1
r

r∑
i=1

[ain(α) − ain(αc
n)] = op([pn(α) − pn(αc

n)]λn)

uniformly in α ∈ Ac
n, then

(4.15)
1
σ2

E(Zn(α)) = [pn(α) − pn(αc
n)]λn + op([pn(α) − pn(αc

n)]λn)

uniformly in α ∈ Ac
n. Noting that P (α)−P (αc

n) and Pi(α)−Pi(αc
n) are projection

matrices and the first term on the right hand side of (4.13) can be expressed as
e′Me for some matrix M , and using Theorem 2 of Whittle [18] or inequality (6.2)
of the Appendix we have

E|Zn(α) − E(Zn(α))|2m ≤ constant[pn(α) − pn(αc
n)]m.

It then follows from (4.12) and (4.15) that (4.11) holds if

(4.16)
∑

α∈Ac
n

1
λ2m

n [pn(α) − pn(αc
n)]m

→ 0.

Thus we finally have the following.

Theorem 4.1. Under conditions (4.1), (4.2), (4.5), (4.6), (4.14) and (4.16),

(4.17) P [α̂n = αc
n] → 1.

It is proved in the Appendix that under (4.1) and (4.2)

(4.18) max
α∈An−Ac

n

Ln(αc
n)

Ln(α)
p→ 0.

Since Ln(αc
n) ≤ Ln(α) ∀α ∈ Ac

n, Theorem 4.1 and (4.18) imply the following.

Theorem 4.2. Under the conditions of Theorem 4.1, one has

(4.19) Ln(α̂n)/Ln(αL
n)

p→ 1.

5. Concluding remarks

In this article we have studied predictive optimality of a cross-validatory Bayesian
approach to model selection in the context of selecting from among a set of linear
models. It has been shown that this method predicts as well as the oracle as the
sample size grows. In addition, it has been shown that in case the space of candidate
models contains at least one correct model, this method chooses the correct model
with the smallest dimension with probability tending to one as sample size grows.
Thus the method has two important facets – one of an optimal predictor and the
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other of a selection criterion which does not unnecessarily choose a complex model
when simpler ones are apt.

Needless to say, this article has not addressed some interesting related issues.
First, it will be interesting to see how this method works when it is applied in the
setup of generalized linear models, through theoretical investigation and simula-
tion. Another focus of recent research is the case when the number of potential
parameters in the models is very large, e.g., when it is of the same order as the
number of observations. Asymptotic optimality studies in such setup, even for the
normal linear models will be a really challenging task. Also, we have not touched
upon the computational aspect of this method, which becomes important if the
number of potential regressors and number of models in the model space get large.
We, however, emphasize that one rarely considers the set of all 2p possible mod-
els if p regressors are available. For example, one can use expert knowledge about
the problem under study and start with a pruned list of models or one can take
a nested sequence of models (thereby restricting the total number of models to
at most p). Li ([12], Example 1) considered a situation where the p regressors are
arranged in decreasing order of importance. He then considered p models, the α-th
model consisting of the first α regressors in this ordered arrangement. See in this
context Examples 1 and 2 of [16] where the number of models under consideration
is fixed although the number of parameters may grow with sample size. Last but
not the least, as we commented before, the requirement that k/n → 1 is only a
sufficient condition; a careful study of the necessity of this condition is in order. In
some examples, we have observed that k/n → c for any c ∈ (0, 1) is also sufficient to
achieve good optimality results similar to ones we have obtained in this paper. Some
theoretical investigations and simulation studies will hopefully prove conclusive to
find the optimal k. It is worth mentioning that in a related problem Chakrabarti
and Ghosh [5] made interesting observations regarding this issue which can be a
starting point for such investigation.

Appendix

We present in this section proofs of some of the results of the earlier sections. We
will need bounds for the moments of linear and quadratic forms in e. Let A = (aij)
be a non-random n×n matrix and b be a non-random n-vector. Then by Theorem 2
of Whittle [18],

E(|e′b|2m) ≤ C1(||b||2)m, and(6.1)

E|e′Ae − E(e′Ae)|2m ≤ C2(
∑

i

∑
j

a2
ij)

m(6.2)

for some constants C1, C2 > 0 and for positive integer m for which E(e4m
1 ) < ∞.

Below max
α

will mean maximum over α ∈ An.

Proof of Lemma 2.1. As shown in Li ([12], p. 970), using Theorem 2 of Whittle [18]
or inequalities (6.1) and (6.2) stated above, and condition (2.2), we have

max
α

|e′P (α)e − σ2pn(α)|
nRn(α)

p→ 0, and(6.3)

max
α

|e′(I − P (α))μ|
nRn(α)

p→ 0.(6.4)
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Also, from (6.3)

(6.5) max
α

|Ln(α)
Rn(α)

− 1| = max
α

|e′P (α)e − σ2pn(α)|
nRn(α)

p→ 0.

Lemma 2.1 now follows from (2.3), (2.4), (6.3), (6.4) and (6.5).

Proof of Lemma 2.2. Let

T1 =
1
r

r∑
i=1

μ′
i(I − Pi(α))μi, T2 =

1
r

r∑
i=1

e′
iPi(α)ei and T3 =

1
r

r∑
i=1

e′
i(I − Pi(α))μi.

Then, in view of (2.5), the left hand side of the equality claimed in Lemma 2.2 can
be written as

n − k

n2
e′e +

1
n

(T1 − T2 + 2T3).

We shall prove that

(6.6) Tj/n = op(Ln(α)) uniformly in α

for j = 1, 2, 3.
We fix a training sample y1 = (y1, y2, . . . , yn−k)′. Let

X(α) =
(

X1

X1c

)
and I − P (α) =

(
A
B

)

where X1 and X1c are the submatrices consisting of the first n − k rows and the
last k rows of X, respectively, and A and B are analogous submatrices of I −P (α).
Then

μ′(I − P (α))μ = μ′B′Bμ + μ′A′Aμ, and(6.7)
μ′(I − P (α))μ − μ′

1(I − P1(α))μ1 = μ′B′(I − Pc)−1Bμ,(6.8)

where Pc = X1c(X ′(α)X(α))−1X ′
1c (see, e.g., Result (5.4) of Chatterjee and Hadi

[6], p. 189). One can now check that (I − Pc)−1 = I + X1c(X ′
1X1)−1X ′

1c and

(6.9) μ′B′(I − Pc)−1Bμ − μ′B′Bμ = μ′B′X1c(X ′
1X1)−1X ′

1cBμ ≥ 0

as (X ′
1X1)−1 is positive definite. From (6.7)–(6.9)

μ′
1(I − P1(α))μ1

nLn(α)
≤ μ′

1(I − P1(α))μ1

μ′(I − P (α))μ
≤ ||Aμ||2

||Aμ||2 + ||Bμ||2 .

We now consider average over the r training samples. Since each yi (1 ≤ i ≤ n)
appears in the same number of training samples, we have

(6.10)
T1

nLn(α)
≤

1
r

r∑
i=1

μ′
i(I − Pi(α))μi

μ′(I − P (α))μ
≤ n − k

n

which converges to zero.
To prove (6.6) for j = 2 we note that T2 can be expressed as e′M(α)e for some

matrix M(α) = (mij), which is a sum of r matrices corresponding to the r choices
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of the n − k indices from {1, 2, . . . , n} (n − k rows of X(α)). For example, for the
training sample y1 = (y1, . . . , yn−k)′, e′

1P1(α)e1 may be written as e′M1(α)e where

M1(α) =
(

P1(α) 0
0 0

)
, thus M(α) = (1/r)

r∑
i=1

Mi(α).

As Pi(α)’s are all idempotent matrices, one can show that
∑
i

∑
j

m2
ij ≤ pn(α). Then

proceeding as in the proof of (6.3) given in Li ([12], p. 970) one can prove the result
using (6.2), (2.2), (2.3) and (6.5). Indeed, by (6.2),

P

[
max

α

|e′M(α)e − σ2pn(α)|
nRn(α)

> ε

]

≤ C
∑
α

[pn(α)]m

ε2m[nRn(α)]2m

for some constant C > 0. The result follows from (2.2), (2.3) and (6.5).
The proof of (6.6) for j = 3 is similar. We note that T3 = e′b with b =

(1/r)
r∑

i=1

(I − Pi(α))μi and ||b||2 ≤ (1/r)
r∑

i=1

μ′
i(I − Pi(α))μi. By (6.1) and (6.10)

P

[
max

α

|e′b|
nRn(α)

> ε

]

≤ C

(
n − k

n

)m ∑
α

1
[nRn(α)]m

for some constant C > 0. The result follows from (2.2) and (6.5). Thus (6.6) is
proved and hence the lemma.

Remark 6.1. Indeed, to prove Lemma 2.1 and Lemma 2.2, we need to assume

pn

min
α∈An

nRn(α)
→ 0

instead of the stronger condition (2.3). We, however, need (2.3) to prove our final
result.

Proof of Theorem 2.1. Since (2.3) and (2.7) imply that the third term in the right
hand side of (2.1) is of the order op(Ln(α)) uniformly in α ∈ An, part (a) follows
from (2.1), Lemma 2.1 and Lemma 2.2. From part (a), Γ(α) can be written as

Γ(α) =
k

n2
e′e + Ln(α)(1 + ζn(α)), α ∈ An,

where max
α

|ζn(α)| p→ 0. Now Γ(α̂n) ≤ Γ(α) ∀ α implies

Ln(α̂n)
Ln(α)

≤ 1 + ζn(α)
1 + ζn(α̂n)

≤
1 + max

α
|ζn(α)|

1 − max
α

|ζn(α)| ∀α.

Part (b) follows from the above.
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Proof of Lemma 3.1. We first note that under suitable conditions there exist 0 <
δ < Δ such that

(6.11) log(1 + δ) < un(α) < log(1 + Δ) ∀α

with probability tending to 1. This follows from (3.3), (3.4) and the fact that
e′e/nσ2 p→ 1, noting that max

α
e′P (α)e/n ≤ e′Pe/n

p→ 0 and Ln(α) is uniformly

(in α) bounded with probability tending to 1. Here P is the projection matrix
corresponding to the full model.

Consider now the expression in (3.2). By Lemma 2.1 of Section 2 and (6.11),

log[S(α)/nσ2] = log[e′e/nσ2 + Ln(α)/σ2 + op(Ln(α)/σ2)]
= log[e′e/nσ2 + Ln(α)/σ2 + op(e′e/nσ2 + Ln(α)/σ2)]

= log[eun(α)(1 + op(1))]
= un(α) + op(1)
= un(α) + op(un(α))(6.12)

uniformly in α. In view of (3.5), to prove (3.7), it remains to show

(6.13)
n − k

nr

r∑
i=1

log[Si(α)/nσ2] = op(1).

Note that we are also using (3.4) and (6.11). Since Si(α) ≥ Si for all α and all i,
we have for all α

0 <
1
r

r∑
i=1

log[Si(α)] = log[
r∏

i=1

Si(α)]1/r ≤ log[
1
r

r∑
i=1

Si(α)]

implying

−n − k

n
log(nσ2) <

n − k

nr

r∑
i=1

log
[
Si(α)
nσ2

]

≤ n − k

n
log[

1
r

r∑
i=1

Si(α)] − n − k

n
log(nσ2).

Then (6.13) follows from Lemma 2.2 of Section 2, condition (3.4) and the fact that
Ln(α) is uniformly (in α) bounded with probability tending to 1 (as noted earlier
in the argument for (6.11)).

Proof of Theorem 3.1. Let α̂n be the model which minimizes Γ(α). Proceeding as
in the proof of part (b) of Theorem 2.1, and using (3.7) we can prove that

un(α̂n)
un(αL

n)
p→ 1.

This, together with (6.11), imply that

un(α̂n) − un(αL
n)

p→ 0

i.e.,
e′e + nLn(α̂n)
e′e + nLn(αL

n)
p→ 1.
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Since e′e
n

p→ σ2 and Ln(αL
n) ≥ min

α
Δn(α), using (3.3) we have

Ln(α̂n)
Ln(αL

n)
p→ 1.

Proof of Proposition 4.1. We first prove equation (4.7). Below, by max
α

we mean

maximum over α ∈ Ac
n. Let Zn(α) = (e′P (α)e)/(σ2pn(α)). We first show that

max
α

|Zn(α)| = Op(1). By (6.2)

P [max
α

|Zn(α) − 1| > M ]

≤
∑
α

E|Zn(α) − 1|2m/M2m

≤ C

M2m

∑
α

1
[pn(α)]m

for some constant C > 0 and by (4.5) this can be made arbitrarily small by choosing
suitable M > 0. Thus max

α
|Zn(α) − 1| = Op(1) implying max

α
|Zn(α)| = Op(1).

This implies (1/n)e′P (α)e = op( 1
nλnσ2pn(α)) uniformly in α ∈ Ac

n as λn → ∞.

Proceeding in a similar manner and noting that (1/r)
r∑

i=1

e′
iPi(α)ei can be written

as e′M(α)e (see proof of Lemma 2.2) one can prove

1
nr

r∑
i=1

e′
iPi(α)ei = op(

1
n

λnσ2pn(α)) uniformly in α ∈ Ac
n.

The result now follows from (4.2), (4.4) and (4.6).
In order to complete the proof of Proposition 4.1, we now prove equation (4.8).
From (4.7),

Γ(αc
n) =

k

n2
e′e +

1
n

λnσ2pn(αc
n) + op

(
1
n

λnσ2pn(αc
n)

)
.

The result follows from (4.1) and (4.2) noting that (4.1) implies (6.5) with max
α∈An

replaced by max
α∈An−Ac

n

.

Proof of (4.18). Note that

max
α∈An−Ac

n

Ln(αc
n)

Ln(α)
= max

α

e′P (αc
n)e

nLn(α)
.

By (6.2) and by arguments used earlier

P

[
max

α∈An−Ac
n

∣∣∣∣e′P (αc
n)e − σ2pn(αc

n)
nRn(α)

∣∣∣∣ > ε

]

≤ C

[
pn

min
α

nRn(α)

]m ∑
α∈An−Ac

n

1
[nRn(α)]m

for some constant C. The result follows from (4.1) and (4.2).
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