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Objective Bayes testing of Poisson versus

inflated Poisson models∗
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Abstract: The Poisson distribution is often used as a standard model for
count data. Quite often, however, such data sets are not well fit by a Poisson
model because they have more zeros than are compatible with this model.
For these situations, a zero-inflated Poisson (ZIP) distribution is often pro-
posed. This article addresses testing a Poisson versus a ZIP model, using
Bayesian methodology based on suitable objective priors. Specific choices of
objective priors are justified and their properties investigated. The methodol-
ogy is extended to include covariates in regression models. Several applications
are given.
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1. Introduction

The Poisson distribution is often used as a standard probability model for count
data. For example, a production engineer may count the number of defects in items
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randomly selected from a production process. Quite often, however, such data sets
are not well fit by a Poisson model because they contain more zero counts than are
compatible with the Poisson model. An example is again provided by the produc-
tion process; indeed, according to Ghosh et al. [14], when some production processes
are in a near perfect state, zero defects will occur with a high probability. How-
ever, random changes in the manufacturing environment can lead the process to
an imperfect state, producing items with defects. The production process can move
randomly back and forth between the perfect and the imperfect states. For this
type of production process many items will be produced with zero defects, and this
excess might be better modeled by a ZIP distribution than a Poisson distribution.

For 0 ≤ p ≤ 1, λ > 0, the ZIP(λ, p) distribution has the probability function

(1.1) f1(x | λ, p) = p I(x = 0) + (1 − p) f0(x | λ), x = 0, 1, 2, . . . ,

where I(·) is the indicator function, and f0(x|λ) is the Poisson probability function

(1.2) f0(x|λ) =
e−λλx

x!
, x = 0, 1, 2, . . . .

The parameter p is referred to as the zero-inflation parameter.
Many authors used the ZIP distribution with and without covariates to model

count data. In a ZIP regression model, Lambert [18] used a frequentist approach
and Ghosh et al. [14] used a Bayesian approach to analyze industrial data sets.

While the aforementioned authors used the ZIP model to analyze their data, a
number of authors have addressed the problem of checking whether a ZIP model is
needed to model the data. From the frequentist perspective, score tests have been
developed for testing the hypothesis H0 : p = 0 vs. H1 : p �= 0 in a ZIP regression
model ([10], [12]). From the Bayesian perspective, Bhattacharya et al. [9] presented
a Bayesian method to test p ≤ 0 versus the alternative p > 0 by computing a certain
posterior probability of the alternative hypothesis. As in ([10], [12]), p is allowed to
be negative in their model [9], as long as p + (1 − p)e−λ ≥ 0.

In this paper, we consider Bayesian testing of M0 versus M1 given by

M0 : Xi
i.i.d.∼ f0(· | λ), i = 1, . . . , n,(1.3)

M1 : Xi
i.i.d.∼ f1(· | λ, p), i = 1, . . . , n,(1.4)

where f0, f1 are given in (1.1) and (1.2), respectively. Note that, as opposed to the
situations in the papers mentioned above, p < 0 is not possible here. Indeed, we
can alternatively formulate the problem as that of testing, within the ZIP model,

H0 : p = 0 versus H1 : p > 0.

Unlike the analysis in [9], p = 0 (i.e., the Poisson model) is assumed to have a priori
believability (e.g., prior probability 1/2).

In Section 2 we develop the suggested objective testing of Poisson versus ZIP
models when not all counts are zeros. For all zeros, the ZIP distribution is not
identifiable, and a proper prior is required for all parameters; we address this in
Section 5. Section 3 is devoted to some comparative examples. We consider inclusion
of covariates in Section 4, where we address the testing of Poisson versus ZIP
regression models and give an example involving AIDS related deaths in men. In the
regression case, in order for the objective Bayesian model selection to be successful
we need enough positive counts so that the design matrix based on the positive
counts is full column rank. When this condition does not hold we suggest in Section 5
a partially proper prior on the regression parameters to be used for model selection.
Proofs and technical details are relegated to an Appendix.
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2. Formulation of the problem

The Bayesian methodology for choosing between two models for some data is con-
ceptually very simple (see, e.g., [3]). One assesses the prior probabilities of each
model, the prior distributions for the model parameters, and computes the pos-
terior probabilities of each model. These posterior probabilities can be computed
directly from the prior probabilities and the Bayes Factor, an (integrated) likeli-
hood ratio for the models which is very popular in Bayesian testing and model
selection.

Often it is not possible (for lack of time or resources) to carefully assess in a sub-
jective manner all the needed priors. In these situations, very satisfactory answers
are provided by objective Bayesian analyses that do not use external information
other than that required to formulate the problem (see [4]). First we review below
some difficulties of model selection via objective Bayesian analysis. Then we justify
the objective prior we chose for our problem, derive the corresponding Bayes Factor
and study properties of the prior and the Bayes factor.

2.1. Bayesian model selection and Bayes factors

To compare two models, M0 and M1, for the data X = (X1, . . . , Xn), the Bayesian
approach is based on the Bayes factor B10 of M1 to M0 given by

(2.1) B10 =
m1(x)
m0(x)

=
∫

f1(x | θ1)π1(θ1)dθ1∫
f0(x | θ0)π0(θ0)dθ0

,

where, under model Mi, X has density fi(x | θi) and the unknown parameters θi in
Mi are assigned a prior density πi(θi), i = 0, 1. For given prior model probabilities
Pr(M0) and Pr(M1) = 1 − Pr(M0), the posterior probability of, say, M0 is

(2.2) Pr(M0 | x) =
[
1 + B10

Pr(M1)
Pr(M0)

]−1

.

In objective Bayesian analyses πi(θi) is chosen in an objective or conventional
fashion and the hypotheses would be assumed to be equally likely a priori.

Use of objective priors has a long history in Bayesian inference (see, for ex-
ample, [8] and [17] for justifications and references). They are, however, typically
improper and are only defined up to an arbitrary multiplicative constant. This is
not a problem in the posterior distribution, since the same constant appears in both
the numerator and the denominator of Bayes theorem and so cancels. In model se-
lection and hypothesis testing, however, it can be seen from (2.1) that when at
least one of the priors πi(θi) is improper, the arbitrary constant does not cancel,
so that the Bayes factor is then arbitrary and undefined. An important exception
to this arises in invariant situations for parameters occurring in all of the models;
Berger et al. [7] show that use of the (improper) right Haar invariant prior is then
permissible.

One of the ways to address this difficulty is to try to directly “fix” the Bayes
factor by appropriately choosing the multiplicative constant, as in [13]. Popular
methods (the intrinsic Bayes factor [5] and the fractional Bayes factor [20]) for
fixing this constant arise as a consequence of “training” the improper priors into
proper priors based on part of the data or of the likelihood. We refer to Berger
and Pericchi [6] for a review, references and comparisons. Another possibility is
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to directly derive appropriate “objective” but proper distributions πi(θi) to use in
model selection; see [2] and [15] for methods and references. This is the approach
taken in this paper (with a slight exception in Section 5).

2.2. Specification and justification of the objective priors

Returning to the testing of the Poisson (M0) vs. the ZIP (M1) models, i.e., testing

(2.3) M0 : X ∼ f0(x | λ) vs. M1 : X ∼ f1(x | λ, p),

the key issue is the choice of the priors π0(λ) and π1(λ, p) = π1(λ)π1(p | λ).
A frequent simplifying procedure (both for subjective and objective methods)

is to take π0(λ) equal to π1(λ), that is, to give the same prior to the parameters
occurring in all models under consideration. This, however, may be inappropriate,
since λ might have entirely different meanings under model M0 and under model
M1; the fact that we have used the same label does not imply that they have the
same meanings. This frequent mistake is discussed, for example, in [7].

It has been argued that, if the common parameters are orthogonal to the re-
maining parameters in each model (that is, the Fisher information matrix is block
diagonal), then they can be assigned the same prior distribution ([15], [16]). In this
case, improper priors can be used, since the arbitrary constant would cancel in the
Bayes factor.

Unfortunately, p and λ in the ZIP model are not orthogonal. We first repara-
meterize the original model. With p∗ = p + (1 − p)e−λ, we rewrite f1(x | λ, p)
as

(2.4) f∗
1 (x | λ, p∗) = p∗I(x = 0) + (1 − p∗)fT (x | λ), x = 0, 1, 2, . . . ,

where fT (x | λ) is the zero-truncated Poisson distribution with parameter λ. Note
that p∗ ≥ e−λ. We can trivially express the Poisson (M0) model as:

(2.5) f∗
0 (x | λ) = e−λI(x = 0) + (1 − e−λ)fT (x | λ), x = 0, 1, 2, . . . ,

and now it can intuitively be seen that λ has the same meaning in both f∗
1 and f∗

0 .
Indeed the Fisher Information matrix for p∗ and λ can be checked to be diagonal.

With an orthogonal reparameterization, Jeffreys (1961) recommended using (i)
Jeffreys prior (the square root of Fisher information) for the “common” parameters;
and (ii) a reasonable proper prior for the extra parameters in the more complex
model.

The situation here is very unusual, however, in that the Jeffreys prior for the
“common” λ is different for each model. The Jeffreys prior for λ in the Poisson
model is well known to be π0

J = 1/
√

λ, whereas the Jeffreys prior for the orthog-
onalized ZIP model is easily shown to be the same as the Jeffreys prior for the
truncated distribution fT (x | λ), which is

π1
J(λ) =

k(λ)√
λ

, where k(λ) =
{1 − (λ + 1)e−λ}1/2

1 − e−λ
.

That these priors are different after orthogonalization is highly unusual and can
be traced to the fact that λ also enters into the definition of the nested model,
through p∗ = e−λ. In any case, we are left without clear guidance as to whether π0

J

or π1
J should be used as the prior for λ. (Note that, in computing the Bayes factor,
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the same prior for λ must be used in both the numerator and the denominator;
otherwise one is facing the indeterminacy issues discussed earlier.)

Under the orthogonalized ZIP model, we also need to specify a proper prior for
p∗ given λ, which we propose to take uniform over the interval (e−λ, 1), that is,

π1(p∗ | λ) =
I(e−λ < p∗ ≤ 1)

1 − e−λ
.

We can thus write the overall priors being considered for the two models f∗
0 (x | λ)

and f∗
1 (x | λ, p∗) as, respectively,

πl
0(λ) =

k(λ)l

√
λ

, πl
1(λ, p∗) =

k(λ)l

√
λ

I(e−λ < p∗ ≤ 1)
1 − e−λ

,

where l is 0 or 1 as we utilize one or the other of the two Jeffreys priors for λ.
It is computationally more convenient to work in the original (p, λ) parameteri-

zation. A change of variables above then results in the priors

(2.6) πl
0(λ) =

k(λ)l

√
λ

, πl
1(λ, p) =

k(λ)l

√
λ

I(0 < p ≤ 1) ,

which we will henceforth consider (for l equal to 0 or 1).
We are not aware of any desiderata that would suggest a preference for either

the l = 0 prior or the l = 1 prior, but luckily the two yield almost the same answers.
Indeed, simple algebra shows that k(λ) is a strictly increasing function of λ and
that

(2.7) inf k(λ) =
1√
2

= 0.71 and sup k(λ) = 1.

Thus k(λ) is quite flat as a function of λ, so that k(λ)1 and k(λ)0 = 1 are very
similar. An immediate consequence for the Bayes factors Bl

10, l = 0, 1 is that

B0
10/

√
2 ≤ B1

10 ≤
√

2 B0
10 ,

so that the two Bayes factors can only differ by a modest amount (and in practice
the difference is much smaller than this).

It is obviously a bit simpler to work with the l = 0 prior, so we drop the l
superscript and henceforth utilize the prior

(2.8) π0(λ) =
1√
λ

, π1(p, λ) =
1√
λ

I(0 < p ≤ 1).

2.3. Objective Bayes factor for Poisson versus ZIP models

Recall that the model M0 is the standard Poisson model and the model M1 is
the ZIP model. For a sample of n counts X1, . . . , Xn, let X denote the sample,
k =

∑n
i=1 I(Xi = 0) be the number of zero counts, and s =

∑n
i=1 Xi be the total

count. Note that k = n is equivalent to s = 0. For given data x, the densities
f0(x | λ) and f1(x | λ, p) under the two models are given by

f0(x | λ) =
e−nλλs∏n

i=1 xi!
, f1(x | λ, p) =

[p + (1 − p)e−λ]k(1 − p)n−ke−(n−k)λλs∏n
i=1 xi!

.
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For s > 0 (i.e., the counts are not all zero),

m0(x) =
∫

f0(x | λ)π0(λ)dλ =
Γ(s + 1

2 )

ns+ 1
2

∏
xi!

.

Using the binomial expansion of [p + (1 − p)e−λ]k,

m1(x) =
∫

f1(x | λ, p)π1(p, λ)dp dλ

=
1∏
xi!

k∑
j=0

k!
j!(k − j)!

∫ ∞

0

∫ 1

0

pj(1 − p)n−je−(n−j)λλs− 1
2 dpdλ

=
k!

(n + 1)!
∏

xi!

k∑
j=0

(n − j)!
(k − j)!

Γ(s +
1
2
)(n − j)−(s+ 1

2 ).

Both m0(x) and m1(x) are finite and the Bayes factor B10(x) = m1(x)/m0(x) is

(2.9) B10(x) =
k!

(n + 1)!

k∑
j=0

(n − j)!
(k − j)!

(1 − j

n
)−(s+1/2) .

Note that, as intuitively expected, for any given n the Bayes factor is increasing in
s (total count) for any fixed k (the number of zero’s), and is increasing in k for any
fixed s. We use (2.9) to calculate the Bayes factors for the examples in Section 3.

When s = 0 or equivalently all counts are zero (x = 0), there is a problem.
While m0(0) = Γ(1/2)/

√
n remains finite, it is easy to see that m1(0) is infinite.

Indeed for any prior of the form h(p)π(λ), where π(λ) is improper and h(p) is
a proper density (as is required for testing), the marginal density m1(0) will be
infinite. This is because, for x = 0, the density f1(x | λ, p) ≥ pn implying m1(0) ≥∫ 1

0
pnh(p)dp

∫ ∞
0

π(λ)dλ = ∞. We discuss what to do for this case in Section 5.

3. Applications

In this section we apply our methodology to two datasets to detect if zero-inflation is
present in the data. These examples have been analyzed for zero-inflation previously
using both frequentist and Bayesian procedures. Since there are non-zero counts in
both examples, the Bayes factors are computed using (2.9).

Example 3.1. The first dataset is the Urinary Tract Infection (UTI) data used
in Broek [10], which used a score test to detect zero-inflation in a Poisson model.
The data are collected from 98 HIV-infected men treated at the Department of
Internal Medicine at the Utrecht University hospital. The number of times they
had a urinary tract infection was recorded as X. The data are recorded in Table 1.
Merely by looking at the data it is apparent that zero-inflation is present.

Equation (2.9) yields a Bayes factor B10 = 223.13 in favor of model M1 versus
model M0; if the models were believed to be equally likely a priori, the resulting

Table 1

UTI Data

X 0 1 2 3 Total
Frequency 81 9 7 1 98
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Table 2

Terror Data

X 0 1 2 3 4 Total
Frequency 38 26 8 2 1 75

posterior model probabilities would be Pr(M1 | x) = 0.995 and Pr(M0 | x) =
0.005. This is indeed strong evidence in favor of the ZIP model.

In Bayesian testing of H0 : p ≤ 0 versus H1 : p > 0, Bhattacharya et al.
[9] obtained Pr(p > 0 | x) = 0.999. The observed value of the score statistic was
reported as 15.34 [10], yielding a p-value of 0.0001. All three analyses present strong
evidence in favor of the ZIP model, but notice that the p-value seems to suggest
stronger evidence against the Poisson null than the Bayesian analysis, and the point
null Bayesian analysis suggests weaker evidence than the interval Bayesian test.

Example 3.2. The next dataset we consider is the Terrorism data from [11]. Table
2 gives the number of incidents of international terrorism per month (X) in the
United States between 1968 and 1974. It is not intuitively clear whether or not
there is zero-inflation in this data set.

The Bayes factor here is B10 = 0.28, yielding an objective posterior probabil-
ity Pr(M1 | x) = 0.219, which actually supports the Poisson model. A previous
analysis found Pr(p > 0 | x) = 0.507, an indeterminate value [9]. The observed
value of the score statistic is 0.04, with a p-value of 0.83. Conigliani et al. [11] test a
Poisson null model against a nonparametric alternative, finding a fractional Bayes
factor BF

10 of 0.0089 of the nonparametric alternative to the Poisson; the apparent
strength of this conclusion, compared with the other results, is rather puzzling.

4. Model selection in ZIP regression

Many applications involve count data where covariate information is available; see,
for example, [14] and [18]. In this section we consider selecting between Poisson
regression and ZIP regression models given by

(4.1) MR
0 : Xi

ind∼ Poisson(λi), i = 1, . . . , n,

(4.2) MR
1 : Xi

ind∼ ZIP (λi, p), i = 1, . . . , n.

For a known offset variable a0i, a q × 1 vector of covariates ai and regression
parameters β = (β1, . . . , βq)T , suppose the λi follow the log-linear relationship

log(λi) = a0i + aT
i β.

We assume that the matrix AT = (a1, . . . ,an) is of rank q. Let k denote the number
of zero counts in the data. For simplicity of notation, we index the observations in
such a way that all the zeros are given by the first k counts.

4.1. Objective priors for model selection

Generalizing the argument in Section 2.2 to the regression case is easy in one case,
but difficult in the other. If we choose to base the analysis on the Jeffreys prior for
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β under the Poisson regression model MR
0 , the generalization is straightforward:

the Jeffreys prior is easily computed as

(4.3) πR
0 (β) = |

n∑
i=1

λiaia
T
i |1/2.

Note that this prior is positive since the rank of A is q. Also, utilizing this prior for
β under model MR

1 , along with the independent uniform prior for p, results in the
following priors to be utilized to compute B10:

(4.4) π0
0(β) = |

n∑
i=1

λiaia
T
i |1/2, π0

1(β, p) = |
n∑

i=1

λiaia
T
i |1/2I(0 < p ≤ 1) .

The generalization to the regression case of the second prior considered in Section
2.2 is much more difficult, because the Jeffreys prior under the ZIP regression model
is very complicated. In Section 2.2, the derivation of the corresponding Jeffreys prior
was essentially done by ignoring the zero counts, utilizing only the truncated Poisson
distribution. This suggests modifying (4.3) by removing the terms corresponding
to the zero counts, resulting in

(4.5) πR
1 (β) = |

n∑
i=k+1

λiaia
T
i |1/2.

From another intuitive perspective, the zero counts arising from the inflation factor
are clearly irrelevant in fitting the log linear model to the λi and, since we do not
know which zero counts arise from the inflation factor, dropping them all from the
Jeffreys prior has an appeal. Let A+ = (ak+1, . . . ,an)T . The prior (4.5) can only
be used provided it is positive, which is ensured if the rank of A+ is q.

The resulting overall prior for use in computing B10 is then

(4.6) π1
0(β) = |

n∑
i=k+1

λiaia
T
i |1/2, π1

1(β, p) = |
n∑

i=k+1

λiaia
T
i |1/2I(0 < p ≤ 1) .

The first basic issue in use of these priors is whether or not they yield finite
marginal distributions. This is addressed in the following theorems, the first of
which deals with the marginal density under the Poisson regression model.

Theorem 4.1. For the Poisson regression model and either the Jeffreys prior (j =
0) or the modified Jeffreys prior (j = 1),

(4.7) mR
0 (x) =

∫
Rq

n∏
i=1

{e−λiλxi
i

xi!
}πR

j (β)dβ < ∞.

Proof. See the Appendix.

Note that with more than one covariate there is typically no closed-form expres-
sion for mR

0 (x). Hence mR
0 (x) needs to be evaluated by numerical or Monte Carlo

integration.
For the ZIP regression model, the marginal density mR

1 (x), under an arbitrary
improper prior π(β) for β and an independent uniform prior for p, is given by

(4.8) mR
1 (x) =

∫
Rq

∫ 1

0

f1(x | β, p)π(β) dp dβ,
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where the density of x, under model MR
1 , is given by

f1(x | β, p) =
k∏

i=1

{p + (1 − p)e−λi}(1 − p)n−k
n∏

i=k+1

e−λiλxi

i

xi!
.

Again, as for mR
0 (x), there is usually no closed-form expression for mR

1 (x) and the
marginal needs to be computed via numerical or Monte Carlo integration.

To investigate the finiteness of mR
1 (x), note first that

(4.9) pk(1 − p)n−k
n∏

i=k+1

e−λiλxi

i

xi!
≤ f1(x | β, p) ≤

n∏
i=k+1

e−λiλxi

i

xi!
.

In view of this inequality and the independent uniform prior for p, the marginal
mR

1 (x) is finite if and only if

(4.10)
∫

Rq

n∏
i=k+1

e−λi λxi
i

xi!
π(β) dβ < ∞ .

Theorem 4.2 below gives sufficient conditions for this to be finite under the priors
(4.3) and (4.5) respectively. Recall that the k zeros in the sample are labeled to
correspond to the first k observations. A key condition will be that the matrix A+

has rank q which implies that n ≥ k + q (analogous to the condition of at least one
positive count for the case of no covariate treated in Section 2).

Theorem 4.2. Using πR
0 (β): Suppose that, for the observation Xj , j = 1, . . . , k,

corresponding to the zero counts, the corresponding covariate vector aj is such that

(4.11) aj =
n∑

m=k+1

cmj am with cmj ≥ 0, j = 1, . . . , k, m = k + 1, . . . , n.

Then the marginal mR
1 (x) is finite.

Using πR
1 (β): If A+ has rank q, the marginal mR

1 (x) is finite.

Proof. See the Appendix.

Clearly the condition under which mR
1 (x) is finite is more general and much

easier to check for πR
1 (β) than for πR

0 (β). This, together with the intuitive appeal
of πR

1 (β), leads us to recommend its use in practice. (Note that either of the two
priors reduces to the prior recommended in Section 2 for the non-regression case.)

Remark 4.1. If the condition (4.11) fails, the marginal density mR
1 (x) based on

the Jeffreys prior may be infinite. For example, consider n = 3 and q = 2, with
λ1 = λc1

2 λc2
3 , λ2 = exp(β1), λ3 = exp(β2) for suitable nonzero c1, c2 to be chosen

later. Then the determinant of information matrix for β is given by

|I(β)| = λ2λ3 + c2
1λ

c1
2 λc2+1

3 + c2
2λ

c1+1
2 λc2

3 ,

so that |I(β)|1/2 ≥ |c1|λc1/2
2 λ

(c2+1)/2
3 . If X1 = 0, X2 = x2 and X3 = x3, then

mR
1 (x) ≥ |c1|

2

∫
R2

e−λ2λx2
2

x2!
e−λ3λx3

3

x3!
λ

c1/2
2 λ

(c2+1)/2
3 dβ

=
|c1|

x2!x3!2

∫ ∞

0

e−λ2λx2−1+.5c1
2 dλ2

∫ ∞

0

e−λ3λx3−1+.5c2+.5
3 dλ3 = ∞ ,



114 M. J. Bayarri, J. O. Berger and G. S. Datta

providing that x2 ≤ −.5c1 or that x3 ≤ −.5 − .5c2. For example, if c1 = −5 and a
sample produces x2 = 2, then mR

1 (x) = ∞. Note that here a1 = −5a2 + c2a3, with
a2 = (1, 0)T and a3 = (0, 1)T , so that the condition (4.11) does not hold.

4.2. An illustrative application

We apply the methodology recommended in Section 4.1 to a dataset involving the
number of AIDS-related deaths in men. The data provides the number of deaths for
598 census tracts in a large city of Spain over a period of eight years. The dataset,
which was supplied to us by Dr. M.A.M. Beneyto, has a large number of tracts
with zero deaths (actually, 303, which is k in our notation). Along with the number
of deaths, the dataset also provides, for each census tract, the expected number
of deaths E from AIDS (adjusting for the population and the distribution of ages
in each tract) and an auxiliary variable W (continuous in nature) measuring the
social status of each census tract.

In our application and for the ith census tract, we take log(Ei) as the offset a0i

and propose a log-linear regression for λi with q = 2 and ai = (1, Wi)T . First,
we will ignore the covariate W and compute the Bayes factor taking q = 1 and
ai = 1 based on the Jeffreys prior. This model modifies the common mean model
of Section 2.2 by incorporating the offset variable in the mean, which is here given by
Eiλ with λ = β1. The marginal m1(x) is computed by one-dimensional numerical
integration. Although it has a closed-form expression, it is rather complicated and
omitted here to save space. This expression is given in the Appendix in [1]. For the
specific data here, B10 = 22, 975 which gives overwhelming evidence in favor of the
ZIP model.

Epidemiologists who are knowledgeable about this study believed that the large
number of zero counts in the data could be explained by the covariate measuring
the social status and, indeed, suspected that a ZIP regression model would not be
needed if the covariate were incorporated into the analysis. The Bayes factor in
favor of the ZIP regression model versus the Poisson regression model (with q = 2)
is given by 7.25. While this Bayes factor provides a moderate amount of evidence in
favor of the ZIP regression model, it is much smaller than 22, 975, indicating that,
indeed, the covariate can explain most of the excess zero counts.

In this example, it is possible that the same inflation parameter p may not be
appropriate for all individuals. Just like using the log-linear models for λi, we can
treat each pi differently (as p may change according to the covariates) and fit a
logistic regression model for pi. But it is highly likely that there would be severe
confounding between the two regressions, which is particularly problematical with
objective Bayesian analysis (since there is not a proper subjective prior to overcome
the confounding).

5. Analysis with insufficient positive counts

As noted in Section 2, the marginal density under model M1 based on an improper
prior for λ is not finite when all counts are zeros, and hence the Bayes factor is not
well-defined. This is not a difficulty of only model selection; in this situation, it is
also not possible to make inferences about the parameters of the ZIP model, since
the joint posterior of the parameters (under the ZIP model) is improper. Indeed,
when all counts are zero, the ZIP model parameters are not identifiable, and the
data do not provide enough information to estimate the parameters. Since objective
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Bayes methods are typically based on information from the data alone, it is not
surprising that problems are encountered.

We could simply invoke this argument and refrain from considering the case
when all counts are zero. However, it is interesting to explore several methodologies
that have been proposed for difficult testing situations, partly to judge the success
of the methodologies and partly to try to provide a reasonable answer to this case.
We continue, throughout the section, to assume that p ∼ Un(0, 1).

5.1. All zero counts in the non-regression case

We mentioned that to resolve the identifiability issue in the ZIP model for the data
with all zeros we need a proper prior on λ. This can be done by either subjectively
specifying a proper prior for λ or by “training” the improper priors into proper
priors based on part of the data or of the likelihood. In particular, the intrinsic
Bayes factor approach [5] utilizes a part of the data as a training sample to train the
improper prior to get a proper posterior. Although this approach works successfully
in many examples, it is not successful in the present problem. Our investigation of
this approach [1] is omitted here to save space. We discuss below the case where a
subjective proper prior on λ is specified based on certain considerations.

If a proper prior is needed to define the Bayes factor for the situation of all zero
counts, the most direct approach is to find a proper prior that seems compatible with
certain behaviors that we expect of the Bayes factor in this situation. A natural
proper prior to consider for λ is a Gamma (Ga(a, b)) conjugate prior under the
Poisson model (M0) given by the Gamma g(λ | a, b) density

g(λ | a, b) =
b ae−bλλa−1

Γ(a)
,

where a, b are suitably chosen positive constants. Of course, one is welcome to
simply make subjective choices here, but we will argue for a certain choice (or
choices) based on rather neutral thinking.

First, we assume that the same gamma prior is appropriate for λ, both under
the Poisson and the ZIP models. This can be justified by the orthogonalization
argument used in Section 2.2. With the uniform density for p and the Ga(a, b)
prior for λ, the resulting Bayes factor for arbitrary data x can be computed to be

(5.1) B10(x) =
k!

(n + 1)!

k∑
j=0

(n − j)!
(k − j)!

(
1 − j

n + b

)−(s+a)

,

by a similar argument to that leading to (2.9). This Bayes factor includes as a
special case the objective Bayes factor in (2.9); indeed the Jeffreys prior used there
was a limiting case of the g(λ | a, b) for a = 1/2 and b = 0. Note that the Bayes
factor (5.1) is increasing in s, k and a, and decreasing in b.

For the special case x = 0 (that is s = 0 and k = n), note that f1(0|λ, p) ≥
f0(0|λ). Hence, using the same proper prior for λ with both the Poisson and the
ZIP models, it follows that m1(0) ≥ m0(0), and hence, B10(0) ≥ 1. In particular,
for the Un(0, 1) prior for p and Ga(a, b) prior for λ, it can be checked that

(5.2) B10(0) =
(n + b)a

n + 1

n∑
j=0

1
(j + b)a

≥ 1 .
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This is reasonable: when a long stream of only zeros is observed, it is entirely natural
to say that the data favor the ZIP model. But the degree of favoritism depends on
a and b, and we turn to rather speculative desiderata to narrow the choice. Recall
that the mean of the Ga(a, b) distribution for λ is ab−1 and the variance is ab−2.

In order for the prior not to be too sharp, it is reasonable to require the prior
standard deviation to be no less than the prior mean. This implies that a ≤ 1. It also
seems reasonable to require the prior mean to be at least 1, so that small values of λ
do not have excessive prior probability. This leads to b ≤ a. Since the Bayes factor
is decreasing in b, the smallest Bayes factor satisfying the above constraints (that
is, the one lending the most support for the Poisson model M0) is then obtained
by taking b = a (this gives a prior mean of 1). It is not unreasonable to select this
prior as it belongs to a reasonable class which is most favorable to the null model.
Finally, one might judge it to be unappealing to utilize a prior for λ which is not
bounded near zero (for a < 1 the gamma density is decreasing with an asymptote
at λ = 0) which implies that a should be at least 1. Thus we end up with the choice
a = b = 1. Note that a = 1 is the upper limit of a ≤ 1 and the choice a = 1 now
counterbalances the Bayes factor in favor of M1 (whereas b = a in the range b ≤ a
tilts the Bayes factor in favor of M0). This reasoning is all rather speculative and,
of course, the result is a particular prior, which may not reflect actual prior beliefs.
Nevertheless it is instructive to study the behavior of the Bayes factor when this
prior is used.

For a = b = 1, that is, the Exponential(1) distribution, it can be checked that
B10 =

∑n
j=0(j + 1)−1,which is thus our recommended default Bayes factor when

observing only zero counts. Note that B10(0) ≈ log(n + 1) for large n. So a large
string of all zero counts in a sample will lead to a Bayes factor approaching infinity
at the slow rate of log(n). The large sample behavior of the Bayes factor for this
type of sample seems intuitively reasonable.

5.2. Insufficient positive counts in the regression case

In the regression situation of Section 4, it was necessary to have sufficient positive
counts so that the conditions of Theorem 4.2 were satisfied. We will restrict discus-
sion here to the situation involving the prior specifications in (4.6), for which the key
condition needed for the marginal to be finite was that the matrix A+((n− k)× q)
should be of rank q. If the number of positive counts n− k is insufficient so that t,
the rank of A+, is less than q, this solution will not work.

Remark 5.1. Indeed, neither the prior for β given by (4.3) nor by (4.5) guarantees
a finite positive marginal density. We omit the proof to save space. A proof may be
found in the Appendix in [1].

We call this situation one of rank deficiency, with the rank deficiency of A+ equal
to q− t. The situation is analogous to the case of all zero counts without covariates
discussed in Subsection 5.1. (In the setup of that section, q = 1 and rank A+ less
than 1 means that k = n, i.e., no positive counts.) We could again merely recognize
that this type of data is just not informative enough to allow for objective Bayes
analysis. We shall however propose a prior that yields finite marginal densities,
following similar reasoning to that used in Section 5.1.

We continue to use a Un(0, 1) prior for p and focus on proposing suitable priors
for β. A discussion similar to that in subsection 5.1 shows that this prior has to be
at least, partially proper.
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Note that, instead of specifying a prior on β, we can specify a prior on q inde-
pendent parametric functions of β; our specific proposal is to carefully choose these
functions such that t of them are well identified by the data with positive counts
while the remaining q− t are not. We then propose to use a version of Jeffreys prior
on the former t functions, and a proper prior on the latter q − t functions.

Specifically, let A0 denote the k× q matrix whose k rows are aT
1 , . . . ,aT

k . A rank
of A = q and a rank of A+ = t imply a rank of A0 ≥ q − t. Let V+ ⊆ Rq denote
the vector space of dimension t formed by the columns of AT

+. Suppose ai1 , . . . ,air

are all of the vectors from a1, . . . ,ak corresponding to the zero counts which are
in V+. Note that 0 ≤ r ≤ k − (q − t). These vectors are linear combinations of the
vectors aj1 , . . . ,ajt and the corresponding λi1 , . . . , λir are functions of λj1 , . . . , λjt .
From the set of {λj : j ∈ {1, . . . , k}− {i1, . . . , ir}} we select q − t λ’s, λl1 , . . . , λlq−t

such that {aj1 , . . . ,ajt ,al1 , . . . ,alq−t} is linearly independent.
Note that there is an (n − k) × t matrix C of rank t such that

(ak+1, . . . ,an) = (aj1 , . . . ,ajt)C
T .

Let D ≡ D(λj1 , . . . , λjt). Then, the information matrix for λj1 , . . . , λjt based on
the Poisson model for the observations k + 1, . . . , n is given by

(5.3) I(λj1 , . . . , λjt) = D−1CT Diag(λk+1, . . . , λn)CD−1.

We define a partial Jeffreys prior for λj1 , . . . , λjt by

(5.4) πPJ(λj1 , . . . , λjt) = {
t∏

i=1

λ−1
ji

}|CT Diag(λk+1, . . . , λn)C|1/2.

Let {b1, . . . , bq−t} denote an orthonormal basis of the space spanned by al1 , . . . ,

alq−t . Define ξw = eb
T

wβ , w = 1, . . . , q − t. Note that λlw , w = 1, . . . , q − t can be
expressed in terms of ξ1, . . . , ξq−t. Indeed,

log(λlw) = a0lw +
q−t∑
h=1

dwh log(ξh), w = 1, . . . , q − t,

where dwh = bT
h alw . Finally, we assign independent exponential distributions with

mean 1 to each of ξ1, . . . , ξq−t. This prior will induce a proper distribution on
λlw , w = 1, . . . , q − t with a density which we denote by πprop(λl1 , . . . , λlq−t). The
final prior used to calculate the marginal density under model MR

1 is then given by

π(λj1 , . . . , λjt , λl1 , . . . , λlq−t) = πPJ(λj1 , . . . , λjt)πprop(λl1 , . . . , λlq−t) ;

this is partially Jeffreys prior and partially proper. The corresponding prior density
on β is, of course, obtained through transformation. Further, along the line of the
proof of Theorem 4.2, it can be checked that the marginal density mR

1 (x) will be
finite. We omit the details to save space.

While there is arbitrariness in the specific choice of λl1 , . . . , λlq−t to assign a
subjective prior distribution based on exponential distributions, the partial Jeffreys
prior in (5.4) remains invariant to the choice of t independent λ’s from λk+1, . . . , λn.
This solution thus seems reasonable for small q − t.

To avoid the arbitrariness, we could consider all possible selections of (q − t) of
the λ’s from λ1, . . . , λk so that these q− t and t of the λ’s from λk+1, . . . , λn define
a reparameterization of β. For each selection we can calculate the Bayes factor, and
in the spirit of IBF we can take a suitable average over all these Bayes factors. If
the rank deficiency of A+ is 1, we will have k − r Bayes factors to average.
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Appendix

Proof of Theorem 4.1. From (4.3) and (4.5) it is immediate that πR
1 (β) ≤ πR

0 (β).
Thus it is enough to prove (4.7) for j = 0. Let i denote the indices (i1, . . . , iq) and
A(i) denote a q×q submatrix of A based on rows i1, . . . , iq. Then by Binet-Cauchy
expansion of determinant (cf. Noble [19], p. 226) it can be shown that

(A1) |
n∑

i=1

λiaia
T
i | =

∑
(λi1 . . . λiq )|A(i)A(i)T |,

where the summation is over all submatrices of order q × q. Dropping the terms
from the above summation for which |A(i)A(i)T | = 0 we get from (4.3) that

(A2) πR
0 (β) ≤

∗∑
(λi1 . . . λiq )

1/2|A(i)A(i)T |1/2,

where
∑∗ denotes summation over all q × q matrices for which |A(i)A(i)T | > 0.

Since e−λiλxi
i /xi! < 1, from (4.7) and (A2) we get

(A3) mR
0 (x) ≤

∗∑∫
Rq

q∏
j=1

{
e−λij λ

xij

ij

xij !
}(λi1 . . . λiq )

1/2|A(i)A(i)T |1/2dβ.

Recall that log(λi) = a0i+aT
i β. Now transforming β to (λi1 , . . . , λiq ) and using the

Jacobian of transformation (λi1 . . . λiq )
−1|A(i)A(i)T |−1/2, we get from (A3) that

(A4) mR
0 (x) ≤

∗∑ q∏
j=1

∫ ∞

0

e−λij λ
xij

−.5

ij

xij !
dλij < ∞,

since each of the integrals in the right hand side of (A4) is finite. This completes
the proof of Theorem 4.1.

Proof of Theorem 4.2. First, as in (A1) and (A2), it can be shown that for some
positive c (not depending on parameters) less than 1

c

∗∑
(λi1 . . . λiq )

1/2|A(i)A(i)T |1/2

(A5)

≤ πR
0 (β) ≤

∗∑
(λi1 . . . λiq )

1/2|A(i)A(i)T |1/2.

In view of this inequality and (4.10), the marginal mR
1 (x) is finite if and only if

(A6)
∫

Rq

n∏
i=k+1

e−λiλxi
i

xi!
(λi1 . . . λiq )

1/2|A(i)A(i)T |1/2dβ < ∞

for each i = (i1, . . . , iq) for which |A(i)A(i)T | > 0.
Note that the sufficient condition stated in the theorem and the condition that

rank of A is q imply that the regression matrix AT
+ = (ak+1, . . . ,an) corresponding

to the set of positive counts has rank q.
Suppose, with no loss of generality, i1 < · · · < iq in (A6). Also, suppose i1 <

· · · < iu ≤ k < iu+1 < · · · < iq. It is possible that u may be 0 or may be q.
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By the assumed condition that for j = 1, . . . , k, aj can be expressed as a linear
combination of ak+1, . . . ,an with nonnegative coefficients, it follows that

λij = hij

n∏
m=k+1

λ
cmij
m , j = 1, . . . , u,

where cmij ≥ 0 and hij > 0. Then

u∏
j=1

λij = f

n∏
m=k+1

λbm
m ,

where bm =
∑u

j=1 cmij ≥ 0 and f > 0 are free from parameters.
Then the integrand (without |A(i)A(i)T |1/2) in (A6) can be simplified as

n∏
i=k+1

e−λiλxi

i

xi!
(λi1 . . . λiq )

1/2

=
n∏

i=k+1

e−λiλ
xi+

1
2 bi

i

xi!
(λiu+1 . . . λiq )

1/2

= [
q∏

j=u+1

e−λij λ
xij

+ 1
2 bij

+ 1
2

ij

xij !
][

n+u−k−q∏
l=1

e−λαl λ
xαl

+ 1
2 bαl

αl

xαl
!

],(A7)

where {α1, . . . , αn+u−k−q} = {k + 1, . . . , n} − {iu+1, . . . , iq}.
Suppose {s1, . . . , sq} ⊂ {k + 1, . . . , n} is such that {as1 , . . . ,asq} is a linearly

independent set (such a set exists since A+ is of rank q). Note that for y > 0 the
function g(u) = e−uuy is maximized at u = y implying

(A8) e−uuy ≤ e−yyy for all u > 0.

By (A8) we get from (A7) that

(A9)
n∏

i=k+1

e−λiλxi
i

xi!
(λi1 . . . λiq )

1/2 ≤ D(
q∏

j=1

e−λsj λ
dsj
sj ),

where D > 0 is a constant independent of the parameters and dsj = xsj + 1
2bsj + 1

2
if sj ∈ {iu+1, . . . , iq}, and dsj = xsj + 1

2bsj if sj ∈ {α1, . . . , αn+u−k−q}.
The Jacobian of transformation from β to λs1 , . . . , λsq is H/(λs1 . . . λsq ) for some

H > 0 constant. Then since dsj ≥ 1 for j = 1, . . . , q, by (A9) we have

(A10)
∫

Rq

n∏
i=k+1

e−λiλxi

i

xi!
(λi1 . . . λiq )

1/2dβ ≤ HD

q∏
j=1

∫ ∞

0

e−λsj λ
dsj

−1
sj dλsj < ∞.

By (A10) and (A6) we conclude that mR
1 (x) corresponding to πR

0 (β) is finite. To
prove finiteness of mR

1 (x) corresponding to πR
1 (β) note that by (4.10)

mR
1 (x) ≤

∫
Rq

(
n∏

i=k+1

e−λiλxi
i

xi!
)πR

1 (β)dβ.

Finiteness of the right hand quantity in the last display follows from a version of
Theorem 4.1 corresponding to the prior πR

0 (β) by replacing n observations from
the Poisson by n − k observations from Poisson. This completes the proof.
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[8] Berger, J. and Sun, D. (2008). Objective priors for a bivariate normal
model with multivariate generalizations. Ann. Statist. To appear.

[9] Bhattacharya, A., Clarke, B. S. and Datta, G. S. (2007). A Bayesian
test for excess zeros in a zero-inflated power series distribution. In Beyond
Parametrics in Interdisciplinary Research: Festschrift in Honour of Professor
Pranab K. Sen. IMS Lecture Notes and Monographs Series 1 (N. Balakrishnan,
E. Peña and M. Silvapulle, eds.) 89–104. IMS, Beachwood, OH.

[10] Broek, J. V. D. (1995). A score test for zero inflation on a Poisson distribu-
tion. Biometrics 51 738–743.

[11] Conigliani, C., Castro, J. I. and O’Hagan, A. (2000). Bayesian assess-
ment of goodness of fit against nonparametric alternatives. Canad. J. Statist.
28 327–342.

[12] Deng, D. and Paul, S. R. (2000). Score test for zero inflation in generalized
linear models. Canad. J. Statist. 28 563–570.

[13] Ghosh, J. K. and Samanta, T. (2002). Nonsubjective Bayes testing – an
overview. J. Statist. Plann. Inference 103 205–223.

[14] Ghosh, S. K., Mukhopadhyay, P. and Lu, J. C. (2006). Bayesian analysis
of zero-inflated regression models. J. Statist. Plann. Inference 136 1360–1375.

[15] Jeffreys, H. (1961). Theory of Probability, 3rd ed. Oxford Univ. Press.
[16] Kass, R. E. and Vaidyanathan, S. (1992). Approximate Bayes factors and

orthogonal parameters, with application to testing equality of two binomial
proportions. J. Roy. Statist. Soc. Ser. B 54 129–144.

[17] Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions
by formal rules. J. Amer. Statist. Assoc. 91 1343–1370.



Objective Bayes testing of Poisson versus inflated Poisson models 121

[18] Lambert, D. (1992). Zero-inflated Poisson regression, with an application to
defects in manufacturing. Technometrics 34 1–14.

[19] Noble, B. (1969). Applied Linear Algebra. Prentice-Hall, New York.
[20] O’Hagan, A. (1995). Fractional Bayes factors for model comparisons. J. Roy.

Statist. Soc. Ser. B 57 99–138.
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