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Dutch book in simple multivariate normal

prediction: Another look

Morris L. Eaton1

University of Minnesota

Abstract: In this expository paper we describe a relatively elementary method
of establishing the existence of a Dutch book in a simple multivariate normal
prediction setting. The method involves deriving a nonstandard predictive dis-
tribution that is motivated by invariance. This predictive distribution satisfies
an interesting identity which in turn yields an elementary demonstration of
the existence of a Dutch book for a variety of possible predictive distributions.

1. Introduction

Ordinarily, showing that a popular inferential scheme suffers from de Finetti’s in-
coherence (existence of a Dutch book) is met with surprise since incoherence is
typically regarded as a serious indictment of a statistical method. An instance of
this incoherence occurs in a simple p-dimensional multivariate normal setting. The
statistical problem is to predict the next observation in a sequence of indepen-
dent and identically distributed normal observations (with mean 0 and unknown
p × p positive definite covariance matrix Σ). The “usual” predictive distribution is
obtained from a formal Bayes calculation using the Jeffreys’ invariant prior distri-
bution for Σ. This is detailed in Eaton and Sudderth [9] where it is shown that
the “usual” solution is in fact incoherent (a Dutch book can be made against the
“usual” predictive distribution). The arguments in Eaton and Sudderth [9] are
neither simple nor intuitive, but variations on these have been used effectively to
extend the Dutch book argument to other multivariate settings (see Eaton and
Sudderth [10–13]). Some background information on incoherence and Dutch book
is given in Section 2 below.

Recently, Eaton and Freedman [8] presented a relatively simple and self-contain-
ed argument that the Jeffreys’ invariant prior resulted in a Dutch book in the
simple normal prediction problems. The demonstration relies mainly on sampling
properties of the normal distribution rather than on invariance arguments (see
Eaton and Sudderth [9]). However, the Eaton and Freedman [8] arguments seem
to be rather special and not easily adaptable to other invariant proposals such as
those discussed in Bjørnstad [2].

The focus of this paper is again the simple normal prediction problem of Eaton
and Sudderth [9] and Eaton and Freedman [8]. The purpose of writing the current
paper is to present an argument that:

1School of Statistics, University of Minnesota, 367 Ford Hall, 224 Church Street S.E., Min-
neapolis, MN 55455, USA, e-mail: eaton@stat.umn.edu

AMS 2000 subject classifications: Primary 62H99; secondary 62A01.
Keywords and phrases: Dutch book, multivariate normal, prediction.

12



Dutch book in simple multivariate normal prediction 13

(i) reveals the role of the invariance in the incoherence (existence of a Dutch
book);

(ii) relies primarily on calculus so is mainly self-contained;
(iii) yields the Dutch book conclusion for many predictive proposals in the simple

normal prediction problem.

To put things into perspective it is useful to sketch the argument used below. As
in Eaton and Sudderth [9], let G+

T be the group of p × p lower triangular matrices
with positive diagonal elements. Then the unknown covariance matrix Σ in the
normal model can be uniquely expressed as Σ = θθ′, θ ∈ G+

T . Using the right Haar
measure on θ ∈ G+

T as an improper prior distribution (rather than the Jeffreys’
prior on Σ), a formal Bayes calculation yields a predictive distribution that we
denote by QH . The predictive distribution QH is invariant under the group G+

T .
Details and a full explanation are given in Section 3.

The remainder of the paper is devoted to an argument that allows one to com-
pare almost any G+

T invariant predictive distribution Q with the special predictive
distribution QH above. The argument is based on recent work of Zhu [21] and on
a density based approach of Eaton and Sudderth [13]. In essence, the constructive
method described in Sections 4 and 5 shows that if an invariant predictive distrib-
ution Q has a density q, and if q differs on a set of positive Lebesgue measure from
the density of QH , then Q is incoherent (a Dutch book exists). This result is used
to show a Dutch book exists for several well-known predictive proposals.

Finally, we should mention that QH is not incoherent because the group G+
T is

amenable. See Eaton and Sudderth [11], Theorem 8.1, for a general discussion and
a proof.

2. Background

The focus of this paper concerns a method for the evaluation of predictive distrib-
utions in a simple multivariate normal sampling situation. However, it is useful to
first describe what we mean by a prediction problem and to detail the evaluative
criterion of interest here.

The origin of our formulation of the prediction problem stems from Laplace [17]
(see Stigler [19] for an English translation of the original French). Consider a sample
space (X , B1) and an observation (usually a vector or a matrix) X in X . A variable
Z taking values in Z is to be predicted on the basis of an assumed joint parametric
probability model

P (dx, dz|θ), θ ∈ Θ.

Here Θ is a parameter space and θ is an unknown parameter. By a predictive
distribution we mean a probability distribution Q(dz|x) for Z that is allowed to
depend on the observed value of X = x. The primary example of concern throughout
this paper is the following.

Example 1. Let X1, . . . , Xn be independent and identically distributed (iid) with a
p-dimensional multivariate normal distribution Np(0, Σ) with mean 0 and unknown
p × p positive definite covariance matrix Σ. It is assumed that n ≥ p, and p ≥ 2.
The sample space X is the set of all p × n matrices with rank p (a set of Lebesgue
measure zero has been discarded, for convenience). Thus, the matrix

X = (X1, . . . , Xn) : p × n
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is the “data point” in X and

(2.1) S = XX ′ =
p∑

i=1

XiX
′
i : p × p

has rank p. The variable Z to be predicted is assumed to be Np(0, Σ) and indepen-
dent of the X’s. One naive predictive distribution for Z is

(2.2) Q1(·|x) = Np(0, n−1s),

where x is the observed value of X and s is the observed value of S. Of course, the
intuition is that n−1S is an unbiased estimator of Σ based on a minimal sufficient
statistic. An alternative proposal, based on a formal Bayes argument and the so-
called Jeffreys’ improper prior distribution (see Eaton and Freedman [8] for some
discussion and details), yields

(2.3) Q2(dz|x) = q2(z|x)dz,

where dz is Lebesgue measure on Z = Rp and the density q2(·|x) is

(2.4) q2(z|x) = Cn,p
|s|− 1

2

(1 + z′s−1z)(n+1)/2
.

The constant Cn,p is

(2.5) Cn,p =
Γ(n+1

2 )
πp/2Γ(n−p+1

2 )

and |s| is the determinant of s. This ends the introduction of Example 1.

We now return to the general prediction setting at the beginning of this section.
Stone [20] introduced the notion of strong inconsistency as a criteria for excluding
certain types of probability distributions in inferential settings. In the prediction
framework, this idea takes the following form.

Definition 2.1. A predictive distribution Q(dz|x) is strongly inconsistent (SI)
with the model {P (dx, dz|θ)|θ ∈ Θ} if there exists a measurable function f(x, z)
with values in [−1, 1] and an ε > 0 so that

(2.6) sup
x

∫
f(x, z)Q(dz|x) + ε ≤ inf

θ

∫ ∫
f(x, z)P (dx, dz|θ).

The intuition behind SI is that when (2.6) holds, no matter what the distribution
for X, say m(dx),

∫ ∫
f(x, z)Q(dz|x)m(dx) + ε ≤

∫ ∫
f(x, z)P (dx, dz|θ),

for all θ. Thus, if Q(dz|x) is used as a distribution for Z after seeing X = x,
then under all possible models for (X, Z) that are consistent with Q(dz|x), the
expectation of f is at least ε less than any expectation of f under the assumed
model. Hence the terminology, strong inconsistency.

Ramsay [18] and independently de Finetti [3, 4] introduced the notion of betting
schemes for the evaluation of proposed probability distributions. Their ideas were
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extended by Freedman and Purves [14] to cover cases with conditional bets. A
somewhat modified approach, due to Heath and Sudderth [15], is relevant to the
discussion below. In the prediction case when the spaces are infinite (as in Example
1), the Ramsay–de Finetti–Freedman and Purves scheme takes the following form.
Let C be a subset of X ×Z and let Cx = {z|(x, z) ∈ C} be the x-section of C. If an
inferrer is using Q(dz|x) as a predictive distribution and X = x is observed, then
Cx ⊆ Z is assigned the probability Q(Cx|x). Therefore

Ψ0(x, z) = IC(x, z) − Q(Cx|x)

has Q(·|x) – expectation zero. A standard interpretation of Ψ0 as a payoff function
is:

After seeing X = x, the inferrer gives Cx probability Q(Cx|x). A gambler can pay
Q(Cx|x) - dollars for a ticket worth{

$1 if Z ∈ Cx

0 if Z /∈ Cx.

Obviously, the net payoff to the gambler is Ψ0(x, z). The inferrer regards the bet as
“fair” since Ψ0 has expectation zero under Q(·|x).

Slightly more complicated betting scenarios are constructed as follows. Suppose the
gambler can pick subsets C1, . . . , Cr in X × Z and pays ci(x)Q(Ci,x|x) dollars for
a ticket worth {

$ci(x) if Z ∈ Ci,x

0 if Z /∈ Ci,x,

for i = 1, . . . , r. The numbers ci(x) are assumed to be bounded functions of x, but
need not be non-negative. The net payoff to the gambler is computed by summing
the individual payoffs, so the net payoff function is

(2.7) Ψ(x, z) =
r∑

i=1

ci(x) [ICi(x, z) − Q(Ci,x|x)] .

Again, since Ψ(x, ·) has Q(·|x) expectation 0, the inferrer regards the betting scheme
of the gambler as fair.

Here is de Finetti’s notion of incoherence adapted to the current prediction
setting.

Definition 2.2. The predictive distribution Q(·|x) is incoherent if there is an ε > 0
and a payoff function Ψ of the form (2.7) such that

(2.8) EθΨ(X, Z) ≥ ε for all θ ∈ Θ.

In other words, the predictive distribution is incoherent if the gambler has a
uniformly (over θ) positive expected gain under the model. The discussion leading
to Definition 2.2 comes from Heath and Sudderth [15]. The Freedman and Purves
[14] formulation was in terms of odds rather than payoff functions.

In examples, the verification of SI or incoherence is typically not straightforward.
However, as shown recently in Eaton and Freedman [8], in the prediction setting
of this paper, the two notions are equivalent (see Theorem 2 on p. 868-869). For
the example under consideration here, SI is established for a variety of predictive
distributions (see Section 5).

Finally, the term “Dutch book” is used as a synonym for incoherence. When
incoherence obtains, standard terminology is to say “Dutch book” can be made
against the predictive distribution Q(·|x). See Eaton and Freedman [8] for some
discussion and a bit of history.
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3. The Haar predictive distribution

As in Example 1, consider X1, . . . , Xn iid Np(0, Σ) where Σ is an unknown p × p
positive definite matrix. It is assumed that n ≥ p so the matrix S in (2.1) is positive
definite when the sample matrix

X = (X1, . . . , Xn) : p × n

is an element of X . A variable Z ∈ Rp ≡ Z which is Np(0, Σ) is to be predicted after
seeing X = x ∈ X . Here Z is independent of X1, . . . , Xn. In short, the statistical
problem of concern in this paper is to produce a predictive distribution Q(dz|x) for
Z ∈ Rp after seeing the data X = x. The focus of this section is on a particular
predictive distribution obtained via a formal Bayes calculation.

Recall that G+
T is the group of p × p lower triangular matrices with positive

diagonal elements. For use in what follows, we list some facts about G+
T (see Eaton

[7], especially Chapter 1 and in particular, pages 18 and 19). Elements g ∈ G+
T have

positive diagonals, gii, i = 1, . . . , p and gij = 0 for i < j. The symbol “dg” denotes
Lebesgue measure on G+

T (as an obvious open subset of Rp(p+1)/2). The measure

(3.1) νr(dg) =
dg

p∏
i=1

gp−i+1
ii

is a right invariant (Haar) measure on G+
T . The function

(3.2) Δ(g) =
p∏

i=1

gp−2i+1
ii

is the modular function of G+
T and

(3.3) νl(dg) = Δ(g)νr(dg) =
dg

p∏
i=1

gi
ii

is a left invariant measure on G+
T .

Given a p× p positive definite matrix E, there is a unique element T ∈ G+
T such

that E = TT ′ (see Eaton [6], Proposition 5.4 for a proof). This element is denoted
by τ(E) in some expressions below. In particular, θ = τ(Σ) is a reparameterization
of covariance matrices. In this parameterization, the density function of X, with
respect to Lebesgue measure on X , is

(3.4) f1(x|θ) =
|θ|−n

(2π)np/2
exp

{
−1

2
tr(θθ′)−1s

}
, x ∈ X

where s = xx′ : p × p, θ ∈ G+
T , and “tr” denotes trace. Of course the density

function of Z on Rp is

(3.5) f2(z|θ) =
|θ|−1

(2π)p/2
exp

{
−1

2
tr(θθ′)−1zz′

}
.

As usual, | · | denotes the determinant. These two densities define the probability
models

(3.6) P1(dx|θ), θ ∈ Θ = G+
T , x ∈ X
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and

(3.7) P2(dz|θ), θ ∈ Θ, z ∈ Rp,

for X and Z respectively. Recall X and Z are assumed independent so the joint
model for (X, Z) is

(3.8) P (dx, dz|θ) = P1(dx|θ)P2(dz|θ)

and the joint density is

(3.9) f(x, z|θ) = f1(x|θ)f2(z|θ), (x, z) ∈ X × Z.

For g ∈ G+
T , it is easy to show that

(3.10) f1(gx|gθ) = |g|−nf1(x|θ)

and

(3.11) f2(gz|gθ) = |g|−1f2(x|θ).

These two invariance properties of the densities imply that for the model (3.8),

(3.12) P (gB|gθ) = P (B|θ),

for all Borel sets B ⊆ X × Z and all θ, g ∈ G+
T . In other words, the assumed

statistical model is G+
T invariant. Note that the group G+

T acts transitively on
Θ = G+

T . In such invariant settings, it was argued in Eaton and Sudderth [13]
that the use of the right Haar measure as a prior distribution may yield predictive
distributions with interesting inferential properties.

We now proceed to calculate, via a formal use of Bayes Theorem, the predictive
distribution (henceforth called the Haar inference) induced by using νr(dθ) in (3.1)
as an improper prior. To this end, let

(3.13) m(x, z) =
∫

G+
T

f(x, z|θ)νr(dθ)

and

(3.14) m1(x) =
∫

G+
T

f1(x|θ)νr(dθ),

for x ∈ X and z ∈ Rp. For fixed x,

(3.15) qH(z|x) = m(x, z)/m1(x)

is a density on Rp and by definition, the predictive distribution QH(dz|x) with
density (3.15) is the Haar inference. Using (3.10), (3.11), and the properties of νr,
it is easy to show that qH is invariant in the sense that

(3.16) qH(gz|gx) = |g|−1qH(z|x).

From (3.16), the invariance of QH ,

(3.17) QH(gB|gx) = QH(B|x)



18 M. L. Eaton

is immediate.
Because the calculation is not quite standard, we sketch the details in the deriva-

tion of qH in (3.15). For w ∈ Rp, define the function ψp(w) by

(3.18) ψp(w) =

⎧⎪⎨
⎪⎩

1 if p = 1

(1 + w′w)−(p−1)/2

p−1∏
i=1

(1 + w2
1 + . . . + w2

i ) if p ≥ 2.

Lemma 3.1. For w ∈ Rp, recall τ(Ip + ww′) is the unique element in G+
T that

satisfies (Ip + ww′) = [τ(Ip + ww′)][τ(Ip + ww′)]′. Then,

(3.19) Δ(τ(Ip + ww′)) = ψp(w)

where Δ is the modular function given in (3.2).

Proof. The proof of this (a messy calculation) is not too hard via an induction
argument on dimension p. The details are omitted.

Theorem 3.1. Let k0 be the density on Rp given by (see 2.4)

(3.20) k0(w) =
Γ(n+1

2 )
πp/2Γ(n−p+1

2 )
1

(1 + w′w)(n+1)/2
.

Then

(3.21) k1(w) = k0(w)
1

ψp(w)

is a density on Rp and

(3.22) qH(z|x) = |L|−1k1(L−1z)

where xx′ = s = LL′ with L ∈ G+
T .

Proof. Using the expressions (3.4) and (3.5) and the fact that νr transforms to νl

under the mapping θ −→ θ−1 in G+
T , it follows from (3.15) that

(3.23) qH(z|x) = (2π)−p/2

∫
|θ|n+1 exp{−1

2 trθ′θ[s + zz′]}νl(dθ)∫
|θ|n exp{−1

2 trθ′θs}νl(dθ)
.

Writing s = LL′ with L ∈ G+
T and setting w = L−1z, some algebra and a change

of variable yields

qH(z|x) = (2π)−p/2

∫
|θ|n+1 exp{−1

2 tr(θL)′(θL)(Ip + ww′)}νl(dθ)∫
|θ|n exp{−1

2 tr(θL)′(θL)}νl(dθ)

= |L|−1(2π)−p/2

∫
|θ|n+1 exp{−1

2 trθ′θ(Ip + ww′)}νl(dθ)∫
|θ|n exp{−1

2 trθ′θ}νl(dθ)
.

Setting Ip + ww′ = UU ′, U ∈ G+
T and changing variables in the numerator integral

above gives

(3.24) q(z|x) =
|L|−1|U |−(n+1)

(2π)p/2Δ(U)
·
∫
|θ|n+1 exp{−1

2 trθ′θ}νl(dθ)∫
|θ|n exp{−1

2 trθ′θ}νl(dθ)
.
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Now, note that

|U |−(n+1) = |UU ′|−
n+1

2 =
1

(1 + w′w)(n+1)/2

and from Lemma 3.1,
Δ(U) = ψp(w).

Finally, a standard (but not routine) multivariate calculation yields

1
(2π)p/2

∫
|θ|n+1 exp{−1

2 tr|θ′θ}νl(dθ)∫
|θ|n exp{−1

2 tr|θ′θ}νl(dθ)
=

Γ(n+1
2 )

πp/2Γ(n−(p+1)
2 )

.

Piecing all of this together yields the expression (3.22) for qH(z|x). The fact that
k1 is a density on Rp follows by setting L = Ip in (3.22).

Let q(z|x) ≥ 0 be an arbitrary predictive density for Z with X = x. That is,
q(·|x) is a density on Rp for each x ∈ X and q is jointly measurable on Z × X .

Definition 3.1. The density q(z|x) is G+
T -invariant if for all g ∈ G+

T ,

(3.25) q(gz|gx) = |g|−1q(z|x) for all z, x.

Each G+
T -invariant predictive density yields a G+

T -invariant predictive distribu-
tion Q(dz|x) given by

Q(B|x) =
∫

B

q(z|x)dz, B ⊆ RP .

The invariance of Q, namely Q(gB|gx) = Q(B|x), is immediate from (3.25).
The density of Q1 in (2.2) and Q2 in (2.3) are both G+

T -invariant. Further, when
specialized to the case of mean zero considered in this paper, the first seven entries
in Table 1 of the survey paper of Keyes and Levy [16] are all G+

T -invariant. It is
such predictive densities that are compared to qH in Section 5.

4. Zhu’s result

Using some results of Eaton and Sudderth [12], Zhu [21] was able to establish an
interesting and useful relationship between an invariant prediction model and the
predictive distribution obtained from the right Haar measure. Zhu’s result will be
stated here only for the normal model under consideration. For a simplified version
and proof of this general result when densities exist, see Eaton and Sudderth [13].
The most general version is Theorem 3.4.1 in Zhu [21].

In the notation of Section 3, let P1(dx|θ), P2(dz|θ) and P (dx, dz|θ) be the proba-
bility measures in (3.6), (3.7) and (3.8) respectively. Also, let QH(dz|x) be the Haar
inference defined by the density qH(z|x) in (3.15). Next, introduce the Haar model
given by the probability measure

(4.1) PH(dx, dz|θ) = QH(dz|x)P1(dx|θ)

on X × Z.
Recall that a real valued function f on X × Z is G+

T -invariant if for all g ∈ G+
T

f(gx, gz) = f(x, z) for all x, z.
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Theorem 4.1. The original model P (dx, dz|θ) and the Haar model PH(dx, dz|θ)
agree on the bounded invariant functions. That is, for each bounded measurable
G+

T -invariant f and for all θ,

(4.2)
∫ ∫

f(x, z)P (dx, dz|θ) =
∫ ∫

f(x, z)PH(dx, dz|θ).

The implications of (4.2) in more general settings are discussed in Eaton and
Sudderth [13]. Because densities exist in the setting of this paper, Theorem 3.1 in
Eaton and Sudderth [13] applies directly to this case so we omit a proof.

Remark 1. In the proof of Theorem 3.1 in Eaton and Sudderth [13], there are
two misprints: On page 500 of this paper in lines 8 and 9 from the top, “p(x, z|gθ)”
should be “p(x, z|θ).”

The use of (4.2) in this paper occurs in the next section which deals with the
Dutch book argument.

5. Dutch book

Consider a predictive density q(z|x) that is G+
T -invariant. The purpose of this sec-

tion is to show that if q(z|x) is essentially different from qH(z|x), then the predictive
distribution Q(dz|x) determined by q is incoherent so a Dutch book exists. The con-
struction of the required pay-off function is explicit and both (2.6) and (2.8) are
verified directly.

To make the above precise, consider the set

(5.1) C = {(x, z)|q(z|x) < qH(z|x)} ⊆ X × Z.

Then

(5.2) Cx = {z|(x, z) ∈ C}

is the x-section of the set C. Let l denote Lebesgue measure on X × Z, l1 denote
Lebesgue measure on X and l2 denote Lebesgue measure on Z. Clearly, l(dx, dz) =
l1(dx)l2(dz). From Tonelli’s Theorem (see Dunford and Schwartz [5], p. 194),

(5.3) l(C) =
∫
X

l2(Cx)l1(dx).

Theorem 5.1. If l(C) > 0, then Q(dz|x) is incoherent (strongly inconsistent) and
a Dutch book exists for the predictive distribution Q(·|x).

Proof. When l(C) > 0, the set

(5.4) D = {x|l2(Cx) > 0} ⊆ X

must have positive l1-measure. Consider the function

(5.5) φ(x, z) = ID(x)[ICx(z) − Q(Cx|x)].

We first claim that the function φ(x, z) is G+
T -invariant. To see this, first note that

C is an invariant set from the invariance of qH and the assumed invariance of q.
From this it follows easily that

Cgx = gCx, g ∈ G+
T .
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Therefore the set D is invariant and x −→ Q(Cx|x) is an invariant function of x.
The invariance of φ in (5.5) is now immediate.

We now verify (2.6) with f = φ. First, for each x,
∫

φ(x, z)Q(dz|x) = 0.

Since φ is invariant and the model is invariant,

(5.6) θ −→
∫ ∫

φ(x, z)P (dx, dz|θ)

is an invariant function of θ. Because Θ = G+
T , the right side of (5.5) is constant in

θ, say

ε0 =
∫ ∫

φ(x, z)P (dx, dz|θ) for all θ.

Now, apply Theorem 4.1 to obtain

ε0 =
∫ ∫

φ(x, z)P (dx, dz|θ)

=
∫ ∫

φ(x, z)PH(dx, dz|θ)

=
∫ ∫

ID(x)[ICx(z) − Q(Cx|x)]QH(dz|x)P1(dx|θ)

=
∫

D

∫
Cx

[qH(z|x) − q(z|x)]l2(dz)f1(x|θ)l1(dx)

where f1 is given in (3.4). This set D has positive l1-measure, and the density f1

is positive everywhere. Also, for all x ∈ D, Cx has positive l2 measure and for all
z ∈ Cx, qH(z|x) > q(z|x). Thus ε0 > 0 and (2.6) holds with ε = ε0. Hence SI holds.

To see that incoherence holds, take the net payoff function to be φ(x, z) (in (2.7),
take r = 1, c1(x) = ID(x) and C1 = C). A repeat of the argument above shows
(2.8) holds with ε = ε0. This completes the proof.

Before discussing any examples, it is useful to next consider the case when the
set C has measure zero.
Theorem 5.2. If l(C) = 0, then the set D in (5.4) has l1-measure zero and

(5.7) Q(·|x) = QH(·|x) a.e. (l1).

Proof. When l(C) = 0, (5.3) shows l2(Cx) = 0 a.e. (l1). Hence D has l1-measure 0.
But for x ∈ Dc, l2(Cx) = 0. For this x, a standard argument shows that Q(·|x) =
QH(·|x). Therefore (5.7) holds and the proof is complete.

We now proceed to give a wide class of examples where the set C has positive
Lesbesgue measure so Theorem 5.1 applies. To this end, let k be a density function
on Rp and as usual, for x ∈ X write

xx′ = LL′ , L ∈ G+
T .

Observe that the predictive density qk(z|x) given by

(5.8) qk(z|x) = |L|−1k(L−1z)
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is G+
T -invariant and is obviously determined by k. Note that the predictive dis-

tributions (2.2) and (2.3) both have predictive densities of the form (5.8) for an
appropriate k. Further, the Haar predictive distribution QH derived in Section 3
has the form (5.8) with k = k1 where k1 is given in (3.21).

The next result shows that any predictive distribution of the form (5.8) is inco-
herent when k is different (on a set of positive l2-measure) from the special density
k1 that defines the Haar inference QH .
Theorem 5.3. Let k be a density on Rp and let k1 be the density defined in (3.21).
Assume that

(5.9)
∫

|k(z) − k1(z)|dz > 0.

Then the predictive distribution Qk with predictive density (5.8) is incoherent.

Proof. For each x ∈ X , the variation distance between QH(·|x) and Qk(·|x) is

sup
B⊆Rp

|Qk(B|x) − QH(B|x)| =

sup
B⊆Rp

∣∣∣∣
∫

B

[|L|−1k(L−1z) − |L|−1k1(L−1z)]dz

∣∣∣∣ =

1
2

∫
|k(z) − k1(z)|dz.

(5.10)

The second equality follows by a simple change of variable and the well known
identity involving variation distance (for example, see Billingsley [1], p. 224 for the
argument). Since the last expression in (5.10) is positive by assumption, we see that
Qk(·|x) �= QH(·|x) for all x. Thus the set D in (5.4) is X and hence Theorem 5.1
applies. The conclusion follows.

As an application of Theorem 5.3, by taking the mean to be zero in a MANOVA
model, and applying the results listed as items 2 through 7 in Table 1 of Keyes and
Levy [16], one obtains examples of predictive distributions which are incoherent.
Predictive distributions 3 through 7 are obtained via a formal Bayes calculation
with an improper prior distribution of the form

(5.11) νβ(dΣ) = |Σ|β dΣ
|Σ|(p+1)/2

,

where β satisfies β < (n− p + 1)/2. The restriction on β is necessary so the formal
Bayes calculation yields a proper posterior for our example. The improper prior
(5.11) yields a predictive distribution with a density of the form

(5.12) qβ(z|x) = C|L|−1 1
(1 + (L−1z)′(L−1z))(n+1−2β)/2

,

where C is a constant. Theorem 5.3 implies that all such predictive distributions
are incoherent. The details are routine and left to the reader.

Acknowledgments. Thanks to David Freedman and a referee for comments on
drafts of this paper.
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