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Abstract: Nonparametric estimators of the mean total cost have been pro-
posed in a variety of settings. In clinical trials it is generally impractical to
follow up patients until all have responded, and therefore censoring of patient
outcomes and total cost will occur in practice. We describe a general longi-
tudinal framework in which costs emanate from two streams, during sojourn
in health states and in transition from one health state to another. We con-
sider estimation of net present value for expenditures incurred over a finite
time horizon from medical cost data that might be incompletely ascertained
in some patients. Because patient specific demographic and clinical charac-
teristics would influence total cost, we use a regression model to incorporate
covariates. We discuss similarities and differences between our net present value
estimator and other widely used estimators of total medical costs. Our model
can accommodate heteroscedasticity, skewness and censoring in cost data and
provides a flexible approach to analyses of health care cost.

1. Introduction

Estimating cost from medical follow-up studies has been the focus of extensive
methodological research. Cost data in observational studies exhibit several features
such as heteroscedasticity, skewness and censoring that must be addressed in sta-
tistical modeling so that ensuing inference would be valid. In clinical trials it is
generally impractical to prolong a study until all patients have responded, and
therefore inevitably censoring of patient outcomes and total cost will occur in prac-
tice. Since costs are incurred over time, the cumulative cost C(t) at time t is a
nonnegative monotone function. Cost accumulation ends at an event time T , for
example at death for lifetime cost, or at a specified finite time horizon τ . Interest
lies in estimating the mean cost μ = E(C(T ∗)) where T ∗ = min(T, τ). Because T
could be precluded from observation by censoring at time U , that is, when T > U ,
the corresponding cost would be complete only if U ≥ T ∗. Several nonparametric
estimators of μ have been proposed in a variety of settings with regression mod-
els being the mainstay for assessing the influence of patient-specific characteristics
(eg, treatments, demographics, comorbidity) on cost (for example, Bang and Tsi-
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atis [2, 3], Baser et al. [4, 5], Lin [13, 14], Lin et al. [15], O’Hagan and Stevens
[17], Strawderman [18] and Gardiner et al. [8]).

This article adopts a broader view of the cumulative cost {C(t) : 0 ≤ t ≤ τ}
within the framework of a longitudinal model. Section 2 describes all the substan-
tive aspects of our models starting with an underlying finite state stochastic process
for the evolution of patient events as they occur over time. The states are different
health conditions that the patient presents over the period [0, τ ]. Costs emanate
from two streams, during sojourn in health states and in transition from one health
state to another. We consider estimation of net present value (NPV) for expendi-
tures incurred over [0, τ ]. Regression models for the event history process and for
observed costs are used to incorporate covariates. Section 3 outlines the method
of estimation of NPV from a patient sample of time-censored event history data.
We then discuss similarities and differences between our net present value estima-
tor and other widely used estimators of total medical costs. Section 4 is a brief
summary and conclusion.

2. Stochastic model

2.1. Transition and sojourn cost

A stochastic process X = {X(t) : t ∈ T } on the interval T = [0, τ ] where τ < ∞,
describes the health states of a patient from the relevant population under study.
The time τ is the maximum limit of observation for all cost and patient outcomes.
The state space of X is finite and labeled E= {0, . . . , m} and consists of several
transient states, such as “well”, “recovery”, “relapse”, and one or more absorbing
states such as “dead” or “disabled”. A transient state is one which if visited will
be exited after a finite sojourn, whereas a transition out of an absorbing state is
impossible. Costs are incurred while sojourning in a transient health state and in
transition between states. If the patient is in state h at time t, that is, X(t) = h,
the expenditure rate is B(t, h). If a transition occurs from state h to state j at time
t, that is, X(t−) = h and X(t) = j, a cost C(t, h, j) is incurred.

The notation [A] denotes the indicator function of the event A taking value 1
if A is true and 0 if A is false. For example, to indicate the state of occupation
just prior to time t we write Yh(t) = [X(t−) = h]. The number of direct transitions
h → j, h �= j in the time interval [0, t] is Nhj(t) = #{s ≤ t : X(s−) = h, X(s) = j}.
If r is the discount rate, the present value of expenditures associated with all h → j
transitions in T is

(1) C
(1)
hj =

∫ τ

0

e−rtC(t, h, j)dNhj(t),

and the present value of expenditures for all sojourns in state h in T is

(2) C
(2)
h =

∫ τ

0

e−rtB(t, h)Yh(t)dt.

We will interpret all integrals as on the semi-open interval (0, τ ]. In practice we
want to estimate the expected values (averages) of these two quantities. To do so
we impose a Markov model on X to govern the transitions between states.
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2.2. Markov model

We call X a non-homogeneous Markov process if

P [X(t) = j|X(s) = h, X(u) : u < s] = P [X(t) = j|X(s) = h]

for all h, j ∈ E and all s ≤ t. The transition probabilities Phj(s, t), s ≤ t, of X are
given by Phj(s, t) = P [X(t) = j|X(s) = h] and the transition intensities αhj(t) by
αhj(t) = limΔt↓0 P [X(t + Δt) = j|X(t) = h]/Δt, j �= h with αhh = −

∑
j �=h αhj .

Throughout we assume that the αhj are integrable on T = [0, τ ]. The m × m
matrices P={Phj(s, t)} and α ={αhj} are related by the product-integral formula
P(s, t) =

∏
s<u≤t(I + α(u)du). The matrix A={Ahj} of the integrated intensities

is defined by Ahj(t) =
∫ t

0
αhj(u)du.

2.3. Modeling covariates

We let the transition intensities depend on a covariate history vector process z(t)
through a Cox regression model αhj(t|z(t))=αhj0(t) exp(β′

hjz(t)), where αhj0(t) is
an unknown baseline intensity and the regression coefficients βhj are specific to the
transition h → j. It is always possible to recast this in terms of a single composite
regression vector β with type-specific covariate vector zhj(t) computed from z(t).
Then the model for the intensities is

(3) αhj(t|z(t)) = αhj0(t) exp(β′zhj(t)).

To make explicit the dependence of P, α and A on a pre-specified fixed covariate
profile z we will use the notation P(s, t|z), α(t|z), and A(t|z), respectively.

2.4. Net present value

Consider the conditional expectation of (1), given fixed z and the initial state
X(0) = i, i ∈ E. The expected net present value is

(4) E(C(1)
hj |X(0) = i, z) =

∫ τ

0

e−rtchj(t|z)Pih(0, t − |z)dAhj(t|z),

where chj(t|z) = E{C(t, h, j)|X(t−) = h, z} and integration is on the set (0, τ ].
Justification for (4) could be made as follows. Starting in state i at time zero a
patient will be in state h at time t with probability Pih(0, t|z). Conditional on
being in state h just prior to t, a transition to state j occurs at t with intensity
αhj(t|z) and this transition incurs a cost whose average is chj(t|z). We call (4) the
net present value (NPV) for all h → j transition costs in T . An entirely analogous
argument applies to the conditional expectation of (2), given z and the initial state
X(0) = i, which results in the NPV for all sojourn costs in state h in T . We get

(5) E(C(2)
h |X(0) = i, z) =

∫ τ

0

e−rtbh(t|z)Pih(0, t − |z)dt,

where bh(t|z) = E{B(t, h)|X(t−) = h, z}. The interpretation of (5) is as follows.
Starting in state i at time zero a patient will be in state h just prior to time t with
probability Pih(0, t − |z). While sojourning in state h in the interval (t, t + dt] an
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average cost bh(t|z)dt is incurred. Then the right hand side of (5) is a weighted sum
of these costs in [0, τ ].

By averaging with respect to the initial distribution, πi(0|z) = P [X(0) = i|z],
i ∈ E we combine (4) and (5) to obtain the unconditional NPV,

NPV(z) =
∑
i∈E

πi(0|z)NPV(z, i),

where

(6) NPV(z, i) =
∑
h�=j

∫ τ

0

e−rtchj(t|z)Pih(0, t − |z)dAhj(t|z)

+
∑

h

∫ τ

0

e−rtbh(t|z)Pih(0, t − |z)dt.

Since there is no cost accumulation in absorbing states (e.g., no costs incurred
after death) the second summation is over all transient states in E. The first sum-
mation includes both transitions between transient states and transitions from
a transient state to an absorbing state. We can simplify (6) further by defining
c∗h(t|z) =

∑
j �=h chj(t|z)αhj(t|z) and rewriting the first term as

∑
h

∫ τ

0

e−rtc∗h(t|z)Pih(0, t − |z)dt.

This is similar to the second term in (6).
Equations (4)-(6) place a structure to the accumulating costs by considering costs

incurred at transitions separately from costs incurred during sojourns. In general,
we might consider two non-negative, non-decreasing, right-continuous processes
{Vk(t) : t ∈ T , k = 1, 2} to represent the cost accumulation which is assumed
to end at time τ , or prior to τ if an absorbing state has been entered. For costs
incurred at transition times, V1(t) =

∑
h�=j

∑
u≤t e−ruC(u, h, j)ΔNhj(u), and for

costs incurred during sojourn in states we have V2(t) =
∑

h

∫ t

0
e−ruB(u, h)Yh(u)du.

2.5. Censoring

Observation of X will cease at time τ unless an absorbing state was entered prior
to τ . Also censoring might occur at some random time U , which limits observation
up to τ ∧U . We assume U is independent of X and replace Nhj(t) by the censored
process Nhj(t ∧ U) and the state indicator Yh(t) by Yh(t) = [X(t−) = h, U ≥ t].
Therefore, for the process X the information Ft revealed up to time t is generated
from X(0), z(0), and {z(u), Yh(u), Nhj(u) : u ≤ t ∧ U, h �= j, h, j ∈ E}. For costs
incurred at transition times the information known up to time t is

{Chj(u)	Nhj(u) : u ≤ t ∧ U, h �= j, h, j ∈ E},
whereas for sojourns we would know at best the cumulative costs

{
∫ t∧U

0

Bh(u)Yh(u)du, h ∈ E}.

In both cases censoring limits what we can observe. If U precedes both τ and the
time of absorption then total costs are not observed. Furthermore, the observational
scheme might restrict observation of sojourn costs to only completed sojourns or
at a finite number of time points during the sojourn. We assume that censoring
completely random in the sense that U is independent of (X(t), V (t) : t ≥ 0).
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2.6. Survival time

Label the states in E so that 0, . . . , m−1 are transient and m is absorbing (e.g., the
state ‘dead’). Survival time τm = inf{t > 0 : X(t) = m} is the time to absorption.
The survival distribution, conditional on X(0) = i, is

Smi(t|z) = P [τm > t|X(0) = i, z] = 1 − Pim(0, t|z),

and the unconditional survival distribution is

Sm(t|z) = 1 −
∑
i �=m

πi(0|z)Pim(0, t|z).

In the special case of one transient state 0 (“alive”) and one terminal state 1
(“dead”) we get the usual survival time T (= τ1) and its survival distribution
S(t|z) = P [T > t|z] = P00(0, t|z).

3. Estimation

Suppose we observe the aforementioned processes for each of n subjects in a lon-
gitudinal study. For the i-th patient the basic covariate vector is zi(t), the initial
state Xi(0), the state indicator Yhi(t) = [Xi(t−) = h, Ui ≥ t] and the number of
direct h → j transitions

Nhji(t) = #{u ≤ t ∧ Ui : Xi(u−) = h, Xi(u) = j}, h �= j.

Conditionally on {zi(0), Xi(0) : 1 ≤ i ≤ n} assume processes {Xi(t) : t ∈ T } are
independent and that model (3) holds for each individual with the same baseline
intensities. From now on denote by Nhj(t) and Yh(t), respectively, the aggregated
processes

∑n
i=1 Nhji(t) and

∑n
i=1 Yhi(t). In this context estimation of the transi-

tion probabilities Phj(0, t|z) and integrated intensities Ahj(t|z) at a fixed covariate
profile z is well known (Andersen et al. [1]). Combining this with appropriate esti-
mation of costs would lead to estimators of NPV. However, before we describe an
approach to estimation we first consider several examples.

3.1. Single transition without covariates

The only permissible transition 0 → 1 is associated with a single cost C(T, 0, 1)
(denoted here by y) where T denotes the survival time. From (6) we have

NPV =
∫ τ

0

e−rtc01(t)P00(0, t−)dA01(t).

To estimate NPV we use the estimators

P̂00(0, t−) = Ŝ(t−)

and
dÂ01(t) = {Y0(t)}−1dN01(t),

where Ŝ is the Kaplan-Meier estimator of the survival distribution of the survival
time T (= τ1), Y0(t) =

∑n
i=1[Ti ∧ Ui ≥ t] and N01(t) =

∑n
i=1[Ti ≤ t ∧ Ui]. If there
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are no ties in the survival times Ti, the natural estimator of c01 is ĉ01(Ti) = yi.
Therefore our estimator of NPV is

(7)
∧

NPV =
∫ τ

0

e−rtĉ01(t)
Ŝ(t−)
Y0(t)

dN01(t) =
n∑

i=1

e−rTiyi
Ŝ(Ti−)
Y0(Ti)

[Ti ≤ Ui ∧ τ ].

If Ĝ denotes the Kaplan-Meier estimator of the survival distribution of Ui, and
using the fact that Ŝ(t−)Ĝ(t−) = n−1Y0(t) if there are no ties between survival
and censoring times, then (7) can be rewritten as

(8)
∧

NPV = n−1

∫ τ

0

e−rt ĉ01(t)
Ĝ(t−)

dN01(t) = n−1
n∑

i=1

e−rTiyi[Ti ≤ Ui ∧ τ ]/Ĝ(Ti−).

Using the consistency of the Kaplan-Meier estimator Ĝ we see that NP̂V converges
to E(e−rT y[T ≤ τ ]) provided G(τ−) > 0. Therefore in the absence of discounting
NP̂V estimates the average cost restricted to τ . In this case (8) with r = 0 is the
mean cost estimator described by Bang and Tsiatis [2] and Zhao and Tian [21].

If there are ties in the survival times and 0 < t∗1 < . . . < t∗p ≤ τ are the distinct
observed times, then ĉ01(t∗j ) = ȳ∗

j is the mean of the observed costs at time t∗j and
the right-hand side of (8) is

n−1
∑

j:t∗
j
≤τ

e−rt∗j dj ȳ
∗
j /Ĝ(t∗j−),

where dj is the multiplicity of t∗j .

3.2. Single sojourn without covariates

A single sojourn begins in state 0 and ends with transition to state 1 at time T .
Sojourn cost is incurred through time T ∗ = min(T, τ). From (6) the NPV of interest
is

(9) NPV =
∫ τ

0

e−rtS(t−)b0(t)dt =
∫ τ

0

S(t−)dm(t)

where m(t) =
∫ t

0
e−rub0(u)du. Allowing for an initial cost at t = 0, integration-by-

parts yields

(10) NPV + m(0) = E(m(T ∗)) =
∫ τ

0

m(t)(−dS(t)) + m(τ)S(τ)

where m(0) is the expected initial cost. In the absence of discounting (r = 0) and
ignoring covariates, Strawderman [18] considers the nonparametric estimation of
NPV based on observations on (censored) survival times and accumulating costs
in [0, τ ]. For the i-th subject the observed data are (Ni(t), Yi(t), Vi(t) : t ≤ τ),
where Vi(t) is the accumulated costs up to time t, Ni(t) = [Ti ≤ t, Ti ≤ Ui], and
Yi(t) = [Ti ∧ Ui ≥ t].

Define R(t, u) = E(Vi(t)|Ti ≥ u) for t ≥ u and estimate

m(t) =
∫ t

0

E(R(du, u)|T ≥ u)
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by

m̂(t) =
n∑

i=1

∫ t

0

{Y0(u)}−1Yi(u)dVi(u).

This leads to the estimator of NPV,

(11)
∧

NPV =
n∑

i=1

∫ τ

0

Ŝ(t−)Yi(t)Y −1
0 (t)dVi(t)

where, as before Ŝ is the Kaplan-Meier estimator of S and Y0(t) =
∑n

i=1 Yi(t).
To include in (11) a cost at t = 0 we could add the term n−1

∑n
i=1 m̂i(0) as the

estimator of m(0). Because

Ŝ(t) − Ŝ(t−) = −Ŝ(t−)
ΔN01(t)

Y0(t)

the right hand side of (10) would be estimated by

n∑
i=1

m̂(Ti)Ŝ(Ti−){Y0(Ti)}−1[Ti ≤ Ui ∧ τ ] + m̂(τ)Ŝ(τ).

Expression (11) is useful when the accumulating cost history is observed.

3.3. Single sojourn without covariates with restricted cost history

Suppose the cost accumulation process Vi(t) is observed at fixed time points {a0,
. . . , aG} where 0 = a0 < a1 < · · · < aG = τ . Let Vig = Vi(ag) − Vi(ag−1). If
observation goes past ag then Vig is observed. If Ti ∈ (ag−1, ag] then Vi(ag) = Vi(Ti)
and if Ti ≤ ag−1, Vig = 0. When censoring occurs in (ag−1, ag] the true incremental
cost in the interval is not known. We only observe Ṽig = Vi(Ui) − Vi(ag−1). In all
other cases we define Ṽig = Vig. Regarding dVi(t) in (11) as a discrete measure with
mass Ṽig at t = ag−1 we obtain

(12)
∧

NPV =
G∑

g=1

Ŝ(ag−1−)Y −1
0 (ag−1)

n∑
i=1

Yi(ag−1)Ṽig.

This estimator was introduced by Lin et al. [15]. By the weak law of large numbers
and the independence of Ui with Ti and Vi(t)

Y −1
0 (ag−1)

n∑
i=1

Yi(ag−1)Vig → E(Yi(ag−1)Vig)/E(Yi(ag−1)) = E(Vig|Ti ≥ ag−1).

Because Ṽig differs from Vig when there is censoring, (12) converges to

G∑
g=1

S1(ag−1−)E(Vig|Ti ≥ ag−1) − E∗ = E(Vi(τ)) − E∗

where E∗ =
∑G

g=1 E{(Vi(ag) − Vi(Ui))[Ui ≤ Ti ∧ ag]|Ui ≥ ag−1}. Hence there is
downward bias in estimating the mean cost E(Vi(τ)). If censoring does occur close
to the right endpoint of the intervals this bias is likely to be small.
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3.4. Regression model-based estimates of NPV

For the i-th subject let Yi = (yi1, . . . , yini)
′ denote the costs for the sojourns ending

at chronologically ordered times ti = (ti1, . . . , tini)
′. If the last sojourn has not ended

with transition to an absorbing state, we will define tini = τ so that yini is the cost
associated with the period [tini−1, τ ]. Censoring would also preclude observation of
some sojourn costs. Observation ends in one of three ways: (1) censoring occurs at
Ui before τ , (2) an absorbing state is reached before τ , or (3) observation goes past
τ . The cost yig associated with the g-th sojourn interval (tig−1 , tig] is observed if
sig = 1 where sig = [Ui ≥ tig ∧ τ ].

Let si denote the diagonal matrix of the {sig, g = 1, . . . , ni} and Xi = (xi1, . . . ,
xini)

′ be a ni × p matrix of covariates associated with Yi. The components of xig

contain covariates that are fixed over time as well as covariates that vary with time,
but only through (ti1, . . . , tig). In particular xig will contain functions of tig−1, tig.
The conditional mean vector and covariance matrix are denoted, respectively, by
μi = E(Yi|Xi), Vi = E[(Yi − μi)(Yi − μi)′|Xi]. We impose strict exogeneity on
the conditional means μig = E(yig|Xi) that requires μig to be a function of xig

only, that is, E(yig|xi1, . . .xini) = E(yig|xig) for all g = 1, . . . , ni. Independence
across subjects is assumed, in fact that {(Yi,Xi, si) : 1 ≤ i ≤ n} is a random
sample. The total number of records in the sample is N =

∑n
i=1 ni.

Let h be a link function such that h(μig) = x′
igβ where β is a p × 1 vector of

unknown parameters. (The β here is not the same as the regression parameter in the
intensity model (3) of section 2.3.) The ni × p matrix Di of derivatives ∂μi

∂β′ can be
expressed as Di = D0

i Xi where D0
i is the diagonal matrix with elements (dh/dx)−1

evaluated at x = μig. Assuming Vi is positive definite we may write Vi = LiL′
i

where Li is the unique lower triangular matrix with positive diagonal elements.
Make the transformations Ỹi = w1/2

i L−1
i Yi, μ̃i = w1/2

i L−1
i μi where wi is the

diagonal matrix with elements wig = sig/p(tig ∧ τ−, zi) and p(t, zi) = P [Ui > t|zi].
Here zi are fixed covariates that model the censoring distribution. They may differ
from the components of Xi. Given zi, assume Ui is independent of (Yi,Xi, ti).
Then E(sig|Yi,Xi, ti, zi) = P [Ui ≥ tig ∧ τ |zi] and E(wig|Yi,Xi, ti, zi) = 1 under
the assumption p(τ−, zi) > 0.

An estimator of β is obtained by minimizing the sum of squares q̃(Yi,wi,Xi) =∑n
i=1(Ỹi − μ̃i)′(Ỹi − μ̃i) with respect to β which leads to the estimating equation

(13)
n∑

i=1

D′
i(L

−1
i )′wi(L−1

i )(Yi − μi) = 0.

Because

E[D′
i(L

−1
i )′wi(L−1

i )(Yi − μi)]

=E[D′
i(L

−1
i )′E(wi|Yi,Xi, ti, zi)(L−1

i )(Yi − μi)]

=E[D′
iV

−1
i (Yi − μi)] = 0,

(13) provides a consistent estimator β̂ of β. The transformation of Yi −μi and Di

by w1/2
i L−1

i preserves time order and effectively uses only uncensored data in (13).
In the absence of censoring we would use the estimating equation

n∑
i=1

D′
iV

−1
i (Yi − μi) = 0.



358 J. C. Gardiner, L. Liu and Z. Luo

Hence (13) is the generalized estimating equations (GEE) analog for the selected
sample {(Yi,Xi, si) : 1 ≤ i ≤ n}.

Following the standard GEE methodology, n1/2(β̂−β) is asymptotically normal
with zero mean and covariance matrix A−1BA−1 where

A = E

(
∂Si(wi,Yi,Xi, β)

∂β′

)
,

(14)
B = E[Si(wi,Yi,Xi, β)S′

i(wi,Yi,Xi, β)]

and Si(wi,Yi,Xi, β) = D′
i(L

−1
i )′wi(L−1

i )(Yi − μi). Consistent estimators of A
and B are obtained by replacing the expectations in (14) by their sample averages
and β by β̂. In addition, we also need a consistent estimator of Vi = LiL′

i and
the censoring distribution p(t, zi). Methods for their estimation are suggested in
specific contexts in Lin [13, 14], Baser et al. [5] and Gardiner et al. [8].

Another approach is to estimate a random-effects (RE) model for Yi (or a trans-
formation of Yi) given by

(15) Yi = Xiβ + ai1i + ui

where β is an unknown p×1 parameter, 1i the ni×1 vector with all elements equal
to 1, ai an unobserved patient-specific heterogeneity and ui is the ni × 1 vector of
idiosyncratic errors. The composite error is vi = ai1i + ui. Assume Ωi = E(viv′

i)
is positive definite and that the standard RE assumptions (Wooldridge [20]) hold:

(a) E(ui|Xi, ai) = 0, E(ai|Xi) = 0,
(b) rank E(X′

iΩ
−1
i Xi) = p,

(c) E(uiu′
i|Xi, ai) = σ2

u Ii, E(a2
i |Xi) = σ2

a where σ2
u and σ2

a are constants and Ii

is the ni ×ni identity matrix. Therefore E(vi) = 0 and Ωi = σ2
u Ii + σ2

aJi where Ji

is the ni × ni matrix with all elements equal to 1.
To estimate β in (15) from censored observations on costs we first transform

(Yi,Xi,vi) to (Ỹi, X̃i, ṽi) where ṽi = w1/2
i L−1

i vi and Ỹi, X̃i are similarly defined.
Here Li is the unique lower triangular matrix with positive diagonal elements such
that Ωi = LiL′

i . The objective function for estimating β is

q̃(Yi,wi,Xi) = {w1/2
i (L′

i)
−1(Yi − Xiβ)}′{w1/2

i L−1
i (Yi − Xiβ)}.

Specializing (13) leads to the generalized least-squares (GLS) weighted estimator
β̂w given by

(16) β̂w =

(
n∑

i=1

X̃′
iX̃i

)−1 (
n∑

i=1

X̃′
iỸi

)
.

From (16) we get the consistency of β̂w and

(17) n1/2(β̂w − β) → N(0,A−1BA−1)

where A = E(X′
iΩ

−1
i Xi) and B = E(X̃′

iṽiṽ′
iX̃i).

3.5. Estimation of NPV

From our model (15) for all transition costs we obtain estimates of chj(t|z) for a
covariate profile z by specifying the covariates x0 corresponding to column positions
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in X. The row vector x′
ij of Xi in our model for yij will contain the fixed covariates

xi, dummies for transitions types, terms of modeling the transition times such as
tij , t2ij and perhaps interactions between these times and xi. Our special x0 will
contain the desired z, interactions between z, t and t2, indicator variables with value
1 for transition type h → j, and value 0 for all other transition types. Denoting
this covariate profile by xhj0(t) then chj(t|z)= x′

hj0(t)β and from (16) we obtain
the estimator

(18) ĉhj(t|z) = x′
hj0(t)β̂w.

Although the consistency of ĉhj(t|z) might seem immediate from (18) the final
form of the computable β̂w involves the estimated Ωi and weights wi, the latter
through the censoring distribution G. A formal verification is not attempted here,
but see Baser et al. [5] for a similar context.

Now recall the expected net present value E(C(1)
hj |X(0) = i, z). Plugging in

estimators for the entities on the right hand side in (4) leads to

(19) Ê(C(1)
hj (τ)|X0 = i, z) =

∫ τ

0

e−rtĉhj(t|z)P̂ih(0, t − |z)dÂhj(t|z).

The estimation of E(C(2)
h |X(0) = i, z) is entirely analogous except that one must

deal with the quantity bh(t|z) which is the expected mean rate of expenditures at
time t while sojourning in state h. In practice it will not be observable unless discrete
information is available. Instead, we will know only the total cost of the sojourn.
For example, consider hospital costs for patients undergoing coronary artery bypass
surgery. Expenditures are incurred in various care units such as the intensive care
unit, cardiac care unit and in recovery. We would know the entry and exit dates
for each unit and the associated cost of the length of stay in each unit, but not
necessarily the cost per day. An application modeling treatment cost rates in cancer
patients is discussed in Gardiner et al. [8] using a model for the log-transformed rate
of cost accumulation yij = y∗

ij/(tij − tij−1) between consecutive transition times
ti1, ti2, . . . where y∗

ij the sojourn cost in [tij−1, tij).

3.6. Single transition with covariates

Consider the same scenario discussed previously in 3.1 with all patients starting
in state “0” and followed until they reach the terminal state “1” (dead). For the
i-th patient Ti is the survival time and Ui the censoring time. Observation ceases
at min(Ti, Ui, τ), that is, either at the failure time, or censoring time or the limit
of observation. The only cost incurred is yi = yi(Ti) at time Ti which is observed
if si = 1 where si = [Ui ∧ τ ≥ Ti]. Let xi denote a p-vector of fixed covariates of
interest and zi denote fixed covariates used for modeling the censoring distribution.
Assuming independent censoring, that is, given zi, Ui is independent of (yi,xi, Ti),
we get

P [si = 1|zi, yi,xi, Ti] = P [Ui ≥ Ti, Ti ≤ τ |zi, Ti] = G(Ti − |zi)[Ti ≤ τ ].

Defining wi = si/G(Ti−|zi) we see that (13) reduces to minimizing with respect to β
the objective function n−1

∑n
i=1 q(yi, wi,xi) where q(yi, wi,xi) = σ−2

u wi(yi−x′
iβ)2.

This yields the estimator β̂w in (16) which in this case is

β̂w =

(
n∑

i=1

wixix′
i

)−1 n∑
i=1

wixiyi.
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This is the same estimator described by Lin [13] except for a slight difference in the
weights. Because Lin [13] uses a model in which costs are incurred through time
Ti∧τ his censoring indicator is s∗i = [Ui ≥ Ti∧τ ] and weight w∗

i = s∗i /G(Ti∧τ−|zi).
In our case the cost is realized at time Ti if and only if si = 1.

Let z0 denote a fixed covariate at which NPV(z0) is to be estimated. Since “0”
is the initial state and the only transition is 0→1, P̂00(0, t − |z0) = Ŝ(t − |z0) and
Ŝ(t|z0) = exp(−Â01(t|z0)). Here Ŝ is the estimator of the survival distribution S
of T , the time of transition. From (18) and (19) our estimator of NPV(z0) is

∧
NPV(z0) = β̂′

w

∫ τ

0

e−rtx0(t){−dŜ(t|z0)},

where x0(t) is the covariate vector derived from z0 and terms used to model time
(such as t, t2) in the cost equation yi = x′

iβ + ui. Here a single cost yi = yi(Ti) is
incurred at Ti, if observed by time τ . Then

E[yi(t)|z0, Ti = t] = x′
0(t)β

and
NPV(z0) =

∫ τ

0

e−rtE[yi(t)|z0, Ti = t]{−dS(t|z0)}

simplifies to E(e−rTiyi(Ti)[Ti ≤ τ ]|z0).
Since β̂w → βw in probability, and uniformly on [0, τ ], Ŝ(·|z0) → S(·|z0)

in probability, if S(τ |z0) > 0, we obtain the consistency of
∧

NPV(z0) provided∫ τ

0
e−rtx0(t)dS(t|z0) is finite. Also in estimating βw we require

P [Ti ≤ τ |z0] = 1 − S(t|z0) > 0,

because otherwise the cost equation will be vacuous since with probability 1 no
transition takes place in [0, τ ].

3.7. Single sojourn with covariates

Suppose the interval [0,τ ] is partitioned by the fixed points aj , j = 0, . . . , K with
0 = a0 < a1 < . . . < aK = τ . If the expected rate of cost accumulation is constant
in the intervals (aj−1, aj) with values bj we have

NPV(z0) =
K∑

j=1

bj

∫ aj

aj−1

e−rtS(t|z0)dt.

The integral is the increment over (aj−1, aj) in discounted life expectancy,

LE(z0, t) =
∫ t

0

e−ruS(t|z0)du.

Following Baser et al. [5] we could use a RE model for cost yi = (yi1, . . . , yiK)′

incurred by the i-th patient. Here yij is the cost incurred in interval (aj−1, aj) which
is observed provided sij = 1 where sij = [Ti∧Ui ≥ aj ]+ [aj−1 < Ti < Ui∧aj ]. This
reflects the two cases: (1) the patient neither died nor was censored before aj , or
(2) death was observed in (aj−1, aj). Under the assumed independence of censoring
P [sij = 1|zi, Ti] = G(T ∗

ij − |zi)[Ti ≥ aj−1] where T ∗
ij = min(Ti, aj). The regression

model for yij will include interval-specific elapsed time T ∗
ij − aj−1 which will yield

an estimator of bj that may depend on z0.
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4. Discussion and summary

The estimation of medical costs has received considerable attention because of its
importance in assessing cost-effectiveness of medical interventions and treatments.
Facing constrained healthcare budgets government planners and policy makers are
forced to consider the costs of competing interventions in addition to claims of their
clinical efficacy. The difference in the expected cost of two competing interventions is
the numerator of the cost-effectiveness ratio, the denominator being the incremental
health benefit as measured by life expectancy or by quality-adjusted life years (Chen
and Sen [6, 7] and Gardiner et al. [9]). The cost-effectiveness ratio can be used to
compare competing interventions with respect to both their health benefits as well
as their cost.

Obtaining reliable and valid estimates of costs is imperative. In this article we
adopted a longitudinal framework in which patient costs are manifested dynami-
cally over time. An underlying finite-state stochastic process describes the evolving
patient history with costs incurred at transition times between states and during
sojourn in states. In this framework we showed how net present values are defined,
following the basic notions of actuarial values used extensively in the insurance and
finance literature (Norberg [16]). For example, in the classic disability model there
are “able” periods and “disabled” periods. The individual holding a disability in-
surance policy would receive a fixed payment stream over the period of his or her
disability. In able periods the individual would pay the fixed premium in accordance
with the policy. There are three policy states –“able”, “disabled”, and “dead”. A
fundamental difference in our context is that costs are not fixed but random. One
may regard the total cost over a specified period as the sum of all transition costs
and sojourn costs.

Several methods have been proposed to estimate medical cost from follow up
data. The primary focus has been on a single cost measure that might be incom-
pletely ascertained due to time censoring (Bang and Tsiatis [2], Baser et al. [4], Lin
et al. [15], Strawderman [18] and O’Hagan and Stevens [17]). Regression analyses
allow for assessing the influence of explanatory variables on some measure of the
cost distribution, such as the mean or median (Bang and Tsiatis [3], Baser et al.
[5], Lin [13, 14] and Gardiner et al. [8]). Apart from addressing the incomplete-
ness of cost data, the ability to observe costs over finer time periods can serve to
strengthen ensuing analyses. For instance, consider the cost of a treatment which
is assumed to last at most for one year and costs are monitored monthly. If either
the endpoint is reached before the end of the year, or observation lasts one year,
the total cost is observed. If there is censoring of the endpoint before the end of the
year, we could use the monthly costs, except for the last month of observation, to
improve our estimate of the average cost of treatment.

The methods discussed here for analyses of medical costs may be adapted to
estimate other summary measures used in cost-effectiveness analyses (Gardiner
et al. [9]). For example, quality-adjusted survival is defined by using a quality
weight q(h, t) which represents the utility, relative to the state of perfect health,
of each unit of time spent in state h = X(t) at time t. Perfect health has a
quality weight 1, while death or states judged equivalent to death get a quality
weight of 0. The total quality adjusted time in [0, τ ] is

∑
h∈E

∫ τ

0
e−rtq(h, t)Yh(t)dt.

Hence conditional on X(0) = i we define the expected quality adjusted life years,
QALYi(z) =

∑
h∈E

∫ τ

0
e−rtq(h, t)Pih(0, t−|z)dt. The unconditional version is given

by QALY (z) =
∑

i∈E πi(0|z)QALYi(z). This expression is similar to the second
term of the NPV in (6).



362 J. C. Gardiner, L. Liu and Z. Luo

The transition model adopted in this article extends the simpler two-state sur-
vival model with a single transition and sojourn. The underlying analysis of survival
times is now replaced by the analysis of multiple event times which is facilitated by
using a non-homogeneous Markov model to govern the movement between states,
and a multiplicative intensity model to incorporate covariate effects. For the analy-
sis of longitudinal cost data, techniques such as inverse probability weighting to
account for censoring can be applied (Willan et al. [19]) but a more careful con-
sideration is required to combine the two parts of the model, the transition model
for the event times and a regression model for costs. Methods for joint modeling
of longitudinal observations and event times could be adapted for this purpose
(Henderson et al. [10] and Hogan and Laird [11, 12]).

Acknowledgments. We thank the referees for their careful reading of the man-
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