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Abstract: We consider a test for the hypothesis that the within-treatment
variance component in a one-way random effects model is null. This test is
based on a decomposition of a U-statistic. Its asymptotic null distribution
is derived under the mild regularity condition that the second moment of the
random effects and the fourth moment of the within-treatment errors are finite.
Under the additional assumption that the fourth moment of the random effect
is finite, we also derive the distribution of the proposed U-test statistic under a
sequence of local alternative hypotheses. We report the results of a simulation
study conducted to compare the performance of the U-test with that of the
usual F -test. The main conclusions of the simulation study are that (i) under
normality or under moderate degrees of imbalance in the design, the F -test
behaves well when compared to the U-test, and (ii) when the distribution of
the random effects and within-treatment errors are nonnormal, the U-test is
preferable even when the number of treatments is small.

1. Introduction

Consider the one-way random effects model

Yij = μ + bi + eij , i = 1, . . . k, j = 1, . . . , ni (≥ 2)(1.1)

with bi and eij , i = 1, . . . , k, j = 1, . . . , ni, denoting independent random vari-
ables with null means and variances σ2

b and σ2
e , respectively. Thus, μ is the mean

response, bi represents the random effect of the i-th treatment, eij represents a
random measurement error associated with the j-th observation obtained under
the i-th treatment, and σ2

b and σ2
e are between- and within-treatment variance

components, respectively.
In general, data analysis based on such a model focuses on the estimation of μ

and on testing the one-sided hypothesis (of no treatment effects)

H0 : σ2
b = 0 vs H1 : σ2

b > 0.(1.2)

Inference about variance components in random effects models, and more generally
in linear mixed models, has a long history in the statistical literature. In this con-
text, Searle et al. [21] provides an excellent overview of estimation and prediction
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while Khuri et al. [13] and Demidenko [6] present an extensive review of hypothesis
testing; Silvapulle and Sen [36] consider a comprehensive treatment of testing under
inequality constraints.

Under the additional assumption that bi and eij follow normal distributions, the
usual F -statistic for testing (1.2) is

F =
SQ(b)/(k − 1)
SQ(e)/(n − k)

,(1.3)

where SQ(b) =
∑k

i=1 ni(Y i. − Y ..)2 and SQ(e) =
∑k

i=1

∑ni

j=1 Y 2
ij −

∑k
i=1 niY

2

i. are,
respectively, the between- and within-treatment sums of squares. The F -statistic
(1.3) follows a central F distribution with k− 1 and n− k degrees of freedom when
H0 : σ2

b = 0 is true. In the balanced case (i.e., when n1 = · · · = nk) the test is
uniformly most powerful invariant (UMPI). This optimality property does not hold
in the unbalanced case. Details may be found in Khuri et al. [13], for example.

We propose an alternative test based on the decomposition of U -statistics con-
sidered by Pinheiro et al. [19] in a nonparametric setup. Although it is not an exact
test, it has good properties for moderate sample sizes and does not require the
normality assumption. It is also valid for heteroskedastic random effects.

The class of U -statistics has its genesis in the papers of Halmos [11] and Hoeffding
[12] and is well known for its simple structure and for the weak assumptions required
for its use in statistical inference. It also provides a unified paradigm in the field of
nonparametric Statistics and has been used in many applications, as illustrated in
Sen [23–31] and Sen and Ghosh [32], among others. The related theory is available
in many sources, among which we mention Serfling [34], Sen and Ghosh [32], Lee
[14] or Sen and Singer [33].

The test is derived under the assumption that E[e4
ij ] < ∞ and thus, accommo-

dates a large class of distributions (not necessarily continuous) as the sources of
variation in model (1.1).

In Section 2, using a martingale property, we describe the decomposition of the
U -statistic that provides the key to the proposed test. In Section 3, we present
simulation studies designed to evaluate the efficiency of the proposed test in differ-
ent situations and to compare its performance with that of the exact F -test. We
conclude with a brief discussion in Section 4.

2. Testing for variance components

Consider the function g(x, y) = (x − y)2/2 and note that, under model (1.1),

E[g(Yij , Yij′)] = E[(eij − eij′)2]/2 = σ2
e .

Therefore, an unbiased estimator of σ2
e , based only on the ni observations obtained

under the i-th treatment is given by the following U -statistic

Ui =
(

ni

2

)−1 ∑
1≤j<j′≤ni

g(Yij , Yij′) =
(

ni

2

)−1 ∑
1≤j<j′≤ni

(Yij − Yij′)2/2

= (ni − 1)−1
ni∑

j=1

(Yij − Y i.)2 = S2
i , i = 1, . . . , k.(2.1)

Since E[(bi − bi′)(eij − ei′j′)] = 0, it follows that E[g(Yij , Yi′j′)] = {2σ2
b + 2σ2

e}/2 =
σ2

b +σ2
e . Therefore, an unbiased estimator of σ2

b +σ2
e , based only on the observations
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obtained under treatments i and i′, is given by the following generalized U -statistic
of order (1,1)

Uii′ = (nini′)−1
ni∑

j=1

ni′∑
j′=1

(Yij − Yi′j′)2

2
, 1 ≤ i < i′ ≤ k.(2.2)

Letting n =
∑k

i=1 ni, the lexicographically ordered observations,

Y11, . . . , Y1n1 , Y21, . . . , Y2n2 , . . . , Yk1, . . . , Yknk
,

may be re-expressed as

Y1, . . . , Yn1 , Yn1+1, . . . , Yn1+n2 , . . . , Yn1+···+nk−1+1, . . . , Yn,

where the first n1 observations relate to treatment 1, the next n2, to treatment 2
and so on. The uniformly minimum variance unbiased estimator (UMVUE) of the
variance of the observations is given by the U -statistic

U0
n =

(
n

2

)−1 ∑
1≤r<s≤n

1
2
(Yr − Ys)2,

which can be rewritten as

U0
n =

(
n

2

)−1
⎧⎨
⎩

k∑
i=1

(
ni

2

)
Ui +

∑
1≤i<i′≤k

nini′Uii′

⎫⎬
⎭

=
k∑

i=1

ni(ni − 1)
n(n − 1)

Ui + 2
∑

1≤i<i′≤k

nini′

n(n − 1)
Uii′ ,(2.3)

highlighting its nature of a linear combination of generalized U -statistics. The first
and second terms in (2.3) correspond, respectively, to the within and between-
treatments components. Since

ni(ni − 1)/{n(n − 1)} = {ni/n} − {ni(n − ni)}/{n(n − 1)},

and
∑

i′ �=i ni′ = n − ni, we can rewrite the first term in (2.3) as

k∑
i=1

ni(ni − 1)
n(n − 1)

Ui =
k∑

i=1

ni

n
Ui −

k∑
i=1

ni(n − ni)
n(n − 1)

Ui

=
k∑

i=1

ni

n
Ui −

∑
1≤i<i′≤k

nini′

n(n − 1)
Ui −

∑
1≤i<i′≤k

nini′

n(n − 1)
Ui′ ,

leading to the decomposition

(2.4) U0
n = Wn + Bn

where

Wn =
k∑

i=1

ni

n
Ui and Bn =

∑
1≤i<i′≤k

nini′

n(n − 1)
{2Uii′ − Ui − Ui′} .
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This includes the classical ANOVA decomposition as a special case. Now observe
that

E[Bn] =
∑

1≤i<i′≤k

nini′

n(n − 1)
{
2(σ2

b + σ2
e) − 2σ2

e

}
= 2σ2

b

∑
1≤i<i′≤k

nini′

n(n − 1)

= σ2
b

k∑
i=1

∑
i′ �=i

nini′

n(n − 1)
= σ2

b

k∑
i=1

ni(n − ni)
n(n − 1)

= σ2
b

(
n2 −

∑k
i=1 n2

i

n(n − 1)

)
≥ 0.

Therefore, E[Bn] = 0 if and only if σ2
b = 0. These results allow us to construct a

test for (1.2) based on Bn (suitably standardized) as we show in the sequel.
Firstly using the lexicographically ordered observations, we show that Bn may

be reexpressed as

Bn =
(

n

2

)−1 ∑
1≤r<s≤n

ηnrsψ(Yr, Ys),(2.5)

where ψ(x1, x2) = (x1 − μ)(x2 − μ) and

ηnrs =

⎧⎨
⎩

(n − ni)/(ni − 1), if Yr and Ys are both observed
under the i-th treatment,

−1, otherwise.
(2.6)

Thus, it follows that ∑
1≤r<s≤n

ηnrs = 0(2.7)

and

∑
1≤r<s≤n

η2
nrs =

(
n

2

)
(k − 1)

{
1 +

1
n

k∑
i=1

n − ni

(ni − 1)(k − 1)

}
.(2.8)

When k → ∞ and the ni’s are bounded, i.e., the maximum number of observations
per treatment does not increase with the number of treatments, it follows that
k = O(n); hence, by (2.8) we may conclude that Mn =

∑
1≤r<s≤n η2

nrs = O(n3).
Under H0 : σ2

b = 0, the random variables Y1, . . . , Yn are independent and iden-
tically distributed and ψ(x, y) is a first-order stationary kernel, centered at 0, con-
stituting an orthogonal system in the sense adopted in Pinheiro et al. [19], that
is,

ψ1(Yr) = E[ψ(Yr, Ys)|Yr] = E[(Yr − μ)(Ys − μ)|Yr] = 0 a.s.(2.9)
E[ψ(Y1, Y2)ψ(Y1, Y3)] = 0.(2.10)

Now, observe that E[ψ2(Yr, Ys)] = Var[ψ(Yr, Ys)] = E[(Yr−μ)2(Ys−μ)2] = σ4
e < ∞.

Then, we may show (see Appendix), that under H0 : σ2
b = 0,

Jn =

(
n
2

)
Bn

Wn

√
Mn

D−→N (0, 1)(2.11)

when k → ∞(⇒ n → ∞). The key to the proof is the martingale property exhibited
by Bn, as pointed in Pinheiro et al. [19] in a different setup. Let limn→∞ Mn/n3 =
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λ, which is finite because Mn = O(n3); assume that the fourth moment of the
distribution of the random effects is finite and let δ denote a constant. Then, under
the sequence of local hypotheses

H1n : σ2
b = δ2/

√
n,(2.12)

it follows that

Jn
D−→N

(
δ2

2σ2
e

√
λ

, 1
)

as k → ∞,(2.13)

Details are presented in the Appendix. Because the mean of this limiting normal
distribution is positive, we may use Jn as a test statistic for (1.2), rejecting the null
hypothesis H0 at significance level α when Jn ≥ zα, where zα is the (1 − α)100%
percentile of the standard normal distribution. By (2.13), the power of this test
is directly related to the magnitude of the intraclass correlation coefficient ρ =
σ2

b/(σ2
b + σ2

e); more specifically, the power is a monotone increasing function of ρ,
as expected.

3. Simulation results

We summarize some simulation studies conducted with the objective of evaluating
the behaviour of the proposed test. First, we examine the efficiency of the U -test
in balanced studies under different distributions for the within-treatment errors
eij and random effects bi. Then, we compare the efficiency of the proposed U -test
with that of the usual F -test under various settings. Additional results from the
simulation studies may be obtained from the authors.

3.1. Efficiency of the proposed test

To evaluate the behaviour of the proposed test for small and moderate samples we
considered 10, 000 Monte-Carlo samples obtained under model (1.1) with μ = 2
and σ2

e = 1, for different numbers of treatments (k = 10, 30 and 100) in balanced
studies. We assumed that eij ∼ N (0, 1) and bi ∼ t3 ×

√
σ2

b/3, so that Var[bi] = σ2
b .

The between-treatments variance, σ2
b , was set to 0 (to estimate the size of the test),

0.2, 0.5 and 1. The empirical power of the test under each setting was evaluated for
a significance level of α = 0.05.

The results, displayed in first half of Table 1, suggest that the U -test tends to be
liberal when there are few observations for each treatment (ni ≤ 4). The difference
between the empirical and nominal size of the test is acceptable when the number
of treatments is at least 30 and there are 5 or more observations per treatment.
Furthermore, the power of the test increases with σ2

b , ni and k, as expected.
To illustrate the robustness of the U -test with respect to heavy-tailed within-

treatment error distributions, we repeated the simulation study described previ-
ously assuming that eij ∼ t5 ×

√
3/5 (so that Var[eij ] = 1). The results, summa-

rized in the second half of Table 1, are not considerably different from the previous
ones; here, however, the empirical size of the test is closer to the nominal size and
the test also tends to be more powerful than when the within-treatment errors are
normal.
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Table 1

Rejection rates (%) for the 5% level U-test in balanced designs with bi ∼ t3 ×
√

σ2
b/3

k = 10 k = 30 k = 100
ni ni ni

σ2
b 2 4 5 10 2 4 5 10 2 4 5 10

eij ∼ normal

0 14 8.8 7.6 6.2 8.3 7.1 6.3 6.1 7.2 6.1 5.9 5.4
0.2 26 36 41 64 33 59 69 93 54 92 97 100
0.5 41 61 69 89 61 91 96 100 93 100 100 100
1.0 57 82 88 98 85 99 100 100 100 100 100 100

eij ∼ t5 ×
√

3/5

0 13 8.9 7.8 6.3 8.4 6.8 6.3 6.1 7.3 5.9 5.5 5.4
0.2 26 37 42 64 34 61 69 93 54 92 97 100
0.5 41 62 71 89 63 91 95 100 92 100 100 100
1.0 60 83 89 97 86 99 100 100 100 100 100 100

3.2. Comparison between the F - and U-tests

To compare the two tests, we first repeated the simulation study described previ-
ously, using the same values for μ and σ2

e in the following situations:

(i) Balanced study under normality;
(ii) Moderately unbalanced study under normality;
(iii) Lightly unbalanced study with heavy-tailed distributions;
(iv) Balanced study with heavy-tailed asymmetric distributions.

Firstly, we consider a balanced setting with 5 observations per treatment. The
random effects and the within-treatment errors were generated according to: bi ∼
N (0, σ2

b ) and eij ∼ N (0, 1). The results are presented in Table 2 and as in the
previous studies, they suggest that the U -test is liberal. However, the difference
between the empirical and nominal size of the test decreases substantially when
the number of treatments increases. This occurs mainly when there are few units
per treatment. On the other hand, the proposed U -test is more powerful than the
exact F -test, though we should recognize that this might be influenced by its liberal
nature.

We also considered simulation studies to evaluate the effect of imbalance in the
power of the two tests under investigation. Khuri et al. [13], Donner and Koval [7]
and Lee [15] discuss the performance of F -tests for different degrees of imbalance,
defined as κ = 1/(1 + ψ2) where ψ denotes the coefficient of variation associated
with the sample sizes n1, . . . , nk. By definition, 0 < κ ≤ 1 with κ = 1 only for
balanced studies. Smaller values of κ indicate larger degrees of imbalance.

We selected the number of within-treatment observations from a geometric dis-
tribution (shifted to the right by 2) with parameter p = 0.15 and support {0, 1, . . .}.
This corresponds to a moderate degree of imbalance (κ = 0.61). The random effects
bi and the within-treatment errors eij were respectively generated from N (0, σ2

b )
and N (0, 1) distributions.

In spite of the moderate imbalance, the size of the F -test is closer to the nom-
inal level than is that of the (more liberal) U -test, especially when the number of
treatments is small; however, the latter is more powerful than the F -test in most
settings.

We also evaluated the simultaneous effects of a small degree of imbalance and
heavier-tailed distributions for the random effects and within-treatment errors. In



U-tests for variance components 203

Table 2

Rejection rates (%) for the 5% level F and U-tests

k = 10 k = 20 k = 30 k = 50 k = 100
σ2

b F Jn F Jn F Jn F Jn F Jn

Balanced designs and normal distributions
0 4.9 7.7 4.7 7.3 5.3 7.0 5.0 6.0 4.9 5.8
0.2 41 51 63 71 78 82 92 94 99 100
0.5 78 84 96 97 99 100 100 100 100 100
1 95 97 100 100 100 100 100 100 100 100

Moderately unbalanced designs and normal distributions
0 5.2 7.2 5.0 6.7 5.1 6.2 4.9 6.0 4.9 5.7
0.2 51 70 74 87 90 96 98 100 100 100
0.5 96 99 100 100 100 100 100 100 100 100
1 100 100 100 100 100 100 100 100 100 100

Unbalanced designs with heavy-tailed distributions for bi and eij

0 3.5 5.9 3.9 5.5 4.4 5.4 4.7 5.3 5.3 5.1
0.2 47 55 61 72 71 80 82 89 92 95
0.5 68 79 85 90 91 94 96 98 98 99
1 84 90 94 97 97 98 98 99 99 99

Balanced designs with heavy-tailed asymmetric distributions for bi and eij

0 4.4 5.7 4.4 5.6 4.3 5.4 4.4 5.3 4.6 5.2
0.2 37 45 57 64 70 76 86 89 98 98
0.5 70 77 89 91 96 97 99 99 100 100
1 87 91 98 98 99 100 100 100 100 100

this direction, we selected the number of within-treatment observations with equal
probability from the set {5, 6, 7, 8, 9, 10}; this corresponds to κ ∼= 0.95. In addition,
we assumed that bi ∼ t4.1×

√
σ2

b21/41 and eij ∼ t4.1×
√

21/41, so that Var[bi] = σ2
b

and Var[eij ] = 1.
The results, also presented in Table 2, suggest that the size of the U -test is closer

to the nominal level than is that of the F -test even in settings with few treatments.
The bias is larger for the F -test, mainly when there are few treatments.

Finally, we evaluated the possible effect of asymmetric heavy-tailed distributions
for the random effects and within-treatment errors on the size and power of the
two tests. In this direction, we considered a balanced setting with 5 observations
per treatment. The random effects and the within-treatment errors were generated
according to the following distributions: bi ∼ {(Y1 − E[Y1])/

√
Var[Y1]} × σb and

eij ∼ (Y2 − E[Y2])/
√

Var[Y2], where Y1, Y2 are independent identically distributed
random variables with skew t distribution with 4.1 degrees of freedom, location
parameter 0, dispersion parameter 1 and asymmetry parameter λ = 1 with index
of skewness equal to 1.77. For details on the skew t distribution, see Azzalini and
Capitanio [2]. The results are also presented in Table 2 and suggest a conservative
behaviour for the F -test. On the other hand, the size of the U -test is closer to the
nominal level, even for samples of moderate size. It may also be observed that the
U -test is more powerful in all configurations.

4. Discussion and conclusion

Although there exists an exact F -test with optimal properties for testing the signif-
icance of the between-treatments variance component in a one-way random effects
model with balanced data under normality, we must rely on sub-optimal or approx-
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imate tests in unbalanced or nonnormal settings. We derived an asymptotic U -test
that may be employed with unbalanced data and does not require a specified form
for the underlying probability distributions. Simulation studies suggest that it has
reasonable properties even for moderate and small samples.

In particular, we may conclude that the F -test is more affected by the lack of
normality of the random effects and within-treatment errors than by imbalance.
Furthermore, the U -test seems to be less sensitive to imbalance and to be more
powerful than the F -test in general. Such conclusions must be viewed with caution,
given the liberal nature of the U -test, specially for small sample sizes. To bypass this
problem, one could consider bootstrap methods to obtain the empirical distribution
of the statistic Jn under H0 and use the fact that the null hypothesis should be
rejected for high values of Jn. For details on the use of bootstrap to construct
confidence regions or for hypothesis testing, see Davison and Hinkley [5] or Lehmann
and Romano [16], Chapter 15, for example.

In summary, under normality or under moderate degrees of imbalance, the F -test
behaves well in terms of power when compared to U -test; however, in situations
where the distribution of the random effects and within-treatment errors are non-
normal, the U -test is preferable even when the number of treatments is small. In all
settings the U -test is more powerful than the F -test, mainly for small and moderate
samples.

The proposed U -test may also be used to test for simultaneous significance of all
random components in models with more than one random effect, since it behaves as
(2.11) under H0. The corresponding power computations, however, require further
research.

Brownie and Boos [4] and Boos and Brownie [3] study the behaviour of F -tests
and analogous rank tests in one-way random effects models when the number of
treatments is large. Akritas and Arnold [1] also study the asymptotics of ANOVA
under similar conditions but their results require more restrictive assumptions than
those we considered; the proofs, however, are different for balanced and unbalanced
studies.

In the context under investigation, the derivation of tests for (1.2) may not fol-
low the standard procedures since the null hypothesis defines a point (or region) on
the boundary of the parameter space and this brings in some technical difficulties.
Asymptotic tests for (1.2) or, more generally, for testing the significance of variance
components under linear mixed models are available in the literature. Based on
the ideas of Silvapulle and Silvapulle [35], Verbeke and Molenberghs [38] obtained
score-type tests under the assumption that the underlying probability distributions
are normal. Along the same lines, Savalli et al. [20] extended the results to accom-
modate elliptical underlying distributions. In particular, for the one-way random
effects models, the corresponding test statistic follows an asymptotic distribution
given by a 50:50 mixture of χ2

0 and χ2
1 distributions. Tests based on generalized

likelihood methods (that are asymptotically equivalent to the score-type tests) are
considered in Self and Liang [22], Stram and Lee [37] and Silvapulle and Sen [36],
for example. The main disadvantage of such tests is the difficulty in verifying the
required regularity conditions as shown in Giampaoli and Singer [9]. The derivation
of the proposed U -test is not affected by such difficulties and we envisage that it
may serve as a building block for more general setup as indicated in Nobre [18].

Other alternatives have been suggested in the literature. Using a Laplace expan-
sion of the integrated log-likelihood, Lin [17] obtained a global score test for the
hypothesis that all variance components are zero in the framework of generalized
linear models with random effects. Along the same lines, Zhu and Fung [39] ob-
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tained a global score-type test for the hypothesis that all variance components are
zero in a semiparametric mixed model, under the assumption of normality only of
the conditional error vector. It is important to point out, that the tests are ob-
tained without specifying the distribution of the random effects, though they are
based on a marginal approach under which the within-treatment covariances may
be negative. Hall and Præstgaard [10] consider such a constraint in the framework
of generalized linear models with random effects, via a projected score test. In prac-
tice, their results are difficult to apply when the dimension of the vector of random
effects is large.

Appendix A: Proof of (2.11)

Note that under H0 : σ2
b = 0,

Bn =
(

n

2

)−1 ∑
1≤r<s≤n

ηnrsψ(Yr, Ys)

is a sum of
(
n
2

)
uncorrelated terms such that E[ψ(Yr, Ys)] = 0 e Var[ψ(Yr, Ys)] =

σ4
e < ∞. Thus, it follows that

(A.1) E[Bn] = 0 and Var[Bn] = σ4
eMn

(
n

2

)−2

.

Then, along the lines adopted in Pinheiro et al. [19], we explore the martingale struc-
ture of Bn, and apply a martingale Central Limit Theorem as given in Dvoretzky
[8] or Sen and Singer [33] to obtain the desired asymptotic distribution. Their proof
requires k fixed and ni → ∞; we consider ni bounded and let k → ∞, although the
test is also valid when both k → ∞ and ni → ∞.

Initially, consider the statistic

Tn =
∑

1≤i<j≤n

ηnijφ(Xi, Xj)(A.2)

with φ satisfying

φ1(X1) = E[φ(X1, X2)|X1] = 0 a.s.,(A.3)
E[φ(X1, X2)φ(X1, X3)] = 0,(A.4)
E[φ2(X1, X2)] < ∞,(A.5)

where X1, . . . , Xn represents a sequence of independent and identically distributed
random variables and ηnij denotes weights such that

(A.6)
∑

1≤i<j≤n

ηnij = 0 and
∑

1≤i<j≤n

η2
nij = M∗

n.

Defining, Znj =
∑j−1

i=1 ηnijφ(Xi, Xj), for j = 2, ...n and Tnu =
∑u

l=2 Znl for 2 ≤
u ≤ n, it follows that Tnn = Tn. Now, considering the nondecreasing sequence (in
u) of σ-fields σnu = σ(Xi, i ≤ u) that corresponds to the σ-fields generated by the
random vector (X1, . . . , Xu)�, 2 ≤ u ≤ n we may apply the following result due to
Pinheiro et al. [19].
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Theorem A.1. Under conditions (A.2)–(A.5), {Tnu, 2 ≤ u ≤ n} is a zero mean
martingale process adapted to the filter {σnu, 2 ≤ u ≤ n}.

Letting Dn denote a weakly consistent estimator of τ2 = E[φ2(Xi, Xj)] < ∞
(i < j), it follows from (A.4) and (A.5) that Var[Tn] = E[T 2

n ] = τ2M∗
n. Using

Slutsky’s theorem, we obtain

DnM∗
n

E[T 2
n ]

P−→1.(A.7)

Now, note that the statistic
(
n
2

)
Bn is of the form (A.2) with φ(x, y) = (x−μ)(y−μ)

satisfying (A.3)–(A.5). Additionally, observe that τ2 = E[φ2(Xi, Xj)] = σ4
e < ∞. A

consistent estimator of τ2 may be obtained from the following result.
Lemma A.1. Consider a linear combination of U -statistics of the form Wn =∑k

i=1
ni

n Ui =
∑k

i=1 wiUi. If

max
1≤i≤k

ni∑k
i=1 ni

→ 0,(A.8)

it follows that W 2
n

P−→σ4
e .

Proof. Condition (A.8) is valid when the ni’s are fixed and k → ∞. It also holds
when ni → ∞, as for example, in a balanced study.

Noting that E[Wn] = σ2
e , and using properties of U -statistics, it is possible to

show that Var[Ui] = E[e4
ij ]/ni − (ni − 3)σ4

e/{(ni − 1)ni}. Then, a direct application

of Chebyshev’s inequality leads to Wn
P−→σ2

e . Since x2 is a continuous function in
the support of Wn, we conclude that Dn = W 2

n
P−→σ4

e .
In the proof, E[e4

ij ] < ∞ is used to guarantee the existence of Var[Ui]. In some
situations, as in the balanced case, this requirement may be relaxed and the result
follows from Khintchine’s weak law of large numbers.

We now focus on the following lemma.
Lemma A.2. Consider the weights defined in (2.6). When k → ∞ it follows that∑

1≤i �=j<u≤n

η2
niuη2

nju/M2
n → 0, and

∑
1≤i �=j≤n

η4
nij/M

2
n → 0.(A.9)

Proof. When k → ∞ and the ni’s are bounded, it follows that k = O(n). Then by
(2.8), we obtain Mn =

∑
1≤r<s≤n η2

nrs = O(n3). Now, the result follows from

∑
1≤i �=j≤n

η4
nij = O(n5) and

∑
1≤i �=j<u≤n

η2
niuη2

nju = O(n5).

The proof of the main result consists in verifying the two regularity conditions
of Theorem 3.3.7 in (Sen and Singer [33], page 120) and it is similar to the proof
presented in Pinheiro et al. [19].
Theorem A.2. Suppose that E[φ4(X1, X2)] < ∞, (A.3)-(A.5) hold and, for n →
∞, the weights ηnij satisfy

(A.11)
∑

1≤i �=j<k≤n

η2
nikη2

njk/(M∗
n)2 → 0 and

∑
1≤i �=j≤n

η4
nij/(M∗

n)2 → 0.
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Then, for Tn in (A.2), we have that

(M∗
nDn)−1/2Tn

D−→N (0, 1).(A.12)

Proof. For the weights defined in (2.6), we have M∗
n = Mn. Then (2.11) follows

from Lemmas A.1 and A.2.

Appendix B: Proof of (2.13)

First observe that

Ui =
(

ni

2

)−1 ∑
1≤j<j′≤ni

(Yij − Yij′)2

2
=

(
ni

2

)−1 ∑
1≤j<j′≤ni

(eij − eij′)2

2

and Wn =
k∑

i=1

(ni/n)Ui, are functions only of the vector of within-treatment er-

rors e. Consequently, their distributions under H0 and H1n are the same. On the
other hand, we have

Bn =
∑

1≤i<i′≤k

nini′

n(n − 1)
{2Uii′ − Ui − Ui′}

=
∑

1≤i<i′≤k

nini′

n(n − 1)

⎧⎨
⎩ 2

nini′

ni∑
j=1

ni′∑
j′=1

(Yij − Yi′j′)2

2
− Ui − Ui′

⎫⎬
⎭

= B0
n + Cn,

where

B0
n =

∑
1≤i<i′≤k

nini′

n(n − 1)

⎧⎨
⎩ 2

nini′

ni∑
j=1

ni′∑
j=1

(eij − ei′j′)2

2
− Ui − Ui′

⎫⎬
⎭ ,

Cn =
∑

1≤i<i′≤k

nini′

n(n − 1)

⎧⎨
⎩(bi − bi′)2 +

2(bi − bi′)
nini′

ni∑
j=1

ni′∑
j′=1

(eij − ei′j′)

⎫⎬
⎭ .

Also, under H0, Bn = B0
n. Therefore,

J∗
n =

(
n
2

)
Bn

σ2
eM

1/2
n

=

(
n
2

)
B0

n

σ2
eM

1/2
n

+

(
n
2

)
Cn

σ2
eM

1/2
n

= Jn0 + Qn,(B.1)

where Jn0 =
(
n
2

)
B0

n/(σ2
eM

1/2
n ) D−→N (0, 1) (by 2.11) and Qn =

(
n
2

)
Cn/(σ2

eM
1/2
n ).

The term Cn can be decomposed as Cn = Cn1 + Cn2 where

Cn1 =
1

n(n − 1)

∑
1≤i≤i′≤k

nini′(bi − bi′)2

and

Cn2 =
2

n(n − 1)

∑
1≤i≤i′≤k

(bi − bi′)
ni∑

j=1

ni′∑
j′=1

(eij − eij′).
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Since E[Cn2] = 0, we have

E[Cn] = E[Cn1] =
1

n(n − 1)

∑
1≤i≤i′≤k

nini′E[(bi − bi′)2]

=
1

n(n − 1)

∑
1≤i≤i′≤k

nini′2σ2
b = σ2

b

(
n2 −

∑k
i=1 n2

i

n(n − 1)

)
= O(n−1/2).

The following result provides the asymptotic behaviour of Qn under the assumption
of the existence of the fourth moment of the random effects.
Lemma B.1. Consider model (1.1) under H1n = σ2

b = δ2/
√

n. Assuming that
E[b4

i ] < ∞ and letting limn→∞ Mn/n3 = λ, we have(
n
2

)
Cn√

Mn

P−→ δ2

2
√

λ
.

Proof. Given that E[b4
i ] < ∞, then by contiguity of the sequence of local alternative

hypotheses H1n : σ2
b = δ2/

√
n, we have that E[b4

i ] = o(1) under H1n. Defining
bij = (bi−bj)2, recalling that b1, . . . , bk are independent and identically distributed
and that the ni’s are bounded, we have

Var[Cn1] =
1

n2(n − 1)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
1≤i<i′≤k

n2
i n

2
i′Var[bii′ ] +

∑
1≤i<t≤k
1≤i<w≤k

t�=w

n2
i ntnwCov[bit, biw]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ max{Var[b12], Cov[b12, b13]}
n2(n − 1)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
1≤i<i′≤k

n2
i n

2
i′ +

∑
1≤i<t≤k
1≤i<w≤k

t�=w

n2
i ntnw

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= o(1)O(n−1) = o(n−1),

since Var[b12
a ] and Cov[b12

a , b13
a ] are of the same order as E[b4

i ], namely, o(1). Sim-
ilarly, it is possible to show that Var[Cn2] = o(n−1). Here, observing that

(
n
2

)
/√

Mn = O(
√

n), we have

lim
n→∞

(
n
2

)
E[Cn1]√
Mn

= lim
n→∞

δ2
(
n2 −

∑k
i=1 n2

i

)
2
√

n
√

Mn

=
δ2

2
√

λ
,

and since O(n)Var[Cn1] = o(1) → 0, when n → ∞, it follows that
(
n
2

)
Cn1/√

Mn
P−→ δ2/{2

√
λ}. Since E[Cn2] = 0 and Var[Cn2] = o(n−1), we have that(

n
2

)
Cn2/

√
Mn

P−→0. Therefore,(
n

2

)
Cn/

√
Mn =

(
n

2

)
(Cn1 + Cn2)/

√
Mn

P−→δ2/{2
√

λ}.

Now, recalling (B.1), Lemma B.1 observing that Wn
P−→σ2

e , and using Slutsky’s
theorem, we obtain

Jn =

(
n
2

)
Bn

Wn

√
Mn

=

(
n
2

)
B0

n

σ2
e

√
Mn

σ2
e

Wn
+

(
n
2

)
Cn

σ2
e

√
Mn

σ2
e

Wn

D−→N
(

δ2

2σ2
e

√
λ

, 1
)

,



U-tests for variance components 209

implying that, under H1n : σ2
b = δ2/

√
n the center of the normal is shifted to the

right by δ2/(2σ2
e

√
λ).
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