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Abstract: The paper proposes some robust estimators of the finite popula-
tion mean. Such estimators are particularly suitable in the presence of some
outlying observations. Included as special cases of our general result are ro-
bust versions of the ratio estimator and the Horvitz-Thompson estimator. The
robust estimators are derived on the basis of certain predictive influence func-
tions.

1. Introduction

It is indeed a pleasure and privilege to contribute to this Festschrift honoring Pro-
fessor P. K. Sen, a man whom I have long cherished as my friend, guide and philoso-
pher. Professor Sen, for nearly a period of five decades, has made many profound
contributions to the discipline of statistics. His research has encompassed every sin-
gle area of statistical inference—parametric, semiparametric and nonparametric,
and the theory that he has developed has found applications in many diverse areas
of science. Indeed, he is one of the rare individuals in our profession who cannot
just be identified with one localized area of statistics. The versatility of his research
transcends any single narrowly focused topic, and the whole is by far bigger than
the sum of the parts.

One of the many areas of interest of Professor Sen is the robustness of statistical
procedures. His multiple authored or coauthored articles on the topic are very well
summarized and unified in his 1996 classic treatise with Jureckova. The book pro-
vides a very comprehensive account of the subject with a fully developed asymptotic
theory.

In this note, I will consider the robustness issue from a Bayesian perspective
in the context of finite population sampling. Although, written within a Bayesian
framework, the proposed estimators can also be viewed entirely from a model-
based perspective. We introduce the notion of “predictive influence functions” as
introduced by Johnson and Geisser [15–17], and obtain robust alternatives to a
general class of Bayesian model-based estimators of the finite population mean,
which includes in particular robust alternatives to the popular ratio estimators as
well as Horvitz-Thompson estimators.

Section 2 of this paper introduces the concept of “predictive influence functions”
based on a general divergence measure as introduced for example in Amari [1]
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and Cressie and Read [5]. The general divergence measure includes as a special
case both the Kullback-Leibler and Hellinger divergence measures. The concept of
“predictive influence functions” was first used by Johnson and Geisser [15–17] in
a Bayesian context based specifically on the Kullback-Leibler divergence measure.
Based on these influence functions, we have developed in this section, a general
class of robust Bayesian estimators of the finite population mean. As special cases,
we have found robust Bayesian alternatives to the ratio estimator as well as the
Horvitz-Thompson estimator. In Section 3, we have obtained the mean squared
error of these robust Bayes estimators purely from a frequentist criterion. Some
final remarks are made in Section 4.

Influence functions have a long and rich history in the statistics literature. Their
importance in robust estimation is well-emphasized in Hampel [12], Huber [14],
Hampel et al. [13] and many related papers. The predominant idea is to detect
influential observations in terms of their effects on parameters, most typically the
regression parameters. We have taken instead the predictive point of view. In finite
population sampling, where the primary goal is to predict the “unseen” from the
“seen”, such a predictive approach seems quite natural. However, we have been
able to point out a close connection between the proposed influence function, and
the ones considered by Hampel, Huber and others. The main point is to control
the effect of outlying observations for inference in finite population sampling. We
have pointed out also the connection of the proposed robust ratio estimators to the
corresponding estimators of Chambers [4] and Gwet and Rivest [10].

2. Development of estimators

Consider a finite population with units labeled 1, 2, . . . , N . A subset s of {1, 2, . . . ,
N} is referred to as a sample. For simplicity, we consider only samples of fixed size
n. Let y1, . . . , yN denote the characteristics of interest associated with the N units
in the population. Consider the hierarchical Bayesian model where conditional on
θ, yi

ind∼ N(θai, σ
2
i ), 1, 2, . . . , N , where the ai and σ2

i are known constants, while the
unknown θ has a uniform distribution on the real line. Without loss of generality, let
s = {1, 2, . . . , n}. Also, let ȳw =

∑n
i=1 aiσ

−2
i yi/

∑n
i=1 a2

i σ
−2
i , as = (a1, . . . , an)T ,

au = (an+1, an+2, . . . , aN ), ys = (y1, . . . , yn)T , yu = (yn+1, yn+2, . . . , yN )T and
Σu = diag(σ2

n+1, . . . , σ
2
N ). It is shown in Ghosh and Sinha [9] that the posterior

distribution of θ given ys is N(ȳw, 1/
∑n

i=1 a2
i σ

−2
i ), and the posterior predictive dis-

tribution of yu given ys is N(ȳwau,Σu +auaT
u /

∑n
i=1 a2

i σ
−2
i ). It is also shown that

with the given model, the estimator of the finite population mean ȳP = N−1
∑N

i=1 yi

is given by

(1) ˆ̄yP = N−1[
n∑

i=1

yi + ȳw

N∑
j=n+1

aj ].

In particular, if ai = xi, σ2
i = σ2xi, i = 1, . . . , n, then the resulting estimator of the

finite population mean is the ratio estimator (ȳs/x̄s)x̄P , where ȳs = n−1
∑n

i=1 yi,
x̄s = n−1

∑n
i=1 xi, and x̄P = N−1

∑N
i=1 xi. The choice ai = xi and σ2

i = x2
i

leads to the estimator N−1[
∑n

i=1 yi + n−1
∑n

i=1(yi/xi)], an estimator introduced
in Royall [19] and considered at length in Basu [2]. Finally, the choice ai = πi

and σ2
i = πi/(1 − πi), where πi > 0 for all i = 1, . . . , N and

∑N
i=1 πi = n leads

to the Horvitz-Thompson estimator N−1
∑n

i=1(yi/πi) for ȳP . It is instructive to
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view the estimator ȳw of θ as a weighted average of the estimators yi/ai of θ,
the weights being proportional to a2

i /σ2
i , the inverses of the variances of these

estimators. However, the estimators yi/ai are not necessarily outlier resistant. In
particular, some of the components yi/ai could be substantially different from the
grand average ȳw. This may happen when for instance, a particular ratio yi/ai is
substantially smaller in magnitude than the other ratios yj/aj , but its variance
σ2

i /a2
i is much larger relative to the other variances σ2

j /a2
j , (j �= i). Since the

estimators yi/ai of θ are weighted inversely proportional to their variances in ȳw,
the effect of this particular yi/ai can be very insignificant compared to the other
yj/aj (j �= i), in finding ȳw. In order to control such outlying observations, as in
Hampel [12], we first study the influence of yi/ai. To this end, we bring in the notion
of “predictive influence functions” as introduced by Johnson and Geisser [15–17]
based on the Kullback-Leibler (K-L) divergence measure. The influence function as
considered here, however, is based on a general divergence measure introduced by
Amari [1] and Cressie and Read [5]. This measure includes, but is not limited to
the K-L or Bhattacharyya-Hellinger (B-H) (Bhattacharyya [3] and Hellinger [11])
divergence measure. For two densities f1 and f2, this general divergence measure
is given by

(2) Dλ(f1, f2) =
1

λ(λ + 1)
Ef1

[(
f1

f2

)λ

− 1

]
.

The above divergence measure should be interpreted as its limiting value when
λ → 0 or λ → −1. We may note that Dλ(f1, f2) is not necessarily symmetric in
f1 and f2, but the symmetry can always be achieved by considering 1

2 [Dλ(f1, f2)+
Dλ(f2, f1)]. Also, it may be noted that as λ → 0, Dλ(f1, f2) → Ef1 [log f1

f2
], while if

λ → −1, Dλ(f1, f2) → Ef2 [log f2
f1

]. These are the two K-L divergence measures.
Also D− 1

2
(f1, f2) = 4(1 −

∫ √
f1f2) = 2H2(f1, f2), where H(f1, f2) = {2(1 −∫ √

f1f2)}1/2, the B-H divergence measure. In the present context, we consider
the divergence between the posterior predictive distribution of yu given ys and
the posterior predictive distribution of yu given ys with one of the yi, say, yk,
k = 1, . . . , n removed. To this end, we first state a general divergence result involv-
ing two multivariate normal distributions based on the general divergence measure
as given in (2). The result is proved in Ghosh, Mergel and Datta (2006).

Theorem 1. Let f1 and f2 denote the Np(μ1,Σ1) and Np(μ2,Σ2) pdf’s respec-
tively. Then

Dλ(f1, f2) =
1

λ(λ + 1)
[exp{λ(λ + 1)

2
(μ1 − μ2)

T

× ((1 + λ)Σ2 − λΣ1)−1(μ1 − μ2)}
× |Σ1|−

λ
2 |Σ2|−

λ−1
2 |(1 + λ)Σ2 − λΣ1|

1
2 − 1].

It follows from the above general result that the divergence between two nor-
mal distributions is a quadratic function of the difference of the two mean vec-
tors. In the present context the difference in the mean vectors of the two pos-
terior predictive distributions of yu turns out to be a multiple of the square of

ȳw −
∑n

i=1
aiσ

−2
i

yi−akσ−2
k

yk∑n

i=1
a2

i
σ−2

i
−a2

k
σ−2

k

, which on simplification reduces to a known multiple of

the square of yk/ak−ȳw. Thus, one needs to control the residuals yk/ak−ȳw for find-
ing robust estimators of the finite population mean ȳP . However, in order to make
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these residuals scale-free, we consider the standardized residuals (yk/ak − ȳw)/vk,
where v2

k = V (yk/ak − ȳw) = (a2
kσ−2

k )−1 − (
∑n

i=1 a2
i σ

−2
i )−1.

It is instructive to find a connection between the proposed method of finding the
influence functions, and those that are widely used in the robust statistics literature.
Following the approach of Hampel [12], the influence function (IF) of the functional
T at distribution function F is given by

IF(x; T, F ) = lim
t↓0

T ((1 − t)F + tδx) − T (F )
t

,

for x ∈ X where this limit exists. Here T (F ) is the parameter of interest, and δx

is the dirac-delta function. Thus when the parameter of interest is the population
mean, namely T (F ) =

∫
xdF , X ∼ F , writing Ft = (1 − t)F + tδx0 ,

T (Ft) =
∫

xd[(1 − t)F + tδx0 ] = (1 − t)
∫

xdF + tx0.

for x ∈ X where this limit exists. Here T (F ) is the parameter of interest, and δx

is the dirac-delta function. Thus when the parameter of interest is the population
mean, namely T (F ) =

∫
xdF , X ∼ F , writing Ft = (1 − t)F + tδx0 ,

T (Ft) =
∫

xd[(1 − t)F + tδx0 ] = (1 − t)
∫

xdF + tx0.

Hence, IF(x0; T, F ) = x0 − θ. In our case, conditional on θ, E(yk/ak) = θ, and the
natural estimator of θ is ȳw. Hence, we estimate yk/ak − θ by yk/ak − ȳw. However,
it is more appropriate to consider the scale-free residuals rk = (yk/ak − ȳw)/vk.

Based on these scale-free residuals, and writing wi = a2
i σ

−2
i /

∑n
i=1 a2

i σ
−2
i , i =

1, . . . , n, we propose the robust estimator

(3) θ̂R = ȳw +
n∑

i=1

wivi[riI[|ri|≤C] + CI[ri>C] + (−C)I[ri<−C]].

Consequently, the proposed robust estimator of the finite population mean ȳP is
given by

(4) ȳ
(R)
P = N−1[

n∑
i=1

yi + θ̂R

N∑
j=n+1

aj ].

Remark 1. The proposed estimator of θ or of ȳP is similar in spirit to the “limited
translation estimator” of Efron and Morris [6, 7]. However, the present motivation
of these estimators from the predictive influence function point of view is entirely
new. We will address the question of choice of the constant C in the next section.

Remark 2. In the special case when ai = πi and σ2
i = π2

i /(1 − πi), π > 0 and∑N
i=1 πi = n, wi = (1−πi)/

∑n
i=1(1−πi)) and vi = (1−πi)−1 − (

∑n
i=1(1−πi))−1.

The resulting estimator ȳ
(R)
P of ȳP is a robust alternative of the celebrated Horvitz-

Thompson estimator.

Remark 3. Next in the case when ai = xi and σ2
i = σ2h(xi), it follows that

wi = [x2
i /h(xi)]/

∑n
i=1[x

2
i /h(xi)]. In this case, our estimator is similar to the one

of Chambers [4] except that Chambers used σi rather than vi as the scaling factor.
To see the difference between the two estimators in the special case of robust alter-
natives to the ratio estimator, that is, where ai = xi and σ2

i = σ2xi, the proposed
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scaling factor vi simplifies to σ[x−1
i − (

∑n
i=1 xi)−1]1/2. In contrast, Chamber’s scal-

ing factor is just σx
−1/2
i . One interesting feature is that we bring in the notion of

influence functions in the derivation of robust estimators in finite population sam-
pling which could be potentially useful as a general approach to robust estimation
in the model-based analysis of more complex surveys as well.

In the next section, we will find the frequentist mean squared error (that is
conditional on θ) of ȳ

(R)
P .

3. Mean squared error

We first find an expression for the mean squared error (MSE) of ȳ
(R)
P as an estimator

of ȳP . In the process, we have also made some observations about the choice of the
constant C. To this we first prove the following theorem.

Theorem 2. Under the assumed model, conditional on θ,
(5)

E(ȳ(R)
P − ȳP )2 = N−2[

N∑
j=n+1

σ2
j + {(

n∑
i=1

a2
i σ

−2
i )−1 + (

n∑
i=1

w2
i v2

i )g(C)}(
N∑

j=n+1

aj)2],

where Φ and φ denote respectively the N(0,1) df and pdf and

(6) g(C) = 2[(C2 + 1)Φ(−C) − 2Cφ(C)].

Remark 4. It may be noted that under the assumed model, the MSE of ˆ̄YP ,
the posterior mean of ȲP , also the best unbiased predictor (best linear unbiased
predictor without normality), is given by N−2[

∑N
j=n+1 σ2

j + (
∑n

i=1 a2
i σ

−2
i )−1 ×

(
∑N

j=n+1 aj)2]. Thus, if the assumed model is true, the excess risk of the pro-
posed robust estimator is given by N−2(

∑n
i=1 w2

i v2
i )g(C)(

∑N
j=n+1 aj)2. Noting that

g′(C) = 2[CΦ(−C) − φ(C)] < 0 (Feller [8], page 166), it follows that g(C) is de-
creasing in C. This is intuitively expected since larger the value of C closer θ̂R is to
θ̂. The constant C will be chosen by setting an upper bound, say, M to this excess
risk, and then solving C numerically by equating this excess risk to M . The choice
of M will be clearly left to the experimenter. The main idea is to seek a tradeoff
between robustness against model failure and the maximum excess risk that one is
willing to tolerate by proposing this robust estimator when the assumed model is
true.

Proof of Theorem 2. Throughout, the calculations are done conditional on θ. First
from the independence of the yi, i = 1, . . . , N , for fixed θ, it follows that

(7) E(ȳ(R)
P − ȳP )2 = N−2[

N∑
j=n+1

σ2
j + (

N∑
j=n+1

aj)2E(θ̂R − θ)2].

Next noting that
∑n

i=1 wiviri = ȳw − ȳw = 0, from (3), one can alternately write
θ̂R as

(8) θ̂R = ȳw −
n∑

i=1

wivi[(ri − C)I[ri>C] + (ri + C)I[ri<−C]].
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Next due to the independence of the yi, Cov(yi/ai − ȳw, ȳw) = (
∑n

i=1 a2
i σ

−2
i )−1 −

(
∑n

i=1 a2
i σ

−2
i )−1) = 0. Hence, because of normality, yi/ai − ȳw, and accordingly ri

is distributed independently of ȳw. Accordingly, it follows from (8) that

(9) E(θ̂R − θ)2 = V (ȳw) + E[
n∑

i=1

wivi{(ri − C)I[ri>C] + (ri + C)I[ri<−C]}]2.

Since ri ∼ N(0, 1), it follows after some algebra that

(10) E[(ri − C)I[ri>C] + (ri + C)I[ri<−C]]2 = 2[(C2 + 1)Φ(−C) − 2Cφ(C)].

Next, by the fact that for i �= k, (ri, rk) d= (ri,−rk) d= (−ri, rk) d= (−ri,−rk),(where
d= signifies “has the same distribution as”), one gets

E[{(ri − C)I[ri>C] + (ri + C)I[ri<−C]}{(rk − C)I[rk>C] + (rk + C)I[rk<−C]}]
= E[{(ri − C)(rk − C) − (ri − C)(rk − C)

−(ri − C)(rk − C) + (ri − C)(rk − C)}I[ri>C]I[rk>C]
] = 0.(11)

The theorem follows now from (7) and (9)–(11).

4. Summary and conclusion

The paper proposes some robust estimators which can guard against outlying obser-
vations in connection with model-based inference in finite population sampling. In
the process, new robust alternatives to the ratio estimators as well as the Horvitz-
Thompson estimator are found. The mean squared errors of these model-based
estimators are also obtained. Future work will encompass extension of these ideas
to more complex surveys, for example in multistage stratified sampling, and also to
address situations when there is wide departure from the assumed model.

Acknowledgments. Thanks are due to a referee for constructive comments.
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