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Mean Commute Time for Random
Walks on Hierarchical Scale-Free
Networks
Yilun Shang

Abstract. In recent years, there has been a surge of research interest in networks with
scale-free topologies, partly due to the fact that they are prevalent in scientific research
and real-life applications. In this paper, we study random-walk issues on a family
of two-parameter scale-free networks, called (x, y)-flowers. These networks, which are
constructed in a deterministic recursive fashion, display rich behaviors such as the
small-world phenomenon and pseudofractal properties. We derive analytically the mean
commute times for random walks on (x, y)-flowers and show that the mean commute
times scale with the network size as a power-law function with exponent governed
by both parameters x and y. We also determine the mean effective resistance and
demonstrate that it changes sharply between different choices of x and y. Furthermore,
we compare mean commute times for (x, y)-flowers with those for Erdős–Rényi random
graphs. Our theoretical results are verified by numerical studies.

1. Introduction

As one of the most studied stochastic processes, random walks [Lovász 96,
Weiss 94] have attracted considerable research attention due to their widespread
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application in various theoretical and applied fields, including statistical physics
[Burioni and Cassi 05, Metzler and Klafter 00, Shang 10], computational biology
[Codling et al. 08], machine vision [Meila and Shi 01, Turk 01], and structural
pattern analysis [Fouss et al. 07, Gori et al. 04]. Random walks, for instance,
are the basis of the PageRank algorithm used by the Google bot search engine
[Brin and Page 98]. It is also well known that there is a basic correspondence
between random walks on graphs and electrical networks [Doyle and Snell 84].
Among a number of important quantities related to random walks, the commute
time Cuv of a random walk on a graph is of particular interest. It is defined
as the expected number of steps for the random walk to travel from node u to
node v and then return to u. In the last few years, the commute time has re-
ceived increasing attention, since it can be used as a robust measure of network
search efficiency [Bartumeus and Levin 08, Garćıa Cantú and Abad 08, Maiya
and Berger-Wolf 10, Tejedor et al. 11], proximity of data, and cluster cohesion
[Esfandiar et al. 10, Qiu and Hancock 07, Yen et al. 07].

Most of the existing literature on the commute time addresses random walks
on some particular graphs with relatively simple structure, such as trees [Pala-
cios 09], regular lattices [Lovász 96, Montroll 56], Sierpiński gaskets [Bentz et
al. 10, Hattori et al. 94], homogeneous random graphs [Sood et al. 05], and the
like. However, recent studies have revealed that many real-world complex net-
works such as the Internet, World Wide Web, and social networks are scale-free
[Barabási and Albert 99]: the degree distribution P (k) (that is, the distribution
that governs the probability that a node will have degree k) follows a power
law P (k) ∝ k−γ with degree exponent γ in the range 2 ≤ γ ≤ 3. This highly in-
homogeneous structural feature profoundly affects various dynamical processes
taking place on networks [Bollobás and Riordan 04, Newman et al. 06, Tanaka et
al. 12]. Much effort has been devoted to random-walk issues on stochastic scale-
free network models (such as the Molloy–Reed scheme [Molloy and Reed 95] and
Barabási–Albert model [Barabási and Albert 99]); see, e.g., [Candia et al. 07, Gal-
los 04, Hruz and Peter 11, Noh and Kim 06, Polynikis 06] and references therein.

In this paper, we study simple random walks on a family of deterministic
scale-free networks, called (x, y)-flowers [Rozenfeld et al. 07, Rozenfeld and ben-
Avraham 07]. These networks are constructed in a recursive fashion so that each
network contains x + y subgraphs that resemble the whole. In this sense, the
(x, y)-flowers can be viewed as hierarchical networks [Hinczewski and Berker 06,
Shang 12]. We determine analytically the mean commute time between hubs
(nodes of highest degree) and other nodes for the random walks. Our result
indicates that the mean commute time scales with the network size in the form
of a power law, whose exponent is dictated by the two parameters x and y. The
corresponding mean effective resistance is shown to change sharply from zero to
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infinity between different combinations of parameters in the limit of large network
size. One interesting finding is that (x, y)-flowers with x > 1 possess longer mean
commute times even than sparse Erdős–Rényi graphs with the same size and a
logarithmically diverging average degree 〈k〉 = Θ(lnn). Numerical calculations
are performed to test our theoretical results.

To the best of our knowledge, there are no existing studies on commute time or
effective resistance in (x, y)-flowers. We should mention some prior work that is
conceptually or spiritually relevant. The average trapping time for random walks
with a fixed trap on (x, y)-flowers is analyzed in [Zhang et al. 09, Zhang et al. 11]
by numerical or analytical means. Bond percolation processes on (x, y)-flowers
are investigated in [Rozenfeld and ben-Avraham 07], where percolation thresh-
olds are derived using renormalization group techniques. In [Hinczewski and
Berker 06], the authors consider the critical behavior of the ferromagnetic Ising
model on some limiting cases of (x, y)-flowers. Numerical studies of reaction–
diffusion processes and susceptible–infected (SI) epidemic processes running over
(x, y)-flowers are conducted in [Yun et al. 09] and [Chu et al. 10], respectively.

The rest of this paper is organized as follows. In Section 2, we present the net-
work model as well as some basic properties. The mean commute time is derived
in Section 3. We conclude the paper in Section 4 with some open problems.

2. Hierarchical Scale-Free Networks

The hierarchical scale-free networks called (x, y)-flowers are constructed in a
recursive fashion [Rozenfeld et al. 07, Rozenfeld and ben-Avraham 07]. Each
edge in generation n is replaced by two parallel paths consisting of x and y

edges, to yield generation n + 1; see Figures 1 and 2. In what follows we assume
that x ≤ y and y > 1, without loss of generality. Denote by Fn (x, y) the (x, y)-
flowers in generation n. F0(x, y) consists of two initial nodes connected by an
edge, and F1(x, y) is a cycle consisting of x + y ≡ z edges and nodes. The special
case of x = 1 and y = 2 (cf. Figure 1) was promoted by [Dorogovtsev et al. 02]
a decade ago.

From the method of construction, it is easy to derive that the numbers of edges
and nodes in Fn (x, y), the (x, y)-flowers of generation n, are

Mn = (x + y)n = zn (2.1)

and

Nn =
(

z − 2
z − 1

)
zn +

z

z − 1
, (2.2)
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n=1 n=2 n=3

Figure 1. A depiction of (x, y)-flowers with x = 1 and y = 3. The top of the figure
illustrates the edge-replacement scheme: Each edge is replaced by two parallel
paths of x and y edges. The bottom of the figure shows flowers obtained in this
way to generations n = 1, 2, 3 (color figure available online).

respectively. We note that (x, y)-flowers with the same parameter z have the same
degree sequence and hence identical degree distribution [Rozenfeld et al. 07].
In addition, they have been shown to have degree distribution of the form
P (k) ∝ k−γ , with γ = 1 + ln z/ ln 2, and are thus scale-free. In both (1, 3)- and
(2, 2)-flowers, for example, we have γ = 1 + ln 4/ ln 2 = 3. Considering short-
est paths, (x, y)-flowers with x = 1 are small worlds and are otherwise fractals
with fractal dimension (in chemical space) df = ln z/ ln x [Rozenfeld et al. 07].
These and other topological properties, such as assortativity and clustering,
make them a viable model for real-life networks associated with some complex

n=1 n=3n=2

Figure 2. A depiction of (x, y)-flowers with x = 2 and y = 2. The top of the figure
illustrates the edge-replacement scheme: Each edge is replaced by two parallel
paths of x and y edges. The bottom of the figure shows flowers obtained in this
way to generations n = 1, 2, 3 (color figure available online).
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systems [Rozenfeld and ben-Avraham 07], while their self-similarity makes them
amenable to rigorous mathematical treatment.

3. Random Walks on (x , y )-Flowers

In this section, we investigate the simple discrete-time random walks of a walker
on the network Fn (x, y). At each time step, the walker moves from its current
location to one of its neighbor nodes with equal probability [Lovász 96]. The
commute time Cuv between nodes u and v is the expected number of steps in a
random walk commencing from node u, reaching node v, and then returning to
u. In (x, y)-flowers, the two initial nodes, which will be denoted by i0 and j0 , are
the most-connected (i.e., hub) nodes in the graph. We will focus on the commute
time between i0 and any other node, say v, in Fn (x, y), namely, the expected
time in a random walk starting at i0 , reaching v, and then returning to i0 . We
denote this commute time by C

(n)
i0 v .

Let Vn be the vertex set of (x, y)-flower Fn (x, y). By definition, we have Nn =
|Vn |. The mean commute time, 〈C〉n , which is the average of C

(n)
i0 v over all nodes

in Fn (x, y), is given by

〈C〉n =
1

Nn

∑
v∈Vn

C
(n)
i0 v . (3.1)

Clearly, for all n we have C
(n)
i0 i0

= 0. Since F1(x, y) is a cycle, it is easy to check

that C
(1)
i0 j0

/2 = xy ≡ w. In what follows, we will see that the parameter w together
with z ≡ x + y plays an important role in the mean commute time for random
walks on (x, y)-flowers.

Theorem 3.1. For a simple random walk on Fn (x, y), we have

〈C〉n ∼ z2 − 4
3(w − 1)

N ln w/ ln z
n , (3.2)

as n → ∞, where Nn is given by (2.2) and an ∼ bn means an/bn → 1 as n → ∞.

Note that we have w > 1 and z > 2 by the assumptions x ≤ y and y > 1. Thus,
it follows from (3.2) that the dominating scaling of mean commute time grows as
a power-law function of network size Nn with the exponent lnw/ ln z. It is easy to
see that this exponent is no less than 1 for x > 1, namely, for those (x, y)-flowers
with finite fractal dimensions [Rozenfeld et al. 07]. It is shown in [Sood et al. 05]
that in the Erdős–Rényi random graph G(N, p) with p > ln N/N , the commute
time between any two nodes u and v satisfies Cuv ∼ 2N almost surely. Owing to



326 Internet Mathematics

the homogeneity of Erdős–Rényi random graphs, we may let i0 be any vertex in
G(N, p) and define 〈C〉 as the average of Ci0 v over all nodes in G(N, p). Clearly,
the relation 〈C〉 ∼ 2N still holds. The above discussion leads to the following
corollary.

Corollary 3.2. Let the (x, y)-flower Fn (x, y) have the same size as the Erdős–Rényi
random graph G(N, p), i.e., Nn = N . The following statements are true as n →
∞ and N → ∞:

� The mean commute times in (x, y)-flowers with x = 1, i.e., small-world
graphs and nonfractals, are less than those in connected Erdős–Rényi ran-
dom graphs almost surely.

� The mean commute times in (x, y)-flowers with

x > 1 and (x − 2)2 + (y − 2)2 > 0,

i.e., fractals, are greater than those in connected Erdős–Rényi random
graphs almost surely.

� The mean commute times in (2, 2)-flowers are asymptotically equal to those
in connected Erdős–Rényi random graphs almost surely.

If we define the average degree of Fn (x, y) as

〈k〉n =
2Mn

Nn
=

2(z − 1)zn−1

(z − 2)zn−1 + 1
, (3.3)

which tends to 2(z − 1)/(z − 2), then by making use of Theorem 3.1, we may
obtain an asymptotic upper bound in terms of average degree 〈k〉n .

Corollary 3.3. We have

〈C〉n ∼ 8(2〈k〉n − 3)
3(〈k〉n − 2)2〈k〉n (w − 1)

(
2(〈k〉n − 1)
〈k〉n − 2

)n ln w/ ln z

≤ 4(2〈k〉n − 3)
3〈k〉n (〈k〉n − 2)

(
2(〈k〉n − 1)
〈k〉n − 2

)2n ln( 〈k 〉n −1
〈k 〉n −2 )/ ln( 2 ( 〈k 〉n −1 )

〈k 〉n −2 )
, (3.4)

as n → ∞.

Proof. From (3.3), we know that the average degree satisfies

〈k〉n ∼ 2(z − 1)
z − 2
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as n → ∞. Accordingly, we have

z ∼ 2(〈k〉n − 1)
〈k〉n − 2

. (3.5)

Substituting (3.5) into (2.2), we derive

Nn ∼ 2
〈k〉n

((
2(〈k〉n − 1)
〈k〉n − 2

)n

+ 〈k〉n − 1
)

, (3.6)

as n → ∞.
Therefore, it follows from (3.5), (3.6), and (3.2) that

〈C〉n ∼ 2(z2 − 4)
3(w − 1)〈k〉n

(
2(〈k〉n − 1)
〈k〉n − 2

)n ln w/ ln z

∼ 8(2〈k〉n − 3)
3(〈k〉n − 2)2〈k〉n (w − 1)

(
2(〈k〉n − 1)
〈k〉n − 2

)n ln w/ ln z

, (3.7)

as n → ∞. By our definition, the inequality z − 1 ≤ w ≤ (z/2)2 holds. Using this
inequality in (3.7), we finally arrive at the desired upper bound (3.4).

When a graph G = (V,E) is considered as an electrical network with unit
conductances on the edges, it is well known [Chandra et al. 96] that Cuv =
2|E|Ruv , where Ruv is the effective resistance between u and v. Let R

(n)
uv be the

effective resistance between u and v in Fn (x, y), and define the mean effective
resistance as

〈R〉n =
1

Nn

∑
v∈Vn

R
(n)
i0 v . (3.8)

Corollary 3.4. We have

〈R〉n ∼ z2 − 4
6(w − 1)zn

N ln w/ ln z
n

→

⎧⎪⎪⎨
⎪⎪⎩

0 if x = 1,

∞, if x > 1 and (x − 2)2 + (y − 2)2 > 0,

O(1) if x = y = 2,

(3.9)

as n → ∞.

Proof. It follows from (3.1) and C
(n)
i0 v = 2MnR

(n)
i0 v that

〈C〉n =
2Mn

Nn

∑
v∈Vn

R
(n)
i0 v . (3.10)
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Figure 3. The plot shows the mean effective resistance of Fn (x, y) with n = 5 as
a function of x and y. This effective resistance, 〈R〉5 , is color coded as indicated
in the right panel (color figure available online).

Hence for large n,

〈R〉n =
〈C〉n
2Mn

∼ z2 − 4
6(w − 1)zn

N ln w/ ln z
n

∼ (z + 2)(z − 2)1+ln w/ ln z

6(w − 1)(z − 1)ln w/ ln z
· zn(ln w/ ln z−1) , (3.11)

and using (3.8), (3.10), (2.2), and Theorem 3.1, the result follows.

In Figure 3, we plot the mean effective resistance 〈R〉n of Fn (x, y) with n = 5
as a function of x and y. This effective resistance is an increasing function of
both x and y for every n.

Now we turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let H
(n)
uv be the hitting time for a random walk from node u to

node v in Fn (x, y), that is, the expected number of steps before node v is visited,



Shang: Mean Commute Time for Random Walks on Hierarchical Scale-Free Networks 329

i j
i j

v1
vx-1

u1 u2 u3

uy-1

v2
v3

Figure 4. An illustration of labels of nodes in an (x, y)-flower: each edge
connecting two old nodes i and j generates x + y − 2 new nodes v1 , v2 , . . . ,
vx−1 , u1 , u2 , . . . , uy−1 (color figure available online).

starting from node u [Lovász 96]. By definition and (3.1), we have

〈C〉n =
1

Nn

∑
v∈Vn

C
(n)
i0 v =

∑
v∈Vn

H
(n)
vi0

+
∑

v∈Vn
H

(n)
i0 v

Nn
. (3.12)

We will first address the evolution of H
(n)
vi0

. By the construction rule, an edge
connected with an old node i and an old node j at generation n will create x +
y − 2 new nodes at generation n + 1, among which x − 1 nodes v1 , v2 , . . . , vx−1

together with i and j constitute a path of length x edges, and the other y − 1
nodes u1 , u2 , . . . , uy−1 together with i and j constitute a path of y edges (see
Figure 4). We call v1 and u1 first-order new neighbors of i, v2 and u2 second-
order new neighbors of i, and so forth.

Consider a random walk on Fn+1(x, y). By construction, as the network grows
from generation n to n + 1, the degree of node i at generation n, denoted by k

(n)
i ,

increases from k
(n)
i to k

(n+1)
i = 2k

(n)
i . Among these 2k

(n)
i neighbors, half are the

first-order new neighbors of i belonging to paths of x edges, and the other half
are the first-order new neighbors of i belonging to paths of y edges. Let Z be
the hitting time commencing from node i to any of its k

(n)
i old neighbors, say j,

namely, those nodes adjacent to node i at generation n. Let X1s (1 ≤ s ≤ k
(n)
i )

be the hitting time starting at any of i’s k
(n)
i first-order new neighbors belonging

to a path of x edges to node j, and similarly, let Y1s (1 ≤ s ≤ k
(n)
i ) be the hitting

time starting at any of i’s k
(n)
i first-order new neighbors belonging to a path of

y edges to node j. Then

Z =
1

2k
(n)
i

k
(n )
i∑

s=1

(1 + X1s) +
1

2k
(n)
i

k
(n )
i∑

s=1

(1 + Y1s). (3.13)
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Define X1 =
∑k

(n )
i

s=1 X1s/k
(n)
i and Y1 =

∑k
(n )
i

s=1 Y1s/k
(n)
i . Hence (3.13) can be

rewritten in the compact form

Z =
1 + X1

2
+

1 + Y1

2
.

Analogously, we can define Xt (2 ≤ t ≤ x − 1) and Yl (2 ≤ l ≤ y − 1). Together
with (3.13), we have the following backward equations:

Z =
1
2
(1 + X1) +

1
2
(1 + Y1),

X1 =
1
2
(1 + Z) +

1
2
(1 + X2),

X2 =
1
2
(1 + X1) +

1
2
(1 + X3),

· · ·
Xx−1 =

1
2

+
1
2
(1 + Xx−2), (3.14)

Y1 =
1
2
(1 + Z) +

1
2
(1 + Y2),

Y2 =
1
2
(1 + Y1) +

1
2
(1 + Y3),

· · ·
Yy−1 =

1
2

+
1
2
(1 + Yy−2).

Eliminating Xt (1 ≤ t ≤ x − 1) and Yl (1 ≤ l ≤ y − 1) from (3.14), we obtain
Z = xy. Hence, on the growth of (x, y)-flowers from generation n to generation
n + 1, the hitting time between node i and any one of the old nodes j (i.e., i, j ∈
Fn (x, y)) increases by the factor xy. This is because the hitting time between
any two adjacent nodes at generation n increases from 1 to xy at generation
n + 1. Thus we have

H
(n+1)
vi0

= xyH
(n)
vi0

= wH
(n)
vi0

. (3.15)

Let Ṽn be the set of nodes in Fn (x, y) that enter the network at generation n.
Hence, we have Vn = Ṽn ∪ Vn−1 . For 1 ≤ s ≤ n, we define the following quanti-
ties:

H(n)
s =

∑
v∈Vs

H
(n)
vi0

(3.16)

and

H̃(n)
s =

∑
v∈Ṽs

H
(n)
vi0

. (3.17)
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Using (3.15), we observe that H
(n)
n obeys the following recurrence relation:

H(n)
n = H

(n)
n−1 + H̃(n)

n = wH
(n−1)
n−1 + H̃(n)

n . (3.18)

To solve H
(n)
n , we need first to figure out H̃

(n)
n .

According to the construction algorithm, for a given edge incident on two nodes
i and j in Fn (x, y), it will give rise to the creation of x + y − 2 new nodes, say
v1 , . . . , vx−1 , u1 , . . . , uy−1 , at generation n + 1 (cf. Figure 4). The hitting times
for these new nodes satisfy relations

H
(n+1)
v1 i0

=
1
2
(
1 + H

(n+1)
ii0

)
+

1
2
(
1 + H

(n+1)
v2 i0

)
,

H
(n+1)
v2 i0

=
1
2
(
1 + H

(n+1)
v1 i0

)
+

1
2
(
1 + H

(n+1)
v3 i0

)
,

· · ·
H

(n+1)
vx −1 i0

=
1
2
(
1 + H

(n+1)
vx −2 i0

)
+

1
2
(
1 + H

(n+1)
j i0

)
,

H
(n+1)
u1 i0

=
1
2
(
1 + H

(n+1)
ii0

)
+

1
2
(
1 + H

(n+1)
u2 i0

)
, (3.19)

H
(n+1)
u2 i0

=
1
2
(
1 + H

(n+1)
u1 i0

)
+

1
2
(
1 + H

(n+1)
u3 i0

)
,

· · ·
H

(n+1)
uy −1 i0

=
1
2
(
1 + H

(n+1)
uy −2 i0

)
+

1
2
(
1 + H

(n+1)
j i0

)
.

Arguing similarly as in [Zhang et al. 09, Zhang et al. 11], we can obtain the
following recurrence relation from (3.19):

H̃
(n+2)
n+2 = wzH̃

(n+1)
n+1 +

1
6
(z2 − 3w − 1)(z − 2w)zn+1 . (3.20)

Using the initial condition H̃
(1)
1 = (z3 − z)/6 − w, we solve (3.20) inductively to

get

H̃(n)
n =

(
(z2 − 3w − 1)(z − 2w)

6(w − 1)
+

z3 − z

6
− w

)
(wz)n−1

− (z2 − 3w − 1)(z − 2w)zn

w − 1
. (3.21)

Substituting (3.21) into (3.18), we arrive at

H(n)
n =

A1z
n

w − z
+ A3w

n +
A2z

nwn−1

z − 1
, (3.22)
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by involving the initial condition H
(1)
1 = (z3 − z)/6, where

A1 =
(z2 − 3w − 1)(z − 2w)

6(w − 1)
,

A2 = A1 +
z3 − z

6
− w,

A3 =
z3 − z

6w
− A1z

w(w − z)
− A2z

w(z − 1)
.

Next, we need to study the evolution of the analogous hitting time H
(n)
i0 v . Note

that a random walk originating at i0 and ending at node v1 must pass either
node i or node v2 ; cf. Figure 3. A similar consideration reveals that the analogue
of relation (3.19) still holds. The counterparts for the initial conditions H

(1)
1 and

H̃
(1)
1 are unaltered, since F1(x, y) is a symmetric cycle graph. Hence, although

H
(n)
i0 v is not equal to H

(n)
vi0

in general, we have
∑

v∈Vs
H

(n)
i0 v = H

(n)
n . Thus, it follows

from (3.12), (3.16), and (3.22) that

〈C〉n =
2H

(n)
n

Nn
=

2A1z
n

w − z
+ 2A3w

n +
2A2z

nwn−1

z − 1
, (3.23)

where A1 , A2 , and A3 are given as before.
From (2.2), we have that zn = (z − 1)Nn/(z − 2) − z/(z − 2). Inserting this

into (3.23), we obtain, after some rearrangement,

〈C〉n =
2A1

(w − z)Nn

(
z − 1
z − 2

Nn − z

z − 2

)
+

2A3

Nn

(
z − 1
z − 2

Nn − z

z − 2

)ln w/ ln z

+
2A2

w(z − 1)Nn

(
z − 1
z − 2

Nn − z

z − 2

)ln wz/ ln z

. (3.24)

Note that w > 1 and z > 2, and some simplifications of (3.24) lead to

〈C〉n ∼ 2A2

w(z − 2)
N ln w/ ln z

n =
z2 − 4

3(w − 1)
N ln w/ ln z

n , (3.25)

as n → ∞.

In Figure 5, we compare the asymptotics of the mean commute time in (3.2)
with numerical values calculated from the fundamental matrix [Kemeny and
Snell 76] of random walks on Fn (2, 3) (simply double the mean first-passage
time, similarly as in [Zhang et al. 09]). We observe that the asymptotic results
are in perfect agreement with numerical results for all 3 ≤ n ≤ 6. The consistency
confirms that Theorem 3.1 is valid.
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Figure 5. Mean commute time 〈C〉n versus generation n for random walks on
Fn (x, y) with x = 2 and y = 3. The squares are theoretical asymptotics from (3.2),
while the circles correspond to the numerical calculations from the fundamental
matrix.

4. Conclusion

We have studied simple random walks on a class of deterministic scale-free net-
works, called (x, y)-flowers. Networks in this family are self-similar and hierar-
chical, in the sense that each network contains x + y subgraphs that resemble
the whole, which advantageously makes them amenable to analytical treatment.
We focus on the mean commute time between an initial node (i.e., hub node)
and other nodes in the networks. We derive exact and asymptotic expressions
for mean commute time and show that it grows as a power-law function of the
network size with exponent governed by the parameters x and y in a delicate
manner.

Based on a connection between commute time and effective resistance, we
determine the mean effective resistance between an initial node and other nodes
in (x, y)-flowers. It is shown to change sharply from zero to infinity between
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different combinations of parameters. We also compare the mean commute times
for (x, y)-flowers with those for Erdős–Rényi random graphs. The mean commute
times for (x, y)-flowers with finite fractal dimensions (i.e., x > 1) are shown to
be even almost surely greater than those for sparse Erdős–Rényi graphs with a
logarithmically diverging mean degree. In addition, an asymptotic upper bound
for the mean commute time in terms of average degree of the network is derived
(as n → ∞).

There remain many interesting open problems. For example, since we consider
only mean commute times involving one of the hubs, it would be desirable to
study commute time between general nodes. Exploration of cover time and of
mixing time on the (x, y)-flowers would be more challenging (but certainly inter-
esting) research problems. On the other hand, the (x, y)-flowers have small-world
effects and fractal behaviors, while Erdős–Rényi random graphs do not. Another
future direction might be to improve our understanding of the role of local clus-
tering and fractal dimension on the mean commute time. This should help in
finding efficient network algorithms.
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