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An Extended Stochastic Model
for Quantitative Security Analysis
of Networked Systems
Maochao Xu and Shouhuai Xu

Abstract. Quantitative security analysis of networked computer systems has been an
open problem in computer security for decades. Recently, a promising approach was
proposed in [Li et al. 11], which, however, made some strong assumptions including
the exponential distribution of, and the independence among, the relevant random
variables. In this paper, we substantially weaken these assumptions while offering, in
addition to the same types of analytical results as in [Li et al. 11], methods for obtain-
ing the desired security quantities in practice. Moreover, we investigate the problem
from a higher-level abstraction, which also leads to both analytical results and prac-
tical methods for obtaining the desired security quantities. These should represent a
significant step toward ultimately solving the problem of quantitative security analysis
of networked computer systems.

1. Introduction

Quantitative security analysis of networked computer systems from a whole-
system, rather than from an individual-component, perspective is one of the
most important open problems in cyber security. Recently, a promising stochastic
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process approach to tackling this problem was proposed in [Li et al. 11]. In
this approach, a networked computer system is modeled as a complex network,
or graph, G = (V,E), where V is the vertex, or node, set and E is the edge
set over which direct attacks can be carried out. Then a stochastic abstraction
of the interactions between the attacker and the defender taking place in G

is considered. The main research task is to derive the following two security
measures:

� q(v): the probability that a node v ∈ V is compromised (or attacked) in the
steady state.

� q: the probability that a uniformly chosen node in G is compromised (or
attacked) in the steady state.

The quantity q is particularly important for decision-making because it captures
or reflects the global security level of a networked system in a useful way. For
example, given q, the defender can design or deploy appropriate cryptographic
or security schemes to mitigate the damage of the attacks. (Some extensions to
q will be discussed in Section 7.)

1.1. Our Contribution

In this paper, we make substantial improvements upon [Li et al. 11], which
assumed that the relevant random variables follow the exponential distribution
and are independent of each other. Specifically, we consider two cases: (I) the
case that the lower-level attack–defense process is observed, which is the same as
in [Li et al. 11] but with much weaker assumptions; (II) the case that the higher-
level alternating renewal process, but not the lower-level attack–defense process,
is observed. The latter case was not investigated in [Li et al. 11] and may be
more realistic.

In the case that the lower-level attack–defense process is observed (Section 4),
we present new analytical results for deriving q(v) under weaker assumptions,
where q(v) is the probability that an arbitrary node v ∈ V is compromised in
the steady state. On the one hand, these new analytical results lead to useful
methods for obtaining the global security measure q in practice:

(i) In the case that G is a regular graph with moderate node degree and the
dependence between the nodes can be ignored, we derive a closed-form
solution for q.
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(ii) In the case that G is an arbitrary graph (including the case of a regular
graph but with large node degree) and the dependence between the nodes
can be ignored, we give an approximation solution for q.

(iii) In the case that G is an arbitrary graph and the dependence between the
nodes cannot be ignored, we describe a statistical solution for q.

On the other hand, the new analytical results lead to bounds of q both in the
case that G is regular graph and in the case that G is an arbitrary graph. Such
results are interesting and useful because they demand much less information.
The upper bounds are especially useful in decision-making because they capture
a sort of worst-case scenario from the defender’s perspective.

In the case that the lower-level attack–defense process is not observed, but the
higher-level alternating renewal process is observed (Section 5), we present new
analytical results for estimating q(v). These analytical results lead to statistical
methods for obtaining the global security measure q in practice. Note that this
case was not investigated in [Li et al. 11], and is harder to deal with analytically
due to the lack of sufficient lower-level information.

Note that the results in [Li et al. 11] and in the present paper are applicable to
both undirected and directed graphs. To simplify notation, we will focus on the
case of undirected graphs, while noting that when we adapt the results to the
case of directed graphs, we need to replace “node degree” with “node in-degree”
(a node v’s in-degree is the number of nodes that point to v).

1.2. Outline of the Paper

The rest of the paper is organized as follows. In Sections 2 and 3, we briefly
review the model and results in [Li et al. 11] and some probabilistic notions,
respectively. In Section 4, we present new results for the case in which the lower-
level attack–defense process is observed. In Section 5, we present new results
for the case in which the higher-level alternating renewal process is observed.
In Section 6, we review related previous studies. In Section 7, we discuss the
utility of the stochastic process approach and future research directions toward
the ultimate goal. In Section 8, we conclude the paper.

1.3. Notation

The principal notation used throughout the paper is summarized as follows.

G = (V,E): This is a graph that abstracts a networked system with n = |V| nodes
of average node degree µ.
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deg(v), q(v),K(v): In the steady state, a node v ∈ V is compromised with prob-
ability q(v), and among the v’s deg(v) neighbors, K(v) neighbors are
compromised.

q,K: In the steady state, the probability that a uniformly chosen node is com-
promised is denoted by q, and the number of a uniformly chosen node’s
compromised neighbors is denoted by K, where q =

∑
v∈V q(v)/n and

K =
∑

v∈V K(v)/n.

{(Sj (v), Cj (v)); j ≥ 1}: This is the sequence of node v’s cycles corresponding
to the alternating renewal process, where each cycle consists of the time
interval Sj (v) during which v is secure and the time interval Cj (v) during
which v is compromised.

2. A Brief Review of the Model and Results in [Li et al. 11]

We start with a brief review of [Li et al. 11]. As mentioned above, a networked
system is represented as a complex network G = (V,E), where V is the set of n

nodes or vertices, namely |V| = n, that abstract (for example) computers, and
E is the set of edges that abstract the internode communications or interactions
that can be exploited to carry out direct attacks. At any point in time, a node v ∈
V is either secure or compromised. These abstractions are not new. The novelty
of [Li et al. 11] is the attack–defense process over G, which is specified by the
following random variables:

� X1 : The time a secure node becomes compromised directly by the attacker
outside of G. This models “drive-by download”-like attacks [Provos et al. 07].

� X2,i : The time a secure node becomes compromised because of its ith
compromised neighbor, 1 ≤ i ≤ deg(v). This models attacks such as stan-
dard malware spreading within a network.

� Y1 : The time a compromised node becomes secure again because the com-
promise has been detected and cured. This models reactive defense.

� Y2 : The time a compromised node becomes secure again for any other reason
(e.g., patching or reinstalling the software system even if the compromise
was not detected). This models proactive defense.

As mentioned above, the main security measure of interest is q, the probability
that a uniformly chosen node is compromised in the steady state. This imme-
diately leads to the more intuitive security measure q · n, namely the expected
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number of compromised nodes in the steady state. Since in the steady state an
arbitrary node v ∈ V is compromised with probability q(v), we have

q =
∑

v∈V q(v)
n

.

The above is perhaps the most important conceptual contribution of [Li et al. 11],
which is very simple but insightful because q captures the global property of
G = (V,E) in the presence of attacks and defenses. The main research task is
to derive an expression for q, which turns out to be a difficult problem because
the states of the nodes are random variables that are dependent on each other
according to the complex structure of G. As a first step, [Li et al. 11] focused
on the special case in which G is regular graph, namely all nodes have the same
degree and the q(v)’s are all the same (i.e., independent of v). Based on the
following assumption, two main results were offered in [Li et al. 11].

Assumption 2.1. [Li et al. 11]

1. Assumption on the distributions of the random variables:

• X1 follows the exponential distribution with rate α.

• The X2,i ’s follow the exponential distribution with rate γ.

• Y1 follows the exponential distribution with rate β.

• Y2 follows the exponential distribution with rate η.

2. Assumption on the independence between the random variables: X1 , Y1 ,
Y2 , and the X2,i ’s are independent of each other.

Theorem 2.2. [Li et al. 11] Suppose G is regular graph. Under Assumption 2.1, we
have

q =
1

1 + m
, where m = E

[
β + η

α + γK

]
,

and the random variable K indicates the number of compromised neighbors of a
node.

Theorem 2.3. [Li et al. 11] For a regular graph G of node degree µ, under Assumption
2.1, we have

α

α + β + η
≤ q ≤ α + γµ

α + β + η + γµ
.



Xu and Xu: An Extended Stochastic Model for Quantitative Security Analysis of Networked Systems 293

Simulation studies in [Li et al. 11] showed that the upper bound is reasonably
tight not only for regular graphs, but also for Erdős–Rényi random graphs and
power-law graphs (in the latter two cases, µ is naturally the average node degree).
This means that we can plausibly use the upper bound in decision-making when
there is a lack of information.

3. A Brief Review of Some Probabilistic Notions Used in This Paper

3.1. Some Probabilistic Distributions

A random variable Z is said to have an exponential distribution with rate λ > 0
if the distribution function is

F (z) = 1 − exp{−λz}.
This distribution has the memoryless property, which played an essential role
in [Li et al. 11]. The exponential distribution is a special case of the Weibull
distribution with distribution function

F (z) = 1 − exp{−(γz)α},
where γ > 0 and α > 0 are scale and shape parameters, respectively.

The Lomax (or Pareto II) distribution has distribution function

F (z) = 1 −
(

1 +
z

β

)−η

,

where β > 0 is the scale parameter and η > 0 is the shape parameter [Johnson
et al. 94]. This distribution is interesting because it can model heavy-tailed phe-
nomena.

3.2. Some Notions of Nonindependence between Random Variables

Two random variables Z1 and Z2 are said to be positively quadrant dependent
(PQD) if for all z1 , z2 ∈ R ,

P (Z1 > z1 , Z2 > z2) ≥ P (Z1 > z1)P (Z2 > z2).

In general, a family {Z1 , . . . , Zn} of random variables is said to be positively
upper orthant dependent (PUOD) if for all zi ∈ R , i = 1, . . . , n,

P (Z1 > z1 , . . . , Zn > zn ) ≥
n∏

i=1

P (Zi > zi).
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A family {Z1 , . . . , Zn} of random variables is said to be positively associated
(PA) if

Cov (f(Z1 , . . . , Zn ), g(Z1 , . . . , Zn )) ≥ 0

for all coordinatewise nondecreasing functions f, g on R n as long as the co-
variance exists. Finally, we recall the multivariate Marshall–Olkin model, which
offers a good deal of flexibility in modeling dependence structures [Marshall and
Olkin 67, Li 08].

Let {EB ,B ⊆ {1, 2, . . . , b}} be a sequence of independent, exponentially dis-
tributed random variables, where EB has mean 1/λB . Let

Tj = min{EB : j ∈ B}, j = 1, . . . , b.

The joint distribution of T = (T1 , . . . , Tb) is called the Marshall–Olkin exponen-
tial distribution with parameters {λB ,B ⊆ {1, 2, . . . , b}}.

It is known [Barlow and Proschan 81, Theorem 3.2, Chapter 2] that PA =⇒
PUOD(PQD), meaning that PA is (not necessarily strictly) stronger than PUOD
(PQD). It is also known that the Marshall–Olkin exponential distribution is PA,
and hence PUOD [Mueller and Stoyan 02].

4. New Results for the Case in Which the Attack–Defense Process Is Observed

In this section, we present new analytical results for deriving q(v), methods for
deriving q in practice, and bounds of q in the absence of sufficient information.

4.1. New Analytical Results for Deriving q (v) under Weaker Assumptions

We seek to substantially weaken Assumption 2.1 while considering more gen-
eral graph structures (i.e., not just regular graphs). We start with the following
assumption.

Assumption 4.1. (A substantially weaker assumption.)

1. Rather than assuming that X1 , the X2,i ’s, Y1 , and Y2 are exponential
random variables, we assume the following:

• X1 follows an arbitrary continuous distribution F1 with finite mean.

• X2,i follows an arbitrary continuous distribution F2,i with finite mean,
where the distributions may be different for different i’s.
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• Y1 follows an arbitrary continuous distribution G1 with finite mean.

• Y2 follows an arbitrary continuous distribution G2 with finite mean.

2. Rather than assuming that X1 , the X2,i ’s, Y1 , and Y2 are independent of
each other, we assume that X1 , the X2,i ’s, Y1 , and Y2 can be mutually
dependent.

In practice, Assumption 4.1 can be tested using some nonparametric methods
(cf. [Hollander and Douglas 99, Chapter 8]).

Theorem 4.2. Denote the joint survival function for {X1 ,X2,1 , . . . , X2,n} by

H̄n+1(x1 , . . . , xn+1) = P (X1 > x1 ,X2,1 > x2 , . . . , X2,n > xn+1) ,

and the joint survival function for Y1 and Y2 by

Ḡ(y1 , y2) = P (Y1 > y1 , Y2 > y2) .

Under Assumption 4.1, the probability q(v) that an arbitrary node v ∈ V is
compromised in the steady state is

q(v) =
1

1 + m
, (4.1)

where

m = E
[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx,

and K(v) is the number of compromised neighbors of node v.

Proof. Observe that in general, the states of node v ∈ V can be modeled as an
alternating renewal process, with each cycle composed of two states: secure with
random time Sj (v) and compromised with random time Cj (v) for j = 1, 2, . . . .
Under Assumption 4.1, for each cycle j we can express (Sj (v), Cj (v)) as

Sj (v) = S(v) = min {X1 , {X2,i ; 1 ≤ i ≤ K(v)}} , Cj (v) = C(v) = min {Y1 , Y2} ,

where K(v) is the number of v’s compromised neighbors. Hence,

E[S(v)] = E[min{X1 ,X2,1 , . . . , X2,K (v )}]
= E

[
E
[
min{X1 ,X2,1 , . . . , X2,K (v )} | K(v)

]]
= E

[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx

]
.

Similarly, the time that a node is compromised in a cycle is

E[C(v)] = E[min{Y1 , Y2}] =
∫ ∞

0
Ḡ(x, x) dx.
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Note also that Assumption 4.1 implies that

E[S(v) + C(v)] < ∞.

This and the fact that the distribution of S(v) + C(v) is nonlattice guarantee
(cf. [Ross 96, Theorem 3.4.4]) that the process is steady, and moreover,

q(v) =
E[C(v)]

E[S(v)] + E[C(v)]
=

∫∞
0 Ḡ(x, x) dx

E
[∫∞

0 H̄K (v )+1(x, . . . , x) dx
]
+
∫∞

0 Ḡ(x, x) dx
.

The desired result follows.

The following corollary relates Theorem 2.2 to Theorem 4.2.

Corollary 4.3. Theorem 2.2 is a special case of Theorem 4.2.

Proof. By replacing Assumption 4.1 with Assumption 2.1 and letting G be a regular
graph in Theorem 4.2, we obtain

m = E
[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx dx

]/∫ ∞

0
Ḡ(x, x) dx

= E

⎡
⎣∫ ∞

0
F̄1(x)

K (v )∏
i=1

F̄2,i(x) dx

⎤
⎦/∫ ∞

0
Ḡ1(x)Ḡ2(x) dx

= E
[∫ ∞

0
exp{−αx} exp{−K(v) · γ}dx

]/∫ ∞

0
exp{−βx} exp{−ηx} dx

= E
[

β + η

α + γK(v)

]
.

Therefore, the resulting q, namely q(v) in the case of regular graphs, is the same
as in Theorem 2.2.

Now we consider the case that the random variables are independent of each
other but follow the Weibull distribution (rather than the exponential distribu-
tion as required in [Li et al. 11]).

Assumption 4.4. (Weaker than Assumption 2.1 but stronger than Assumption 4.1.)

1. Assumption on the distributions of the random variables:

• X1 follows the Weibull distribution with survival function F̄1(t) =
e−(λ1 t)α

.

• The X2,i ’s follow the Weibull distribution with survival function
F̄2(t) = e−(λ2 t)α

.
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• Y1 follows the Weibull distribution with survival function Ḡ1(t) =
e−(γ1 t)β

.

• Y2 follows the Weibull distribution with survival function Ḡ2(t) =
e−(γ2 t)β

.

2. X1 , the X2,i ’s, Y1 , and Y2 are independent of each other (as in Assump-
tion 2.1).

In practice, the Weibull distribution in Assumption 4.4 can be tested using
standard statistical techniques such as QQ-plot and the Kolmogorov–Smirnov
test (cf. [Lehmann and Romano 05, Chapter 14]). The following result is more
general than Theorem 2.2 but less general than Theorem 4.2.

Theorem 4.5. Replacing Assumption 4.1 in Theorem 4.2 with Assumption 4.4, we
have

m =
Γ
(
1 + 1

α

)
Γ
(
1 + 1

β

) E

⎡
⎢⎣

(
γβ

1 + γβ
2

)1/β

(λα
1 + K(v) · λα

2 )1/α

⎤
⎥⎦ .

Proof. Note that∫ ∞

0
Ḡ1(x)Ḡ2(x) dx =

∫ ∞

0
exp

{− [
(γ1x)β + (γ2x)β

]}
dx

=
∫ ∞

0
exp

{
−
[
γβ

1 + γβ
2

]
xβ
}

dx

=
1(

γβ
1 + γβ

2

)1/β
Γ
(

1 +
1
β

)
,

where Γ(·) is the gamma function. Note also that

E
[∫ ∞

0
F̄1(x)F̄ K (v )

2 (x) dx

]
= E

[∫ ∞

0
exp {− [(λ1x)α + K(v) · (λ2x)α ]} dx

]

= E
[∫ ∞

0
exp {− [(λα

1 + K(v) · λα
2 ] xα} dx

]

= Γ
(

1 +
1
α

)
E
[

1
λα

1 + K(v) · λα
2

]1/α

.

Using Theorem 4.2, we have the desired result.
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4.2. Applying the Analytical Results to Obtain q in Practice

Now we show how to use the above analytical results to derive methods for
obtaining q. While allowing X1 , the X2,i ’s, Y1 , and Y2 to be possibly dependent
on each other, we further consider the (in)dependence between the states of a
node’s neighbors. This leads to three cases:

(i) In the case that G is a regular graph of node degree µ and the dependence
between neighbors can be ignored, we offer closed-form results in Section
4.2.1.

(ii) In the case that G is an arbitrary graph and the dependence between neigh-
bors can be ignored, we offer approximation results in Section 4.2.2.

(iii) In the case that G is an arbitrary graph and the dependence between the
neighbors cannot be ignored, we offer statistical results in Section 4.2.3.

4.2.1. Regular Graphs with Ignorable Dependence between Nodes. In case (i), every node has
µ neighbors, denoted by 1, 2, . . . , µ, which are compromised in the steady state
with probability q1 = q2 = · · · = qµ = q. Let Ii be a Bernoulli random variable
with parameter q, which is the probability that the ith neighbor is compromised.
Then K(v) =

∑µ
i=1 Ii is a binomial distribution with parameter q, and

P (K(v) = k) =
(

µ

k

)
qk (1 − q)µ−k , k = 0, . . . , µ.

According to Theorem 4.2, which requires Assumption 4.1, we have

m = E
[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx

=
µ∑

k=0

[(
µ

k

)
qk (1 − q)µ−k

∫ ∞

0
H̄k+1(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx.

Hence, we have

q +
µ∑

k=0

[(
µ

k

)
qk+1(1 − q)µ−k

∫ ∞

0
H̄k+1(x, . . . , x)dx

]/∫ ∞

0
Ḡ(x, x) dx = 1.

(4.2)
In order to solve (4.2), we need to know the specific H̄k+1(x, . . . , x) and Ḡ(x, x)
that can be obtained in scenarios such as the following:
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� Closed-form result under Assumption 2.1, which is stronger than Assump-
tion 4.1: In this special case, we have Theorem 2.2 and thus (4.2) becomes

q +
µ∑

k=0

β + η

α + γk

(
µ

k

)
qk+1(1 − q)µ−k = 1. (4.3)

� Closed-form result under Assumption 4.4, which is stronger than Assump-
tion 4.1. In this special case, we have Theorem 4.5, and thus (4.2) becomes

q +
µ∑

k=0

(
µ

k

)
qk+1(1 − q)µ−k Γ

(
1 + 1

α

)
Γ
(
1 + 1

β

)
⎡
⎢⎣
(
γβ

1 + γβ
2

)1/β

(λα
1 + kλα

2 )1/α

⎤
⎥⎦ = 1. (4.4)

When µ is not large, the solutions for q in (4.3) and (4.4) can be derived using an
appropriate iterative algorithm, such as the Newton–Raphson method [Stoer and
Bulirsch 02]. When µ is large, it might be infeasible to derive explicit solutions
for q, but we can instead use the approximation result in Section 4.2.2.

4.2.2. Arbitrary Graphs with Ignorable Dependence between the Nodes. For an arbitrary node
v ∈ V, let Ii be a Bernoulli random variable with parameter qi , which is the
probability that the ith neighbor of node v is compromised. Note that K(v) =∑deg(v )

i=1 Ii . Suppose the mean and variance of K(v) exist and we can estimate
them (e.g., based on sufficiently many observations on v’s neighbors). Set

k̄ = E[K(v)], σ2 = Var(K(v)).

In this case, we are unable to give closed-form solutions, and instead propose
using two approximations:

(a) Normal approximation: If σ2 → ∞ as deg(v) → ∞, by Lindeberg’s theorem
(cf. [Billingsley 95, p. 359]),

P (K(v) ≤ x) ≈
∫ x

0

1√
2πσ

exp
{
− (y − k̄)2

2σ2

}
dy.

According to Theorem 4.2, which requires Assumption 4.1, we have

m = E
[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx

≈
∫ ∞

0

∫ deg(v )

0

1√
2πσ

exp
{
− (k − k̄)2

2σ2

}
(4.5)

× H̄k+1(x, . . . , x) dk dx

/∫ ∞

0
Ḡ(x, x) dx.
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As a result, we can obtain more specific approximation solutions as follows:

• Approximation result under Assumption 2.1, which is stronger than As-
sumption 4.1. In this special case we have Theorem 2.2, and thus (4.5)
becomes

m ≈ β + η√
2πσ

∫ deg(v )

0

1
α + γx

exp
{
− (k − k̄)2

2σ2

}
dk.

• Approximation result under Assumption 4.4, which is stronger than As-
sumption 4.1. In this special case, we have Theorem 4.5, and thus (4.5)
becomes

m ≈ Γ
(
1 + 1

α

) (
γβ

1 + γβ
2

)1/β

√
2πσΓ

(
1 + 1

β

)
×
∫ deg(v )

0

1

(λα
1 + kλα

2 )1/α
exp

{
− (k − k̄)2

2σ2

}
dk.

(b) Poisson approximation. Note that k̄ ≥ 0. If deg(v) → ∞ and

max{q1 , . . . , qdeg(v )} → 0,

then [Billingsley 95, Theorem 23.2] says that

P (K(v) = i) ≈ exp
{−k̄

} (k̄)i

i!
, i = 0, 1, . . . ,deg(v).

According to Theorem 4.2, which requires Assumption 4.1, we have

m = E
[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx

≈
deg(v )∑

i=0

exp
{−k̄

} (k̄)i

i!

∫ ∞

0
H̄i+1(x, . . . , x) dx

/∫ ∞

0
Ḡ(x, x) dx. (4.6)

As a result, we can have more specific approximation solutions as follows:

• Approximation result under Assumption 2.1, which is stronger than As-
sumption 4.1. In this special case, we have Theorem 2.2, and thus (4.6)
becomes

m ≈ (β + η) exp
{−k̄

} deg(v )∑
i=0

1
α + γi

(k̄)i

i!
.

• Approximation result under Assumption 4.4, which is stronger than
Assumption 4.1. In this special case, we have Theorem 4.5, and thus
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(4.6) becomes

m ≈ Γ
(
1 + 1

α

) (
γβ

1 + γβ
2

)1/β

Γ
(
1 + 1

β

) deg(v )∑
i=0

(k̄)i exp
{−k̄

}
(λα

1 + i · λα
2 )1/α i!

.

In both normal approximation and Poisson approximation, having obtained m

allows one to derive q(v) according to (4.1) in Theorem 4.2. Note that this
method is sound because both Assumption 2.1 and Assumption 4.4 are stronger
than Assumption 4.1, which underlies Theorem 4.2. From a sufficiently large
sample V′ ⊂ V with each v ∈ V′ being uniformly chosen from V, we can derive
q =

∑
v∈V′ q(v)/|V′|.

4.2.3. Arbitrary Graphs with Nonignorable Dependence between the Nodes. If the dependence
between neighbors cannot be ignored, the probability mass function of K(v) may
be estimated from data as follows. Suppose we have observations (k1 , k2 , . . . , kb)
on K(v), where b is the number of observations on the number of v’s compromised

neighbors in the steady state (i.e., at b different points of observation time). Then
the probability mass function of K(v) can be estimated as

pk = P (K(v) = k) =
∑b

i=1 I(ki = k)
b

, b → ∞,

where I(·) is the indicator function. Thus, according to Theorem 4.2, we have

m = E
[∫ ∞

0
H̄K (v )+1(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx

=
deg(v )∑
k=0

pk

∫ ∞

0
H̄k+1(x, . . . , x) dx

/∫ ∞

0
Ḡ(x, x) dx. (4.7)

To be specific, let us consider a concrete example under the following assumption:

Assumption 4.6. (Weaker than Assumption 2.1 but stronger than Assumption 4.1.)

1. Assumption on the distributions of the random variables:

• X1 follows the exponential distribution with parameter λ.

• The X2,i ’s follow the multivariate Marshall–Olkin exponential model.

• Y1 and Y2 follow the bivariate Marshall–Olkin exponential model.

2. The X2,i ’s can be dependent on each other; Y1 and Y2 can be dependent
on each other.
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Under Assumption 4.6, the joint survival function of (X2,1 , . . . , X2,k ) is

H̄k (x1 , . . . , xk ) = P (X2,1 > x1 , . . . , X2,k > xk )

= exp
{
−

k∑
i=1

λixi −
∑
i<j

λij max{xi, xj} − λ12...k max{x1 , . . . , xk}
}

.

Therefore, ∫ ∞

0
H̄k+1(x, . . . , x)dx =

∫ ∞

0
exp{−λt} exp{−φ(λ, kt} dt

=
1

λ + φ(λ, k)
,

where

φ(λ, k) =
k∑

i=1

λi +
∑
i<j

λij + · · · + λ12...k .

Similarly, the joint survival function of (Y1 , Y2) is

Ḡ(y1 , y2) = P (Y1 > y1 , Y2 > y2)
= exp {−γ1y1 − γ2y2 − γ12 max{y1 , y2}} .

Then ∫ ∞

0
Ḡ(x, x) dx =

1
γ1 + γ2 + γ12

.

Using (4.7), we have

m = (γ1 + γ2 + γ12)
deg(v )∑
k=0

pk

λ + φ(λ, k)
.

Having obtained m, one can derive q(v) according to (4.1) in Theorem 4.2. Note
that this method is sound because Assumption 4.6 is stronger than Assumption
4.1, which underlies Theorem 4.2. From a sufficiently large sample V′ ⊂ V with
each v ∈ V′ being uniformly chosen from V, we can derive q =

∑
v∈V′ q(v)/|V′|.

4.3. New Bounds on q

Above, we discussed how to obtain q in various settings. When one cannot obtain
q (for example, due to the lack of sufficient information), one can instead use
the bounds of q in decision-making. This is plausible as long as the bounds
are reasonably tight, and reasonable because it requires much less information
to compute the bounds. In particular, one could use the upper bound of q in
decision-making because it can be seen as a sort of worst-case scenario. In what



Xu and Xu: An Extended Stochastic Model for Quantitative Security Analysis of Networked Systems 303

follows we will differentiate the case of regular graphs from the case of arbitrary
graphs under the following three assumptions:

Assumption 4.7. (Assumption underlying our general bounds of q.)

1. Assumption on the distributions of the random variables:

• X1 follows an arbitrary continuous distribution with survival function
F̄1 and finite mean.

• The X2,i ’s are PUOD with the same marginal continuous survival
function F̄2 and finite mean.

• Y1 follows an arbitrary distribution with continuous survival function
Ḡ1 and finite mean.

• Y2 follows an arbitrary distribution with continuous survival function
Ḡ2 and finite mean.

2. X1 and the X2,i ’s are independent, and Y1 and Y2 may be dependent on
each other.

Assumption 4.8. (Assumption underlying one specific bound of q.)

1. Assumption on the distributions of the random variables:

• X1 follows the exponential distribution with rate α.

• The X2,i ’s are PUOD with the same marginal distribution function
F2 of the exponential distribution with rate γ.

• Y1 follows the exponential distribution with rate β.

• Y2 follows the exponential distribution with rate η.

2. X1 and the X2,i ’s are independent, and Y1 and Y2 are independent of
each other.

Assumption 4.9. (Assumption underlying another specific bound of q.)

1. Assumption on the distributions of the random variables:

• X1 follows the Lomax distribution with scale parameter λ and shape
parameter α1 > 1.

• The X2,i ’s are PUOD with the same marginal distribution function F2

of the Lomax distribution with scale parameter λ and shape parameter
α2 > 1.
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• Y1 follows the Lomax distribution with scale parameter γ and shape
parameter β1 > 1.

• Y2 follows the Lomax distribution with scale parameter γ and shape
parameter β2 > 1.

2. X1 and the X2,i ’s are independent, and Y1 and Y2 are independent of
each other.

In practice, the PUOD dependence assumption can be tested by the method
suggested in [Scaillet 05], while the exponential distribution assumption and the
Lomax distribution assumption can be tested using QQ-plot or the Kolmogorov–
Smirnov test (see [Lehmann and Romano 05]).

4.3.1. Bounds on q in the Case of Regular Graphs. We have the following theorem.

Theorem 4.10. Suppose G is regular graph of node degree µ. Under Assumption 4.7,
in the steady state we have

∫ ∞

0
Ḡ(x, x) dx

/∫ ∞

0

[
F̄1(x) + Ḡ(x, x)

]
dx

≤ q ≤
∫ ∞

0
Ḡ(x, x)dx

/∫ ∞

0

[
F̄1(x)F̄ k̄

2 (x) + Ḡ(x, x)
]

dx,

where k̄ is the expected number of compromised neighbors for an arbitrary node.

Proof. Denote by 1, 2, . . . , µ the neighbors of an arbitrary node v ∈ V. Let Ii be the
indicator function that Ii = 1 if and only if the ith neighbor of v is compromised,
and let qi be the probability that the ith neighbor is compromised. Under As-
sumption 4.7, the system will enter the steady state (see [Ross 96, Theorem
3.4.4]). Since G is regular graph, we have q1 = · · · = qµ = q. In the steady state,
we have

k̄ = E[K(v)] = E

[
µ∑

i=1

Ii

]
= qµ.
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Assume that the X2,i ’s are PUOD with the same marginal survival function F̄2 .
Then

m = E
[∫ ∞

0
F̄1(x)H̄K (v )(x, . . . , x) dx

]/∫ ∞

0
Ḡ(x, x) dx

≥ E
[∫ ∞

0
F̄1(x)F̄ K (v )

2 (x) dx

]/∫ ∞

0
Ḡ(x, x) dx

≥
[∫ ∞

0
F̄1(x)F̄E[K (v )]

2 (x) dx

]/∫ ∞

0
Ḡ(x, x) dx

=
[∫ ∞

0
F̄1(x)F̄ k̄

2 (x)dx

]/∫ ∞

0
Ḡ(x, x) dx, (4.8)

where the last inequality follows from Jensen’s inequality. Using (4.1) in Theorem
4.2, one can obtain the upper bound of q.

On the other hand, we observe that for every x ≥ 0, we have

H̄K (v )(x, . . . , x)dx ≤ 1.

The upper bound of m can be derived as

m ≤
∫ ∞

0
F̄1(x) dx

/∫ ∞

0
Ḡ(x, x) dx. (4.9)

Using (4.1) in Theorem 4.2, one can obtain the lower bound of q.

Theorem 4.11. Suppose G is a regular graph of node degree µ. Under Assumption
4.8, in the steady state we have

α

α + β + γ
≤ q ≤ −(β + η + α − µγ) +

√
(β + η + α − µγ)2 + 4µγα

2µγ
.

Proof. From (4.8), it follows that

m ≥ β + η

α + qµγ
.

Using (4.1) in Theorem 4.2, we have

q =
1

m + 1
≤ 1

β+η
α+qµγ + 1

.

This leads to

q2µγ + q(β + η + α − µγ) − α ≤ 0.

Hence

q ≤ −(β + η + α − µγ) +
√

(β + η + α − µγ)2 + 4µγα

2µγ
.
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On the other hand, according to (4.9) and (4.1), one can derive

q ≥ α

α + β + γ
.

Theorem 4.12. Suppose G is a regular graph of node degree µ. Under Assumption
4.9, in the steady state we have

γ(α1 − 1)
λ(β1 + β2 − 1) + γ(α1 − 1)

≤ q ≤ −B +
√

B2 + 4γ2α2(α1 − 1)µ
2α2γµ

,

where B = λ(β1 + β2 − 1) + γ(α1 − 1) − γα2µ.

Proof. Note that Fi has Lomax survival function

F̄i(x) =
(
1 +

x

λ

)−αi

, αi ≥ 1, i = 1, 2.

Similarly, Gi has Lomax survival function

Ḡi(x) =
(

1 +
x

γ

)−βi

, βi ≥ 1, i = 1, 2.

From (4.8), it follows that

m ≥ λ

α1 + α2µq − 1

/
γ

β1 + β2 − 1
=

λ(β1 + β2 − 1)
γ(α1 + α2µq − 1)

.

Using (4.1) in Theorem 4.2, we have

q ≤ γ(α1 + α2µq − 1)
λ(β1 + β2 − 1) + γ(α1 + α2µq − 1)

.

This leads to

q2α2γµ + qB − γ(α1 − 1) ≤ 0,

where

B = λ(β1 + β2 − 1) + γ(α1 − 1) − γα2µ.

Hence, the upper bound of q is

q ≤ −B +
√

B2 + 4γ2α2(α1 − 1)µ
2α2γµ

.

On the other hand, according to (4.9) and (4.1), we have

m ≤ λ(β1 + β2 − 1)
γ(α1 − 1)

.
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So the lower bound of q is

q ≥ γ(α1 − 1)
λ(β1 + β2 − 1) + γ(α1 − 1)

.

4.3.2. Bounds of q in the Case of Arbitrary Graphs. For an arbitrary node v ∈ V, it follows
that

K(v) =
deg(v )∑

i=1

Ii,

where Ii is a Bernoulli random variable with parameter qi , which is the prob-
ability that the ith neighbor of v is compromised. Note that the Ii ’s may be
dependent on each other and the qi ’s may be different. Note also that in this
case, we cannot obtain a counterpart of Theorem 4.10, because the concavity
needed to apply Jensen’s inequality may not hold. As such, we are able to give
only the following specific results in this more general case.

Theorem 4.13. Suppose G is an arbitrary graph with average node degree µ. Under
Assumption 4.8, in the steady state we have

α

α + β + γ
≤ q ≤ α + γµ

α + β + η + γµ
.

Proof. In a fashion similar to the proof of Theorem 4.10, we can show that for an
arbitrary node v,

α

α + β + γ
≤ q(v) ≤ α + γ E[K(v)]

α + β + η + γ E[K(v)]
.

Since

q =
∑

v∈V q(v)
n

,

it follows that

q ≥ α

α + β + γ
.

On the other hand, because

E[K(v)] = E

⎡
⎣deg(v )∑

i=1

Ii

⎤
⎦ =

deg(v )∑
i=1

qi ≤ deg(v),
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we have
α + γ E[K(v)]

α + β + η + γ E[K(v)]
≤ α + γ deg(v)

α + β + η + γ deg(v)
.

Hence

q(v) ≤ α + γ deg(v)
α + β + η + γ deg(v)

.

Therefore,

q ≤ 1
n

∑
v∈V

α + γ deg(v)
α + β + η + γ deg(v)

. (4.10)

Because

h(x) =
α + γx

α + β + η + γx
, x ≥ 0,

is a concave function, Jensen’s inequality yields

1
n

∑
v∈V

α + γ deg(v)
α + β + η + γ deg(v)

≤ α + γ 1
n

∑
v∈V deg(v)

α + β + η + γ 1
n

∑
v∈V deg(v)

.

Hence, by (4.10), we have

q ≤ α + γµ

α + β + η + γµ
.

This completes the proof.

In a similar fashion, we can prove the following result.

Theorem 4.14. Suppose G is an arbitrary graph with average degree µ. Under As-
sumption 4.9, in the steady state we have

γ(α1 − 1)
λ(β1 + β2 − 1) + γ(α1 − 1)

≤ q ≤ γ(α1 + α2µ − 1)
λ(β1 + β2 − 1) + γ(α1 + α2µ − 1)

.

5. New Results for the Case in Which Only the Alternating Renewal Process Is
Observed

The results obtained thus far are applicable when the lower-level attack–defense
process is observed, or more specifically the distributions F1 , the F2,i ’s, G1 ,
and G2 and their dependence structure (if applicable) are observed. What if
they are not observed? This is a very reasonable question, because obtaining all
detailed information can be very costly, and it may be much simpler to observe
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the higher-level alternating renewal process {(Sj (v), Cj (v)); j ≥ 1} mentioned
above. In this case, neither the results in [Li et al. 11] nor the results described
above are applicable, which motivates us to present the following results for this
possibly more realistic scenario.

5.1. Analytical Results for Estimating q (v)

Let pv (t) be the probability that node v is secure at time t, and let the limiting
average probability be

p̄(v) = lim
t→∞

1
t

∫ t

0
pv (s) ds.

For node v ∈ V with {(Sj (v), Cj (v)) : 1 ≤ j ≤ b}, define

Wb(v) = S1(v) + S2(v) + · · · + Sb(v), Db(v) = C1(v) + C2(v) + · · · + Cb(v).

Lemma 5.1. [Marlow and Tortorella 95, Theorem 1] If

lim
b→∞

Wb(v)
b

= w(v) a.s. and lim
b→∞

Db(v)
b

= d(v) a.s.,

where “a.s.” means “almost surely” and 0 < w(v), d(v) < ∞, then

p̄(v) =
w(v)

w(v) + d(v)
.

Assumption 5.2. Assume that {Sj (v) : j ≥ 1} and {Cj (v) : j ≥ 1} are sequences of
pairwise PQD random variables with finite variances, and

(a)
∑∞

j=1 j−2Cov (Sj (v),Wj (v)) < ∞;

(b)
∑∞

j=1 j−2Cov (Cj (v),Dj (v)) < ∞;

(c) supj≥1 E |Sj (v) − E[Sj (v)]| < ∞;

(d) supj≥1 E |Cj (v) − E[Cj (v)]| < ∞.

In practice, the above assumption can be tested as follows: PQD dependence
can be tested using the statistical methods described in [Denuit and Scaillet 04].
To test for finite variance, we may use the methods described in [Resnick 07] for
heavy-tailed data. If the data are not extremely heavy-tailed, we may assume
that the data have finite variance.
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Lemma 5.3. [Birkel 89, Theorem 1] Let {Sj (v) : j ≥ 1} be a sequence of pairwise
PQD random variables with finite variance. Assume

(a)
∑∞

j=1 j−2Cov (Sj (v),Wj (v)) < ∞.

(b) supj≥1 E |Sj (v) − E[Sj (v)]| < ∞.

Then as b → ∞, we have b−1(Wb(v) − E[Wb(v)]) → 0 almost surely.

Theorem 5.4. Under Assumption 5.2 and given a sufficiently large number b of
observations on the states of node v, the probability q(v), namely the probability
that node v is compromised, if it exists (i.e., the alternating renewal process is
steady), can be expressed as

q(v) =
d∗(v)

w∗(v) + d∗(v)
,

where w∗(v) = limb→∞ E[Wb(v)]/b and d∗(v) = limb→∞ E[Db(v)]/b.

Proof. According to Lemma 5.3, conditions (a) and (c) imply

lim
b→∞

Wb(v)
b

= lim
b→∞

E[Wb(v)]
b

= w∗(v), a.s.,

and similarly, (b) and (d) imply

lim
b→∞

Db(v)
b

= lim
b→∞

E[Db(v)]
b

= d∗(v), a.s.

According to Lemma 5.1,

p̄(v) =
w∗(v)

w∗(v) + d∗(v)
.

The limiting probability is

p(v) = lim
t→∞ pv (t),

which means that there exists a sufficiently large t0 such that for every ε > 0,

|p(v) − pv (t)| < ε, t ≥ t0 .

Now for t > t0 , we have

1
t

∫ t

0
pv (s) ds ≤ 1

t

∫ t0

0
pv (s) ds +

1
t

∫ t

t0

pv (s) ds.

Hence,

p̄(v) = lim
t→∞

1
t

∫ t

0
pv (s) ds ≤ p(v) + ε.
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Similarly,

p̄(v) ≥ p(v) − ε.

So we conclude that

p(v) = p̄(v) =
w∗(v)

w∗(v) + d∗(v)
,

and

q(v) = 1 − p(v) =
d∗(v)

w∗(v) + d∗(v)
.

In what follows, we present two variants of Theorem 5.4. In the first variant,
we use the stronger PA assumption to replace the PQD assumption in Theorem
5.4 (or more precisely, in the underlying Assumption 5.2), which yields that
conditions (c) and (d) can be dropped. To see this, we need the following lemma.

Lemma 5.5. [Birkel 89, Theorem 2] Let {Sj (v) : j ≥ 1} be a sequence of pairwise
PA random variables with finite variance. Assume that

∞∑
j=1

j−2Cov (Sj (v),Wj (v)) < ∞.

Then as b → ∞, we have b−1(Wb(v) − E[Wb(v)]) → 0 almost surely.

Assumption 5.6. Assume that {Sj (v) : j ≥ 1} and {Cj (v) : j ≥ 1} are sequences of
pairwise PA random variables with finite variances, and that

(a)
∑∞

j=1 j−2Cov (Sj (v),Wj (v)) < ∞;

(b)
∑∞

j=1 j−2Cov (Cj (v),Dj (v)) < ∞.

Theorem 5.7. (One variant of Theorem 5.4.) Under Assumption 5.6 and given a sufficiently
large number b of observations on node v’s states, the probability q(v), if it exists
(i.e., the alternating renewal process is steady), can be expressed as

q(v) =
d∗(v)

w∗(v) + d∗(v)
.

Proof. The proof follows from Lemma 5.5 and the proof of Theorem 5.4.

In the following we present another useful variant of Theorem 5.4 under an-
other stronger assumption.
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Assumption 5.8. Assume that {Sj (v) : j ≥ 1} and {Cj (v) : j ≥ 1} are independent
sequences with finite variances.

In practice, we can test the independence for sequences {Sj : j ≥ 1} and {Cj :
j ≥ 1} using the methods described in [Hollander and Douglas 99].

Theorem 5.9. (Another variant of Theorem 5.4.) Under Assumption 5.8 and given a suffi-
ciently large number b of observations on node v’s states, the probability q(v), if
it exists (i.e., the alternating renewal process is steady), can be expressed as

q(v) =
d∗(v)

w∗(v) + d∗(v)
.

Proof. The theorem follows from Kolmogorov’s strong law of large numbers and
the proof of Theorem 5.4.

The following corollary expresses the connection between Theorem 5.9, which
corresponds to the case in which the higher-level alternating renewal process is
observed, and Theorem 2.2, which corresponds to the case in which the lower-
level attack–defense process is observed.

Corollary 5.10. Theorem 2.2 is a special case of Theorem 5.9.

Proof. Under Assumption 2.1 used in Theorem 2.2, we have

Var(S(v)) < 2E
[

1
α + K(v) · γ

]2

≤ 2
(

1
α

)2

< ∞,

Var(C(v)) =
(

1
β + η

)2

< ∞.

Hence, the conditions in Theorem 5.9 are fulfilled. Therefore, we have

w∗(v) = E[S(v)] = E
[

1
α + γK(v)

]
, d∗(v) = E[C(v)] =

1
β + η

.

As a result,

q(v) = E
[

β + η

α + γK(v)

]
,

which is the same as in Theorem 2.2.
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5.2. Applying the Analytical Results to Estimating q in Practice

Theorems 5.4, 5.7, and 5.9 require observations only on {(Sl(v), Cl(v)); l ≥ 1}.
In order to show how the above analytical results can guide the computation of
q in practice, we use Theorem 5.9 as an example. Suppose we select m nodes,
denoted by v1 , . . . , vm , uniformly at random from V to observe their respective
{(Sl(v), Cl(v)); l ≥ 1}’s. For each vi , 1 ≤ i ≤ m, we estimate q(vi) as follows:

1. Observe the node for a sufficiently long time,1 and get ji observations
(S1(vi), C1(vi)), . . . , (Sji

(vi), Cji
(vi)).

2. Test whether {Sl(vi) : ji ≥ l ≥ 1} and {Cl(vi); ji ≥ l ≥ 1} are indepen-
dent sequences (e.g., using methods described in [Hollander and Dou-
glas 99]). If they are independent, the algorithm continues executing the
next steps; otherwise, the algorithm aborts.

3. Test whether {Sl(vi) : j ≥ l ≥ 1} and {Cl(vi); j ≥ l ≥ 1} have finite vari-
ances (e.g., using the methods described in [Resnick 07]). If so, the algo-
rithm continues executing the next step; otherwise, the algorithm aborts.

4. Compute Wi,j = S1(vi) + · · · + Sj (vi) and Di,j = C1(vi) + · · · + Cj (vi).

5. Compute

q(vi) =
Di,j

Wi,j + Di,j
. (5.1)

Having obtained q(v1), . . . , q(vm ), we can compute

q̄ =
∑m

i=1 q(vi)
m

,

which, while intuitive, is not unconditionally applicable, as our algorithm demon-
strates.

6. Related Work

As extensively discussed in [Li et al. 11], there have been some (promising)
attempts at quantitative security analysis of networked systems. In what follows

1 In practice, we can first observe the time interval [0, t1 ] and use (5.1) to compute q(vi ).
Then we can observe a longer interval, say [0, t2 ], and compute q(vi ) again. Assume that we
collect many points (q(vi ), tz ), z = 1, 2, . . . . Then we may plot them to look for a horizontal
line. If a horizontal line pattern appears after tz for some z, we may say that tz is a sufficiently
long time. This method can also be used to determine whether the process is steady in practice.



314 Internet Mathematics

we discuss three main approaches, which are complementary to the “stochastic
process” approach of [Li et al. 11] and the present paper.

An extensively studied approach is the “attack-graph” approach, which was
initiated in [Phillips and Swiler 98]. Basically, an attack graph is derived from a
networked system and its known vulnerabilities. The nodes in an attack graph
are the states of the networked system, and the edges reflect the attack steps (i.e.,
certain computers having been compromised can cause the compromise of more
computers). Along this line, substantial progress has been made in the last decade
[Jha and Wing 01, Sheyner et al. 02, Ammann et al. 02, Noel et al. 03, Ingols
et al. 06, Ou et al. 06, Wang et al. 07, Sawilla and Ou 08, Wang et al. 08a, Wang
et al. 08b, Xie et al. 10, Huang et al. 11]. A particular application of attack graphs
is to (optimally) harden specific assets by identifying the relevant attack paths.
Our approach is complementary to the attack-graph approach because of the
following. First, the attack-graph approach mainly focuses on studying known
(but unpatched) vulnerabilities. The only exception we are aware of is the recent
extension to considering the number of unknown vulnerabilities that are needed
in order to compromise some specific assets [Wang et al. 10]. In contrast, our
approach aims to embed unknown vulnerabilities into the model inputs (rather
than as an outcome of the model). Second, the attack-graph approach is algo-
rithmic or combinatorial in nature (e.g., computing the number of attack paths
or hardening security of a given set of assets with minimal effort). In contrast,
our approach aims to model the evolution of node states, which could allow us
to derive basic laws or principles for the security of networked systems.

An approach that is closely related to ours is what we call the “dynami-
cal system” approach, in which dynamical system models play an essential role.
This approach was rooted in epidemic models [McKendrick 26, Kermack and Mc-
Kendrick 27], which were first introduced to computer security for studying com-
puter viruses in [Kephart and White 91]. This approach has been coupled with
complex network structures since [Wang et al. 03, Ganesh et al. 05, Chakrabarti
et al. 08]. The state-of-the-art result in this line of research is [Xu et al. 12], which
also presented perhaps the first numerical result for estimating the global state
that is comparable to our concept of q. While the results in [Xu et al. 12] can
accommodate arbitrary network structures, they are based on an independence
assumption that is comparable to that the X2,i ’s in our model are independent
of each other. As shown above, we aim to get rid of this independence and other
assumptions as much as we can.

The third approach is what we call the “statistical physics” approach (cf. [Al-
bert and Barabási 02] for a large body of literature and its numerous follow-ons).
This approach mainly aims to characterize the robustness of network connectiv-
ity (i.e., robustness of giant components in the presence of node and/or edge
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deletions). While relevant, there is a fundamental difference between network
connectivity and security. Specifically, as noted in [Li et al. 11], a malicious at-
tacker may aim to compromise as many computers as possible. However, the
ultimate goal of the attacker may be to steal sensitive information rather than
to disrupt the connectivity of networks. In other words, an attacker may com-
promise sensitive information while likely not disrupting the communications of
legitimate users.

7. Discussion and Research Directions

In this section we discuss the utility of the stochastic process approach, and
suggest future research directions.

7.1. On the Utility of the Stochastic Process Approach

The stochastic process approach, introduced in [Li et al. 11], can be seen as a
new way of thinking about quantitative security. The present paper is a first step
toward eliminating exponential-distribution assumptions and the independence
assumptions in [Li et al. 11]. The approach is centered on stochastic processes
that model the interaction between attack and defense. The approach is in its
infant stage and is currently based on first-principle modeling (due to the lack of
real-life data). Nevertheless, the approach has important real-life implications,
as we elaborate below.

First, since stochastic processes capture the evolution of node states, the re-
sults are pertinent to the evolution of system states. This will help deepen our
understanding of the problem and likely will allow us to draw insights or laws
and principles that govern the outcome of the interaction between attack and
defense. Note that the characterization is not fundamentally based on knowledge
of the parameters, because the parameters exist in any case. In other words, the
resulting insights or laws and principles are valid whether we know the specific
values of the model parameters or not. Such general (or even universal) laws and
principles are of paramount importance.

Second, the analytical results could lead to guidelines (as shown in [Li et
al. 11]) for adjusting the defense in a cost-effective, if not optimal, fashion. As
mentioned above, the upper bounds can be utilized in practice to capture the
worst-case scenario, and can be adopted for decision-making. For example, if we
know that q is bounded from above, then some appropriate proactive threshold
cryptosystems [Herzberg et al. 97] may be deployed to tolerate the bounded
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compromise. Moreover, the study can suggest quantitative defense adjustments
in order to contain q below a desired threshold (as shown in [Li et al. 11]).

Third, we have offered here statistical methods for obtaining security measures
in practice. In Section 4, we presented numerical methods for deriving the global
security measure q in various practical settings. In Section 5, we presented sta-
tistical methods for obtaining the global security measure q when only high-level
information about the attack–defense process can be obtained.

7.2. Extending the Stochastic Process Models

The models in the present paper can be extended in multiple directions. The first
direction is to further weaken the assumptions as much as possible. One question
is this: how should we accommodate node and edge heterogeneity (other than the
degree or topology heterogeneity), meaning that different nodes (edges) exhibit
different parameter distribution characteristics? Note that our analytical results
on q(v), the probability that node v is compromised in the steady state, already
accommodate node and edge heterogeneity. However, our analytical results on
the global security measure q, especially its bounds, are based on the fact that
the nodes (edges) exhibit the same parameter distribution characteristics.

Another question is this: how can we bridge the gap between what can be
observed in practice (i.e., what can be offered by real-life data) and the weakest
possible assumptions that we have to make in order to derive analytical results?
This includes the design of new statistical methods for testing assumptions that
currently cannot be tested.

The second direction is to accommodate multiple vulnerability classes but from
a different perspective. Our models are based on aggregating the effects of vulner-
abilities at individual computers. Another perspective is to consider individual
vulnerability classes that are “compatible” with each other, where “compatibil-
ity” is an intuitive concept that needs to be formalized. The intuition is that the
exploitation of some vulnerability in one computer can cause the exploitation
of another compatible (i.e., not necessarily the same) vulnerability in another
computer. This would lead to multiple stochastic attack–defense processes that
might be dependent on each other. This quickly becomes very complicated, but
certainly worthy of study, because it may lead to deeper insights. Moreover, it
is certainly interesting and important to compare the two perspectives.

The third direction is to accommodate the consequence heterogeneity between
nodes. This is important because the damage that is caused by the compromise
of one node (e.g., a server) may be greater than the damage caused by the
compromise of another (e.g., a desktop). Our models can partially accommodate
this consequence heterogeneity via the q(v)’s, where q(v) is the probability that
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node v is compromised in the steady state. However, our results on, including
the bounds of, the global security measure q do not consider the asset on node v,
which may be denoted by asset(v). One simple extension would be to introduce
a derivative security measure q(v) × asset(v), which can lead to the naturally
extended global security measure

∑
v∈V q(v) × asset(v)/|V|. Nevertheless, other

extensions are possible.
The fourth direction is to characterize the distribution of the random variable

that indicates the number of compromised nodes in the steady state. Note that
q × |V| corresponds to the expected number of compromised nodes in the steady
state. Knowledge about the distribution of the random variable will allow us to
conduct better decision-making.

7.3. Unifying the Approaches

As mentioned in the introduction, the problem of quantitative security anal-
ysis of networked computer systems has been outstanding for decades. In the
above section on related work, we highlighted three main approaches. Both the
attack-graph approach and the statistical-physics approach have been extensively
studied, but both the dynamical system approach and the stochastic process ap-
proach are in their infant stages. Nevertheless, it is imperative to unify these
approaches into a comprehensive and systematic framework.

8. Conclusion

We extended the quantitative security model and analysis presented in
[Li et al. 11] by substantially weakening its assumptions regarding the distribu-
tions of, and the dependence between, the relevant random variables. In partic-
ular, our extensions lead to practical methods for obtaining the desired security
measures for both the case that the lower-level attack–defense process is ob-
served and the case that the higher-level alternating renewal process is observed.
We discussed future research directions toward ultimately solving the problem
of quantitative security analysis of networked systems.
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