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Percolation in General Graphs
Fan Chung, Paul Horn, and Linyuan Lu

Abstract. We consider a random subgraph Gp of a host graph G formed by retaining
each edge of G with probability p. We address the question of determining the critical
value p (as a function of G) for which a giant component emerges. Suppose G satisfies
some (mild) conditions depending on its spectral gap and higher moments of its degree
sequence. We define the second-order average degree d̃ to be d̃ =

∑
v d

2
v/(

∑
v dv),

where dv denotes the degree of v. We prove that for any ε > 0, if p > (1 + ε)/d̃,
then asymptotically almost surely, the percolated subgraph Gp has a giant component.
In the other direction, if p < (1 − ε)/d̃, then almost surely, the percolated subgraph
Gp contains no giant component. An extended abstract of this paper appeared in the
WAW 2009 proceedings [Chung et al. 09]. The main theorems are strengthened with
much weaker assumptions.

1. Introduction

Almost all information networks that we observe are subgraphs of some host

graphs that often have sizes prohibitively large or incomplete information. A

natural problem is to deduce the properties that a random subgraph of a given

graph must have.

We are interested in random subgraphs Gp of a graph G obtained as follows:

for each edge in G we independently decide to retain the edge with probability

p and discard the edge with probability 1 − p. A natural special case of this

process is the Erdős–Rényi graph model G(n, p), which is the special case in

which the host graph is Kn. Other examples are percolation problems that have
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long been studied in theoretical physics [Grimmett 89, Kesten 82], mainly with

the host graph being the lattice graph �k. In this paper, we consider a general

host graph, such as a contact graph consisting of edges formed by pairs of people

with possible contact, which is of special interest in the study of the spread of

infectious diseases or the identification of a community in various social networks.

A fundamental question is to ask for the critical value of p such that Gp has

a giant connected component, that is, a component whose volume is a positive

fraction of the total volume of the graph. For the spread of disease on contact

networks, the answer to this question corresponds to the problem of finding the

epidemic threshold for the disease under consideration.

For the case of Kn, Erdős and Rényi answered this question in their seminal

paper [Erdős and Rényi 59]: if p = c
n for c < 1, then almost surely G contains no

giant connected component and all components are of size at most O(log n), and

if c > 1, then there is a giant component of size proportional to n. For general

host graphs, the answer has been more elusive. Results have been obtained either

for very dense graphs or bounded-degree graphs. It was shown in [Bollobas et

al. 10] that for dense graphs (where the degrees are of order Θ(n)), the giant

component threshold is 1/ρ, where ρ is the largest eigenvalue of the adjacency

matrix. In [Frieze et al. 04], the authors consider the case in which the host

graph is d-regular, and they show that the critical probability is close to 1/d,

strengthening earlier results on hypercubes [Ajtai et al. 82, Bollobas et al. 92] and

Cayley graphs [Malon and Pak 02]. For expander graphs with degrees bounded

by d, it is proved in [Alon et al. 04] that the percolation threshold is greater than

or equal to 1/(2d).

There are several recent papers, mainly in studying percolation on special

classes of graphs, that have gone further. Their results nail down the precise

critical window during which component sizes grow from log(n) vertices to a

positive proportion of the graph. In [Borgs et al. 05, Borgs et al. 06], the au-

thors find the order of this critical window for transitive graphs and cubes. In

[Nachmias 07], a similar situation to that of [Frieze et al. 04] is considered, and

random walk techniques are used to study percolation within the critical win-

dow for quasirandom transitive graphs. Percolation within the critical window

on random regular graphs is also studied in [Nachmias and Peres 07]. Our re-

sults differ from these in that we study percolation on graphs with a much more

general degree sequence. A greater precision of these results, however, would be

quite desirable. It is an interesting open question to describe the precise scaling

window for percolation for the more general graphs studied here.

Here, we are interested in percolation on graphs that are not necessarily regular

and can be relatively sparse (i.e., o(n2) edges). Compared with earlier results, the

main advantage of our results is the ability to handle general degree sequences.
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To state our results, we give a few definitions here. For a subset S of vertices, the

volume of S, denoted by vol(S), is the sum of the degrees of vertices in S. The

kth-order volume of S is the kth moment of the degree sequence, i.e., volk(S) =∑
v∈S dkv . We write vol1(S) = vol(S) and volk(G) = volk(V (G)), where V (G) is

the vertex set ofG. We denote by d̃ = vol2(G)/ vol(G) the second-order degree of

G, and by σ the spectral gap of the normalized Laplacian, which we fully define in

Section 2. Further, recall that f(n) is O(g(n)) if lim supn→∞ |f(n)|/|g(n)| <∞,

and f(n) is o(g(n)) if limn→∞ |f(n)|/|g(n)| = 0.

We will prove the following theorem.

Theorem 1.1. Suppose G has the maximum degree Δ satisfying Δ = o(d̃/σ). For p ≤
(1− c)/d̃ for some c > 0, asymptotically almost surely (a.a.s.), every connected

component in Gp has volume at most O(
√
vol2(G)g(n)), where g(n) is any slowly

growing function as n→∞.

Here, an event occurring a.a.s. indicates that it occurs with probability tending

to one as n tends to infinity. Also recall that f(n) = Θ(g(n)) if f(n) = O(g(n))

and g(n) = O(f(n)). In this case, we say that f and g are of the same order.

Also, f(n) = ω(g(n)) if g(n) = o(f(n)).

Necessarily, our results are asymptotic, and in that sense, we work with infinite

families of graphs {G(n)} with |G| = n; however, our results require no continuity

in the family save that some parameters remain under control. When we say,

for instance, that Δ = o(d̃/σ) in the statement of Theorem 1.1, we really mean

that for a family of graphs {G(n)}, Δn = o(d̃n/σn). In that sense, the theorem

can be restated as follows.

Theorem 1.2. Suppose a family {G(n)} has maximum degree Δn satisfying Δn =

o(d̃/σ). For p ≤ (1− c)/d̃, a.a.s. every connected component in G
(n)
p has volume

at most O(
√

vol2(G(n))g(n)), where g(n) is any slowly growing function as n→∞.

For simplicity of exposition we try to suppress dependence on the family and

on n as much as possible.

In order to prove the emergence of a giant component where p ≥ (1 + c)/d̃,

we need to consider some additional conditions. We say that a (family of)

graph(s) is f -admissible if for all sets S, vol2(S) ≥ ε vol2(G) implies that vol(S) ≥
f(ε) vol(G) with f a positive function. If such an f exists, and σ vol(G)/Δ =

ω(log log(n)) and vol2(G)/Δ2 = ω(log log(n)), we say that G is admissible. Note

that to check whether G is f -admissible, it suffices to check only subsets com-

prising the vertices with the k highest degrees.
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Theorem 1.3. Suppose p ≥ (1 + c)/d̃. Suppose G has maximum degree Δ satisfying

Δ = o(d̃/σ), σ = o(log−1(n)), and G is admissible. Then Gp contains a unique

component of volume Θ(vol(G)) a.a.s.

Admissibility may seem a strong condition: it implies that if a (family of)

subset(s) has vol2(S) = Θ(vol2(G)), then vol(S) = Θ(vol(G)). This suggests

that finding a giant component of size Θ(vol(G)) may not quite be the “right”

definition of a giant component for this type of graph. The value p = 1/d̃ is a

threshold in terms of the size of the largest component for a much wider class of

graphs than admissible graphs; however, neither the volume nor the size (number

of vertices) of the largest component is the right measure in this sense.

We say that a (family of) graph(s) is weakly admissible if any set S with

vol(S) = O(σ vol(G) log(n)) has vol2(S) = o(vol2(G)) and also σ vol(G)/Δ =

ω(log log(n)) and vol2(G)/Δ2 = ω(log log(n)). Note that this is a much weaker

(easier to satisfy) condition than admissibility, which is equivalent to saying that

if vol(S) = o(vol(G)) then vol2(S) = o(vol2(G)). Note that weak admissibility

is implied by, for instance, the condition that Δ = o(d̃/σ logn).

We prove the following theorem, showing that for admissible graphs, 1/d̃ is a

threshold for having a giant component in the sense of second-order volume.

Theorem 1.4. Suppose p > (1 + c)/d̃. Suppose G has maximum degree Δ satisfying

Δ = o(d̃/σ), σ = o(log−1(n)), and G is weakly admissible. Then Gp contains a

unique component with second-order volume Θ(vol2(G)) a.a.s.

One may ask whether weak admissibility is sufficient to guarantee a giant

component in the volume sense as well. This, however, is not the case. In

particular, we show the following.

Theorem 1.5. There exist weakly admissible graphs satisfying the conditions of The-

orem 1.3 such that even if p = (1 + ε)/d̃, Gp contains no giant component in the

volume sense for ε sufficiently small.

Finally, we show that by the time p > 1/d, then Gp actually contains a giant

component in the volume sense (as opposed to simply in the vol2(G) sense).

Theorem 1.6. Suppose p > (1 + c)/d. Suppose G has maximum degree Δ satisfying

Δ = o(d̃/σ) and that σ = o(log−1(n)) and σ vol(G)/Δ = ω(log log(n)). Then

Gp contains a component of size Θ(vol(G)).

We show below that under the assumption that the maximum degree Δ of

G satisfies Δ = o(d̃/σ), the spectral norm of the adjacency matrix satisfies
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‖A‖ = ρ = (1 + o(1))d̃. Thus for graphs satisfying the conditions of Theorem

1.3 or 1.5, the threshold for having a giant component in the sense of first- or

second-order volume is 1/d̃.

To examine when the conditions of Theorems 1.3 and 1.5 are satisfied, we note

that admissibility implies that d̃ = Θ(d), which essentially says that while there

can be some vertices with degree much greater than d, there cannot be too many.

Weak admissibility removes this requirement. In [Chung et al. 04], it is shown

that for random graphs with a given expected degree sequence σ = O(1/
√
d), and

hence for graphs with average degree � log2(n), the spectral condition easily

holds for random graphs. The results here can be viewed as a generalization

of the result of [Frieze et al. 04] with general degree sequences and is also a

strengthening of the original results of Erdős and Réyni to general host graphs.

The paper is organized as follows: In Section 2 we introduce notation and

some basic facts. In Section 3, we examine several spectral lemmas that allow us

to control the expansion and establish Theorems 1.3 and 1.5, and in Section 5,

we complete the proof of Theorem 1.6.

2. Preliminaries

Suppose G is a connected graph on the vertex set V . Throughout the paper, Gp

denotes a random subgraph of G obtained by retaining each edge of G indepen-

dently with probability p.

Let A = (auv) denote the adjacency matrix of G, defined by

auv =

{
1 if {u, v} is an edge,

0 otherwise.

We let dv =
∑

u auv denote the degree of vertex v. Let Δ = maxv dv denote the

maximum degree of G and δ = minv dv the minimum degree.

Let D = diag(dv1 , dv2 , . . . , dvn) denote the diagonal degree matrix. Let 1

denote the column vector with all entries 1 and let d = D1 be the column vector

of degrees. The normalized Laplacian of G is defined as

L = I −D−1/2AD−1/2.

The spectrum of the Laplacian is the set of eigenvalues of L sorted in increasing

order:

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

Many properties of the λi can be found in [Chung 97]. For example, the least

eigenvalue λ0 is always equal to 0. We have λ1 > 0 if G is connected and λn−1 ≤ 2
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with equality holding only if G has a bipartite component. Let σ = max{1 −
λ1, λn−1 − 1}. Then σ < 1 if G is connected and nonbipartite. For random

graphs with a given expected degree sequence [Chung et al. 04], σ = O(1/
√
d),

and in general, for regular graphs it is easy to write σ in terms of the second-

largest eigenvalue of the adjacency matrix. Furthermore, σ is closely related to

the mixing rate of random walks on G; see, for example, [Chung 97].

The following lemma measures the difference between the adjacency eigenvalue

and d̃ using σ.

Lemma 2.1. The largest eigenvalue, ρ, of the adjacency matrix of G satisfies

|ρ− d̃| ≤ σΔ.

Proof. Recall that ϕ = 1/(
√
vol(G))D1/21 is the unit eigenvector of L correspond-

ing to the eigenvalue 0. We have

‖I − L− ϕϕ∗‖ ≤ σ.

Then

|ρ− d̃| =
∣∣∣∣‖A‖ −

∥∥∥∥ dd∗

vol(G)

∥∥∥∥
∣∣∣∣ ≤

∥∥∥∥A− dd∗

vol(G)

∥∥∥∥
=
∥∥∥D1/2(I − L− ϕϕ∗)D1/2

∥∥∥
≤ ‖D1/2‖ · ‖I − L− ϕϕ∗‖ ·

∥∥∥D1/2
∥∥∥ ≤ σΔ.

An important tool that we use is the following standard lemma in the vein of

the expander mixing lemma (see [Chung 97]).

Lemma 2.2. For any two sets X and Y , the number of edges between X and Y ,

denoted by E(X,Y ), satisfies∣∣∣∣e(X,Y )− vol(X) vol(Y )

vol(G)

∣∣∣∣ ≤ σ
√
vol(X) vol(Y ).

An immediate corollary is the following.

Lemma 2.3. Let S be a set and fix ε > 0. Let Γ(v) denote the neighborhood of v.

Define

X =

{
v ∈ G \ S :

∣∣∣∣|Γ(v) ∩ S| − dv vol(S)

vol(G)

∣∣∣∣ ≥ ε
dv volS

vol(G)
.

}
Then

vol(X) ≤ 2σ2

ε

vol(G)2

vol(S)
.
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Proof. Let

X+ =

{
v ∈ G \ S : |Γ(v) ∩ S| ≥ (1 + ε)

dv vol(S)

vol(G)

}

and

X− =

{
v ∈ G \ S : |Γ(v) ∩ S| ≤ (1− ε)

dv vol(S)

vol(G)

}
.

Then X = X+ ∪X−.
By Lemma 2.2 and the definition of X+,

vol(X+) vol(S)

vol(G)
+ σ

√
vol(X+) vol(S) ≥ e(X+, S) ≥ (1 + ε)

vol(X+) vol(S)

vol(G)
.

Thus

vol(X+) ≤ σ2

ε

vol(G)2

vol(S)
.

That vol(X−) ≤ σ2

ε
vol(G)2

vol(S) follows analogously, completing the proof.

In order to obtain our main result, we also need the following inequality.

Lemma 2.4. For ε > 0 and x > 0,

(1− e−x) ≥ min{(1− ε)x, ε− ε2}.

Proof. By concavity of (1− e−x) and the fact that 1− e−x is increasing, it suffices

to check that for x < 1,

e−x < 1− x+ x2,

which follows from the Taylor expansion e−x = 1−x+ x2

2 − x3

3! + · · · . The result
clearly holds for ε > 1.

3. The Range of p with No Giant Component

In this section, we will prove Theorem 1.1.

Proof of Theorem 1.1. It suffices to prove the following claim.

Claim 3.1. If pρ < 1, where ρ is the largest eigenvalue of the adjacency matrix,

then with probability at least 1 − 1
C2(1−pρ) , all components have volume at most

C
√
vol2(G).
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Proof of Claim 3.1. Let x be the probability that there is a component of Gp having

volume greater than C
√
vol2(G). Now we choose two random vertices with the

probability of being chosen proportional to their degrees in G. Under the condi-

tion that there is a component with volume greater than C
√

vol2(G), the proba-

bility of each vertex in this component is at least C
√
vol2(G)/vol(G). Therefore,

the probability that the random pair of vertices are in the same component is at

least

x

(
C
√
vol2(G)

vol(G)

)2

=
C2xd̃

vol(G)
. (3.1)

On the other hand, for any fixed pair of vertices u and v and any path P of length

k inG, the probability that u and v are connected by this path inGp is exactly p
k.

The number of k-paths from u to v is at most 1∗
uA

k1v. Since the probabilities of

u and v being selected are du/vol(G) and dv/vol(G) respectively, the probability

that the random pair of vertices are in the same connected component is at most

∑
u,v

du
vol(G)

dv
vol(G)

n∑
k=0

pk1∗
uA

k1v =

n∑
k=0

1

vol(G)2
pkd∗Akd.

We have

n∑
k=0

1

vol(G)2
pkd∗Akd ≤

∞∑
k=0

pkρk vol2(G)

vol(G)2
≤ d̃

(1 − pρ) vol(G)
.

Combining with (3.1), we have

C2xd̃

vol(G)
≤ d̃

(1− pρ) vol(G)
,

which implies

x ≤ 1

C2(1− pρ)
.

Claim 3.1 is proved.

Then letting C be an arbitrarily slowly growing function completes the proof

of the theorem.

4. Growing a Giant Component

In this section we begin by establishing the two lemmas that are the key to

our analysis. Both lemmas concern the neighborhood of a set S that is fairly
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large (for our purposes vol(S) > σ vol(G)) intersecting a very large set T in the

percolated graph. For our purposes, T represents the unexplored area of the

graph; we will stop once we have explored a positive fraction of T .

The differences between these lemmas is fairly minor, but the proof changes

slightly for the purposes of proving Theorems 1.4 and 1.6.

The following lemma provides the crux of the proof of Theorem 1.4 (and hence

also of Theorem 1.3).

Lemma 4.1. Suppose G is a weakly admissible graph and p > (1 + 1000ε)/d̃, for

some ε < 1/100. Further, suppose S and T are two sets satisfying vol2(T ) >

(1−5ε) vol2(G) and vol(S) > σ vol(G). Then the neighborhood Γp(S) of S in Gp

defined by Γp(S) = {u ∈ V : {u, v} ∈ E(Gp)} for some v} satisfies either

vol(Γp(S) ∩ T ) > (1 + ε) vol(S) or vol2(Γp(S) ∩ T ) >
1

2
(ε2 − ε3) vol2(G)

with probability at least

1−max

{
exp

(
−α vol(S)

Δ

)
, exp

(
− (ε2 − ε3) vol2(G)

8Δ2

)}

for some constant α.

Proof. Let

X =

{
v ∈ T :

∣∣∣∣|Γ(v) ∩ S| − dv vol(S)

vol(G)

∣∣∣∣ ≥ ε
dv vol(S)

vol(G)

}
.

Then by Lemma 2.3, vol(X) ≤ 2σ
ε vol(G). Note that sinceG is weakly admissible,

this implies that vol2(X) = o(vol2(G)), and in particular, we may assume that

vol2(X) < ε vol2(G) for sufficiently large n.

Then

�[vol(Γ(S) ∩ (T \X))] ≥
∑

v∈T\X
dv(1 − (1− p)|Γ(v)∩S|)

≥
∑

v∈T\X
dv(1 − exp(−p|Γ(v) ∩ S|))

≥
∑

v∈T\X
dv

(
1− exp

(
−(1− ε)p

dv vol(S)

vol(G)

))

≥
∑

v∈T\X
dv min

{
(1− ε)2p

dv vol(S)

vol(G)
, ε− ε2

}
.
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We may split T into two parts T ′ and T ′′. Let T ′ denote the set of vertices in

T \X such that (1 − ε)2pdv vol(S)/vol(G) < ε − ε2, and T ′′ = T \ (X ∪ T ′). If

vol2(T
′) > (1− 7ε) vol2(G), then

�[vol(Γ(S) ∩ (T \X)] ≥
∑
v∈T ′

(1− ε)2p
d2v vol(S)

vol(G)

= (1− ε)2p
vol2(T

′) vol2(T ′) vol(S)
vol(G)

≥ (1− ε)2(1− 7ε)
(1 + 1000ε)

d̃

vol2(G) vol(S)

vol(G)

> (1 + 100ε) vol(S).

Otherwise, vol2(T
′′) > ε vol2(G), and

�[vol2(Γ(S) ∩ (T \X))] ≥
∑
v∈T ′′

d2v(ε− ε2) ≥ (ε2 − ε3) vol2(G).

We use the following Chernoff bounds; see, e.g., [Chung and Lu 06]: if X =∑
dvXi, where Xi are independent indicator random variables and |dv| < Δ,

then

�(X ≤ �[X ]− a) ≤ exp

(
− a2

2
∑

d2v�[X
2
v ]

)
≤ exp

(
− a2

2Δ�[X ]

)
.

Setting a = α�[X ], we have that in the first case,

�(vol(Γ(S) ∩ (Tt \X)) < (1 + ε) vol(G)) ≤ exp

(−α2
�[X ]

2Δ

)

≤ exp

(
−α2(1 + 100ε) vol(S)

Δ

)
.

In the second case,

�

(
vol2(Γ(S) ∩ (Tt \X)) <

1

2
(ε2 − ε3) vol2(G)

)
< exp

(
− (ε2 − ε3) vol2(G)

8Δ2

)
.

In the case that we wish to show the emergence of a giant component in the

volume sense when p > 1/d, we need the following lemma.

Lemma 4.2. Suppose p ≥ (1 + 1000ε)/d for some ε < 1/100, and G is a weakly

admissible graph. Then if S and T are sets with vol(S) > σ vol(G) and vol(T ) >

(1− 5ε) vol(G), then either

vol(Γp(S) ∩ T ) > (1 + ε) vol(S)
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or

vol(Γp(S) ∩ T ) >
1

2
(ε2 − ε3) vol2(G)

with probability at least

1−max

{
exp

(
−α vol(S)

Δ

)
, exp

(
− (ε2 − ε3) vol(G)

8Δ

)}
,

for some constant α.

Note that the proof of Lemma 4.2 is essentially analogous to the proof of

Lemma 4.1. However, we will highlight the key differences; essentially, we use

vol(·) instead of vol2(·) in a few places and apply Cauchy–Schwarz.

Proof of Lemma 4.2. We define X , T ′, and T ′′ as before. We have that vol(X) =

o(vol(T )), since σ = o(1), so that vol(X) ≤ ε vol(T ) for n sufficiently large. At

this point either vol(T ′) > (1 − 7ε) vol(G) or vol(T ′′) > ε vol(G). (Note that in

the proof of Lemma 4.1, we needed a statement about vol2(T ) here and used

admissibility.) In the case that vol(T ′) > (1− 7ε) vol(G), we observe that

�[vol(Γ(S) ∩ (T \X))] ≥ (1− ε)2p
vol2(T

′) volS
vol(G)

≥ (1 + 100ε) vol(S),

where here we use Cauchy–Schwarz and the fact that p ≥ ((1 + 1000ε))/d.

If vol(T ′′) > ε vol(G), then

�[vol(Γ(S) ∩ (T \X))] ≥ (ε2 − ε3) vol(G).

Concentration, as before, follows from the Chernoff bounds.

Before we complete the proof of Theorems 1.4 and 1.6, let us describe our

strategy. Essentially, we want to run a branching-process-type argument, but

since the underlying graph may be rather inhomogeneous in terms of its degrees,

directly running such an argument can be difficult. To overcome this difficulty,

we analyze a two-phase process.

• Phase 1: We start with an initial set S0 with σ vol(G) < S0 < σ vol(G)+Δ,

and take T0 to be V (G) \ S0. At each step, we take St+1 = Γp(St) ∩ Tt

and Tt+1 = Tt \ St+1, with the following caveat. We never want the size

of St+1 to be larger than 2σ vol(G) +Δ. If St+1 is larger than 2σ vol(G) +

Δ, we (arbitrarily) order the vertices of Tt and add them in order until

2σ vol(G) < vol(St+1) < 2σ vol(G) + Δ. Once this occurs, we perform a

special round. Each of the vertices in S0 is adjacent to some set of vertices
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in St+1; we will combine the largest k components to get a set St+2 with

σ vol(G) < vol(St+2) < σ vol(G) + Δ. (Note that to do this, we will once

again use our order on the vertices to add vertices in order so that vol(St+2)

is not too large.) We will then let Tt+2 = Tt+1 and continue the process.

Phase 1 ends when all vertices in some St lie in the same component.

• Phase 2: At the beginning of Phase 2, we have a single set St = S′
0 that

lies in a single component and a set Tt = T ′
0 that contains all vertices that

have previously been unexplored. We then consider repeatedly setting

St+1′ = Γp(S
′
t) ∩ T ′

t and T ′
t+1 = T ′

t \ S′
t+1 until the point where either

vol(St+1) < (1 + ε) vol(St) or vol2(Tt) < (1− 2ε) vol2(G) (or in the case of

the proof of Theorem 1.6, when vol2(T
′
t) < (1 − 2ε) vol(G)). At this point

we stop and output the component containing S′
t.

Note that we need to be slightly careful during the execution of Phase 1; the

key here is that we do not wish to investigate too much of the graph before we

know that we are actually in the giant component. We need to ensure that T is

large enough at the end of Phase 1 that we can successfully use Lemma 4.1 or

4.2 in Phase 1.

To complete the proof of the main theorems, we have only to establish the

following lemmas:

Lemma 4.3. Suppose G is a weakly admissible graph with σ = o(log−1(n)) and p ≥
(1 + 1000ε)/d̃ for some ε < 1/100. Then a.a.s., Phase 1 terminates in O(log(n))

steps with all vertices in St in a single component, and vol2(Tt) > (1−ε) vol2(G).

Lemma 4.4. Suppose G is a weakly admissible graph with σ = o(log−1(n)) and

p ≥ (1 + 1000ε)/d̃ for some ε < 1/100. Then a.a.s., Phase 2 terminates in

O(log(n)) steps with a single component, where vol2(S
′
t) = Θ(vol2(G)).

Theorem 1.4 follows directly from the proofs of Lemmas 4.3 and 4.4. The-

orem 1.3 follows immediately from Theorem 1.4 and the stronger condition of

admissibility.

Theorem 1.6 follows from the following slight variants of Lemmas 4.3 and 4.4,

whose proofs are essentially identical using Lemma 4.2 instead of Lemma 4.1.

We remark that the requirement that we have ε < 1/100 in the statements

of these lemmas does not affect the existence of the giant component. If we

were trying to carefully determine the size of the giant component, however, this

would limit us. This assumption is an artifact of the proof of Lemma 4.1, where

we need (1− ε2)(1 − 7ε)(1 + 1000ε) > (1 + 100ε), for instance.
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Lemma 4.5. Suppose G is a weakly admissible graph with σ = o(log−1(n)) and p ≥
(1 + 1000ε)/d for some ε < 1/100. Then a.a.s., Phase 1 terminates in O(log(n))

steps with all vertices in St in a single component, and vol(Tt) > (1− ε) vol2(G).

Lemma 4.6. Suppose G is a weakly admissible graph with σ = o(log−1(n)) and

p ≥ (1 + 1000ε)/d for some ε < 1/100. Then a.a.s., Phase 2 terminates in

O(log(n)) steps with a single component, where vol(S′
t) = Θ(vol(G)).

Since the proofs of Lemmas 4.5 and 4.6 are essentially identical to those of

Lemmas 4.3 and 4.4, we will suppress them.

Proof of Lemma 4.3. Let S0 be an arbitrary starting set satisfying the conditions of

Phase 1. By Lemma 4.1, vol(Γ(St)∩Tt) > (1+ ε) vol(St) with failure probability

bounded above as in the statement of the lemma. Note that the set T ′ in

Lemma 4.1 will be empty (at least for n sufficiently large), since in Phase 1,

vol(St) < 2σ vol(G) + Δ < 3σ vol(G) and so

(1− ε)2p
dv vol(S)

vol(G)
≤ (1 − ε)2

Δσ

d̃
= o(1),

by the condition Δ = o(d̃/σ). This is less than ε2 − ε for large enough n.

Assuming vol(Γ(St) ∩ Tt) > (1 + ε) vol(St) at each step, the number of steps

having an St of volume σ vol(G)(+Δ) and a set St′ of size 2σ vol(G)(+Δ) is

bounded by a constant. Furthermore, collecting the largest components to find

a new set of size σ vol(G) by collecting the largest components shrinks the number

of components by a constant factor. Thus after a logarithmic number of steps,

all vertices in St will be in the same component.

Note that vol(St) never exceeds 3σ vol(G), so

vol(
⋃
t

St) = O(σ vol(G) log(n)).

By admissibility, vol2(
⋃

t St) = o(vol2(G)), so vol2(Tt) > (1 − ε) vol2(G) for n

sufficiently large.

In total, the probability of failure is bounded by O(log(n)) × o(log−1(n)) =

o(1), completing the proof of the theorem. Note that here we use the condition

that
σ vol(G)

Δ
= ω(log log(n)) and

vol2(G)

Δ2
= ω(log log(n))

to observe that the failure probability in Lemma 4.1 is o(log−1(n)).
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Proof of Lemma 4.4. By Lemma 4.3, Phase 1 succeeds a.a.s., and hence at the

beginning of Phase 2, S′
0 is a set of vertices of volume at least σ vol(G) with all

vertices lying in the same component, and furthermore,

vol2(T
′
0) > (1− ε) vol2(G).

Since we stop when vol2(Tt) < (1−2ε) vol2(G) and we continue only as long as

vol(St+1) > (1 + ε) vol(St+1), the hypotheses of Lemma 4.1 are always satisfied.

As long as the a.a.s. conclusions of Lemma 4.1 hold, we will continue either until

some step s where vol2(Ts) < (1 − 2ε) vol2(G), or until the second condition of

Lemma 4.1 holds, that is, vol2(Ss+1) > (ε3 − ε2) vol2(G). In the second case,

we are done since vol2(Ss+1) = Θ(vol2(G)) and Ss is clearly part of a giant

component in G. If we stop because vol2(Ts) < (1− 2ε) vol2(G), then note that

vol2

(⋃
t

St

)
≥ vol2(T0)− vol2(Ts) > ε vol2(G),

and thus there exists a giant component, as desired.

Since while we continue, vol(St) is growing exponentially, this can continue

for at most O(log(n)) steps; and as before, the failure probability after so many

steps is o(1).

5. Percolated Graphs without a Giant Component

In this section we wish to prove Theorem 1.5; that is, we wish to give an example

of a weakly admissible graph such that even when p = (1 + ε)/d̃, the percolated

random subgraph has no giant component in the volume sense, even though it

has one in the sense of second-order volume.

To construct our graph, we use the G(w) random-graphmodel; the monograph

[Chung and Lu 06] contains a thorough analysis of this model.

For a vector of weights w = (w1, . . . , wn), the G(w) model independently

places an edge between vertices vi and vj with probability wiwj/
∑

wi. We

denote by vol(G) =
∑

wi the expected volume of a graph in G(w) and by

vol2(G) =
∑

w2
i the expected second-order degree. As long as the wi are suffi-

ciently large (in our example they are polynomial in the degrees), it is easy to

see that the actual volume and second-order volume are tightly concentrated on

their expectations.

Claim 5.1. Consider a graph G ∈ G(w), where w is a vector with n − n0.25

wi’s with wi = n0.2 and n0.25 wi’s with wi = n0.9. Then G is a.a.s. weakly
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admissible, but Gp does not contain a giant component in the volume sense a.a.s.

if p = (1 + ε)/d̃.

First observe that

vol(G) = (n− n0.25)n0.2 + n0.9n0.25 = (1 + o(1))n1.2,

vol2(G) = (n− n0.25)n0.4 + n1.8n0.25 = (1 + o(1))n2.05,

d̃ =
vol(G)

vol2(G)
= (1 + o(1))n0.85.

The graph Gp restricted to the vertices of weight n0.2 is an Erdős–Rényi ran-

dom graph, where two vertices are adjacent with probability

(1 + o(1))
1 + ε

d̃
× n.2 · n.2

n1.2
= o(1/n),

and hence a.a.s. the largest component in that subgraph has size O(log(n)). It is

easy to see that no vertex in the subgraph of vertices with weight n0.9 has more

than

2
n0.9

d̃
= (2 + o(1))n0.05

neighbors in Gp. Thus no vertex in that subgraph can be adjacent to more than

(2+ o(1))n0.05 of the components of size O(log(n)) in the rest of the graph, so a

bound on the volume of the largest component is

n0.9n0.25 + (2 + o(1))n.05n0.2 log(n) = o(n1.2) = o(vol(G)).

Thus G a.a.s. contains no giant component in the volume sense.

It is known that for a graph inG(w) with wmin sufficiently large, σ = O(1/
√
w),

where w is the expected average degree. Thus for G, we have that σ = O(n−0.1).

Note that

Δ = (1 + o(1))n0.9 = o(n9.95) = o(d̃/σ).

Furthermore, note that the volume of the set consisting of all vertices of weight

n0.9 has volume n1.15 = ω(n0.1 log(n)) = ω(σ vol(G) log(n)). In particular, if S

has vol(S) = O(σ vol(G) log(n)), then S contains at most O(n0.2 log(n)) vertices

of weight n0.9, and hence

vol2(S) = O(n1.9n0.2 log(n)) = o(vol2(G)).

Since the degrees of all vertices in G are concentrated on their expectation,

this in particular implies that G is weakly admissible a.a.s., and thus that weak

admissibility is not sufficient to imply a giant component in the volume sense

when p = (1 + ε)/d̃, even though it does imply the existence of a giant component

in the second-order volume sense.

This completes the proof of the claim, and hence of Theorem 1.5.
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