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Abstract. Let G = (V, E) be a graph modeling a network in which each edge is
owned by a selfish agent, which establishes the cost for traversing its edge (i.e., assigns
a weight to its edge) by pursuing only its personal utility. In such a setting, we aim
at designing approximate truthful mechanisms for several NP-hard traversal problems
on G, such as the graphical traveling salesman problem, the rural postman problem,
and the mixed Chinese postman problem, each of which in general requires an edge of
G to be used several times. Thus, in game-theoretic terms, these are one-parameter
problems, but with a peculiarity: the workload of each agent is a natural number.
In this paper we refine the classical notion of monotonicity of an algorithm so as
to capture exactly this property, and we then provide a general mechanism-design
technique that guarantees this monotonicity and that allows one to compute efficiently
the corresponding payments. In this way, we show that the former two problems and the
latter one admit a 3/2- and a 2-approximate truthful mechanism, respectively. Thus,
for the first two problems we match the best known approximation ratios holding for
their corresponding centralized versions, while for the third one we are only a 4/3-factor
away from it.

1. Introduction

Nowadays, physical components of many large communication and transporta-
tion networks are often owned by different economic subjects, which, when asked
to provide a service, tend to act selfishly and to pursue only their personal in-
terests. On the other hand, from the user’s point of view, there is an increasing
demand for a rational allocation of network resources, meaning that one should
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know at each instant, ideally, what is the real marginal contribution that a com-
ponent can offer. Traditionally, when a systemwide goal has to be implemented
on the network, the problem of reconciling this conflict of interest between owners
and users has been exclusively addressed by the subfield of game theory known
as mechanism design. However, more recently, the consciousness that besides
economic factors, computational complexity and distributed computing issues
must be taken into proper consideration as well has led to increasing involve-
ment in the playground of the computer science community. This has resulted in
the emergence of an active research field that is known today as computational
(or algorithmic) mechanism design [Nisan and Ronen 01].

Informally speaking, an algorithmic mechanism-design problem can be thought
of as a classical well-formulated optimization problem, but with the additional
complication that part of the input is retained by the selfish agents. Hence, it
turns out that one has to compute efficiently a feasible solution to the given
optimization problem by incentivizing the agents, through suitable payments,
to disclose to the system their secret data. More formally, a mechanism is
a pair comprising an algorithm for computing a solution and a specification
of the payments (which is a function of the inputs disclosed by the agents and of
the corresponding computed solution) provided to the agents. A mechanism is
truthful if its payments guarantee that agents are not encouraged to lie.

Since the Internet appears as the ultimate platform where algorithmic mecha-
nism-design optimization problems find application, not surprisingly, most of the
efforts so far have concentrated on designing efficient truthful mechanisms for
solving several communication network problems—under various assumptions
on the agents’ ownerships—such as the shortest-path problem [Hershberger and
Suri 01], the shortest-paths tree problem [Gualà and Proietti 05a], the minimum
spanning tree problem [Nisan and Ronen 01], the minimum-radius spanning tree
problem [Proietti and Widmayer 05], the minimum-diameter spanning tree prob-
lem [Penna et al. 06], the minimum Steiner tree problem [Gualà and Proietti 05b],
among many others. All these mechanisms are based either on classical results
(VCG-mechanisms) [Vickrey 61, Clarke 71, Groves 73], which are applicable
whenever the underlying problem is utilitarian,1 or on the results of [Archer and
Tardos 01] for the so-called one-parameter problems, where the information held
by each agent can be expressed through a single value. In particular, in [Archer
and Tardos 01] it is shown that the truthfulness of a one-parameter mechanism
is related to a property of the underlying algorithm known as monotonicity.2

1Intuitively, a problem is said to be utilitarian whenever the measure of any feasible solution
coincides with the sum of all the agents’ contributions.

2Intuitively, an algorithm is said to be monotone whenever it continues to use an agent that
is part of a solution as soon as its announced cost decreases.
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1.1. Our Results

In this paper, we aim to extend the horizon to a different category of optimiza-
tion problems, namely that of graph-traversal problems. From a purely opti-
mization perspective, such a class of problems has been addressed extensively by
many researchers, mainly because of the immediate transportation and logistic
applications.

Moreover, because of the renewed interest in toll roads, either managed by
governments or private entities, in the past few years the literature devoted
to road pricing has been considerably enriched, with contributions from both
economists and operations researchers (see, for example, [Brotcorne et al. 01]
and the literature cited therein).

Along this vein of research, in this paper we study, from an algorithmic
mechanism-design point of view, a set of graph-traversal problems in an ad-
versarial setting in which each agent owns a single edge of the underlying graph.
More formally, let G denote a graph (either directed, undirected, or mixed),
with positive real edge weights established by the agents’ declarations. A walk
of length h on G is a nonempty alternating sequence v0e0v1e1 . . . eh−1vh of ver-
tices and edges in G such that edge ei connects vertices vi, vi+1, for all i < h. The
cost of a walk is the sum of the weights of the edges belonging to it, as counted
with their multiplicities (observe that vertices and edges can be repeated). If
v0 = vh, the walk is closed and is called a tour.

A path is a walk in which all vertices are distinct. We will consider the following
three classical graph-traversal problems:

1. The graphical traveling salesman problem (GTSP): assuming that G is
undirected, find a minimum-cost spanning tour of G.

2. The rural postman problem (RPP): assuming that G is undirected, and
given a subset R of edges of G, find a minimum-cost tour in G that traverses
each edge of R at least once.

3. The mixed Chinese postman problem (MCPP): assuming that G is mixed,
find a minimum-cost spanning tour of G traversing each edge of G at least
once.

It is worth noticing that all the above problems can be considered as mean-
ingful variations of the prominent traveling salesman problem (TSP), where the
input instance is a complete graph, and one has to find a minimum-cost Hamil-
tonian cycle of G (i.e., a minimum-cost spanning tour of G in which all vertices
are distinct, apart from the initial and the ending vertex). Unlike the TSP, how-
ever, our selected problems do not require the input graph to be complete, and
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this is in full accordance with the motivating setting in which each network link
must be physically held by a subject; it would be quite unrealistic to assume the
existence of a link between each pair of vertices of the graph.

All the above are one-parameter problems, and they are easily seen to be
NP-hard [Lenstra and Rinnooy Kan 76, Papadimitriou 76]. Thus, approximate
truthful mechanisms (i.e., approximate monotone algorithms) need to be devel-
oped. To this end, one generally starts by looking at a corresponding approx-
imate algorithm for the canonical centralized version of the problem, trying to
check whether it happens to be (or can easily be transformed to become) mono-
tone. Sometimes, this task is difficult to accomplish, since no general technique
is known for establishing the monotonicity of an algorithm, or to “monotonize”
it. This is exactly what happens in dealing with our problems. So, in order to
devise a uniform approach to this issue, we focus our attention on a quite large
class of one-parameter problems, namely those in which the workload of an agent
is an integer.

For these problems, we first of all refine the classical notion of monotonic-
ity used in [Archer and Tardos 01] to that of step-integral monotonicity (which
conveys the fact that each edge can be used several times). Then we develop a
general step-integral monotonicity-preserving composition technique between al-
gorithms satisfying certain easier-to-check monotonicity properties, as explained
in more detail in Section 3. The usefulness of our technique is twofold: on the
one hand, we simplify the question of designing monotone algorithms, and on
the other, we provide a way to compute efficiently the payments returned to the
agents.

We regard this as the main contribution of this paper, since we foresee the
application of this general technique to a wide class of combinatorial optimiza-
tion problems. In particular, this technique can actually be used to address
our problems, for which we are then able to design efficient (in terms of time
complexity and approximation ratio) approximate truthful mechanisms. More
precisely, as far as the approximation ratios are concerned, we achieve factors of
3/2 and 2 for the former two and the last of the above problems, respectively.
Thus, for the first two problems we match the best known approximation ratios
holding for their corresponding canonical centralized versions [Frederickson 79],
while for the third one we are only a 4/3-factor away from it [Raghavachari and
Veerasamy 99].

This paper is organized as follows. Section 2 recalls some preliminaries from
mechanism design, while Section 3 describes the general composition technique
that will be used to solve our problems. Sections 4, 5, 6 describe our mechanisms
for GTSP, RPP, and MCPP, respectively. Finally, Section 7 concludes the paper,
by outlining a few interesting issues for future research.
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2. Preliminaries: Monotonicity and Truthfulness

Algorithmic mechanism design deals with algorithmic problems in a noncooper-
ative setting, in which part of the input is owned by selfish agents. Since such
agents may lie about their parts of the input, they are capable of manipulating
the algorithm. The main task of mechanism-design theory is the study of how
to incentivize the agents in order to encourage them to behave honestly with
the algorithm. We will deal with the case in which each agent controls a single
link of a network. We provide a simplified formalization below, and we refer the
interested reader to [Nisan and Ronen 01] for deeper insight into the topic.

Let G = (V,E) be a graph (either directed, undirected, or mixed). For an
edge e of G owned by a selfish agent ae, we denote by te the private information
held by ae. We call te the (private) type of the agent ae, and we assume that
te represents the real cost incurred by ae for using its link. Each agent has to
declare a (public) bid be to the mechanism. We denote by t the vector of private
types, and by b the bid profile, namely the vector of all bids. Let b−e denote
the vector of all bids besides be; the pair (b−e, be) will denote the bid profile b
(for the sake of simplifying the notation, we will omit the parentheses whenever
(b−e, be) appears as the only argument of a function).

For a given optimization problem defined onG, let F denote the corresponding
set of feasible solutions. For each feasible solution x ∈ F , some measure function
μ(x, t) is defined, which depends on the true types. A mechanism is a pair
M = 〈A(I, b), p(b)〉, where A(I, b) is an algorithm that, given an instance I
defined on G and given the agents’ bids, returns a solution, and p(b) is a scheme
that describes the payments provided to the agents. Sometimes, we will simply
write A(b) (respectively A) whenever I (respectively I and b) is clear from the
context. The time complexity of a mechanism corresponds to the time needed
to compute A and p.

For each solution x, ae incurs a cost νe(te, x) (sometimes called the valuation
of ae with respect to x). The utility of an agent is defined as the difference
between its payment and its cost with respect to the computed solution. Each
agent tries to maximize its utility, while an exact mechanism aims to compute
a solution that optimizes (i.e., either minimizes or maximizes) μ(x, t) without
knowing t directly. Similarly, if we denote by ε(σ) a positive real function of the
input size σ, an ε(σ)-approximation mechanism returns a solution whose measure
comes within a factor ε(σ) of the optimum. In a truthful mechanism this tension
between the agents and the system is resolved, since each agent maximizes its
utility when it declares its type, regardless of what the other agents do.

A mechanism-design problem is called utilitarian if its measure function sat-
isfies μ(x, t) =

∑
e∈E ν(te, x). For utilitarian problems, Vickrey, Clarke, and
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Groves discovered [Vickrey 61, Clarke 71, Groves 73] a class of truthful mecha-
nisms, i.e., the VCG-mechanisms. Basically, VCG-mechanisms handle arbitrary
valuation functions, but only utilitarian problems. In [Archer and Tardos 01], it
was shown how to design truthful mechanisms for nonutilitarian problems un-
der the assumption that the problem is a one-parameter problem, that is, one
in which (i) the type of each agent ae can be expressed as a single parame-
ter te ∈ R, and (ii) each agent’s valuation has the form νe(te, x) = te we(x),
where we(x) is called the workload for agent ae in x, i.e., some amount of
work assigned by the mechanism’s algorithm that depends on the computed
solution x.

A well-studied class of one-parameter problems is that of the binary demand
(BD) problems [Kao et al. 05], in which for each agent ae, its workload can be
either 0 or 1. Given a solution x (respectively an algorithm A), we will denote
by w(x) (respectively w(A)) the workload vector associated with x (respectively
returned by A). Recall that an algorithm A is said to be monotone if for all ae

and any fixed b−e, we(A(b−e, be)) is a nonincreasing function of be. We sometimes
use we(b−e, be) instead of we(A(b−e, be)) when the algorithm is clear from the
context. In [Archer and Tardos 01], it is shown that a mechanism for a one-
parameter problem is truthful if and only if it makes use of a monotone algorithm,
and the payment provided to any agent ae is equal to

pe(b−e, be) = he(b−e) + bewe(A(b)) −
∫ be

0

we(A(b−e, z)) dz, (2.1)

where he(b−e) is an arbitrary function independent of be. Moreover, in [Archer
and Tardos 01] it is shown that if

∫ +∞
0

we(b−e, z) dz < +∞ for all ae and all b−e,
then we can use the following payment scheme to obtain a truthful mechanism
guaranteeing that the agents’ utilities are always nonnegative:

pe(b−e, be) = bewe(A(b)) +
∫ +∞

be

we(A(b−e, z)) dz. (2.2)

3. The General Composition Scheme

All the algorithms presented in this paper can be naturally decomposed into two
simpler ones. In this section we state some general results that will allow us to
prove certain properties of a composed algorithm descending from those of the
two constituent algorithms. Quite naturally, for all the problems we are going
to deal with, we assume that F �= ∅. Moreover, we assume that no agent is
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indispensable, namely that for each agent there always exists a feasible solution
not depending on it. These two assumptions will be reflected by the connectivity
properties thatG needs to satisfy, depending on the specific problem. Finally, for
each of the proposed algorithms, we tacitly assume that at each step a suitable
tie-breaking rule is applied, if needed, in order to ensure monotonicity.

Given a solution x, let us assume that the cost incurred by any agent ae in x
is equal to its type te times the number of occurrences of e in x. It is easy to see
that under this assumption, our problems fall within the class of one-parameter
problems, since the number of occurrences of e in x is exactly the workload
we(x), and we(x) = 0 if e is not part of x. In general, we say that a solution x

does not depend on e when we(x) = 0. However, notice that in the MCPP, for
every edge e and any feasible solution x, from the definition of the problem, e
must occur in x at least once. The same happens for every edge e ∈ R in the
RPP.

In both cases, we consider that a solution x does not depend on e if we(x) = 1.
Moreover, when we compute the integral in (2.2) for e, to avoid technicalities,
we do not count the first occurrence in the workload we(·), i.e., we take we(·)
decremented by 1. This means that we implicity assume that the mechanism
does not care about the cost incurred by ae for the constrained occurrence. Thus,
we consider one-parameter, utilitarian problems in which the workload of each
agent is a natural number.

Definition 3.1. An algorithm A of a one-parameter mechanism is said to be step-
integral monotone (SIM) if A is monotone and the workload of each agent belongs
to N.

For any SIM algorithm A, and any fixed b−e, we define the thresholds for
ae with respect to A to be the discontinuity points of the function fe(z) :=
we(A(b−e, z)), and we denote them, sorted in increasing order, by θ1, θ2, . . . , θh.
Notice that computing the integral in (2.1) and (2.2) essentially consists in deter-
mining the thresholds. Also note that for a BD problem, a monotone algorithm
defines a unique threshold, and for an agent ae, the payment pe(b) is exactly
that threshold value if ae owns a selected edge, and 0 otherwise. Basically, this
threshold defines the supremum value that ae is allowed to declare to be part of
a solution.

We say that A is a composition of algorithms A1 and A2 := A2(I(A1), b) (and
we will write A = A2 � A1) if A adheres to the scheme listed in Algorithm 1.
Notice that in such an algorithm, CreateInstance is a generic procedure that
uses the output of the first algorithm to generate an instance of the second
one.
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Algorithm 1. (A = A2 � A1)
1. let x1 be the output returned by A1;
2. I(A1) = CreateInstance(x1);
3. let x2 be the output returned by A2(I(A1), b);
4. let x be a solution built from x1 and x2 such that

we(x) = we(x1) + we(x2), ∀ae;
5. return: x

Finally, we say that A is stable if for any ae and for any fixed b−e, ∀ z, z′ ∈ R,
we have

we(A(b−e, z)) = we(A(b−e, z
′)) iff A(b−e, z) = A(b−e, z

′).

A first useful consequence of the proposed decomposition scheme is that the
SIM property of the composed algorithm is guaranteed whenever the composing
algorithms satisfy suitable properties, as proved in the following theorem.

Theorem 3.2. Let A1 be a stable SIM algorithm for a one-parameter problem, and
let A2 be a monotone algorithm for a BD problem. Then A = A2 � A1 is a SIM
algorithm.

Proof. It is clear that workloads assigned by A are natural numbers. It remains
to prove the monotonicity property. Let b−e be fixed, and let be and b′e be
such that b′e ≥ be. We have to prove that we(A(b−e, be)) ≥ we(A(b−e, b

′
e)). Let

then I := I(A1(b−e, be)) and I ′ := I(A1(b−e, b
′
e)). By definition of A, we have

we(A(b−e, be)) = we(A1(b−e, be)) +we(A2(I, (b−e, be))), with we(A1(b−e, be)) ≥
we(A1(b−e, b

′
e)) holding from the monotonicity of A1. We have two cases:

1. we(A1(b−e, be)) = we(A1(b−e, b
′
e)): Then since A1 is stable, we have I =

I ′, and then from the monotonicity of A2 we have we(A2(I, (b−e, be))) ≥
we(A2(I ′, (b−e, b

′
e))), from which the claim follows.

2. we(A1(b−e, be)) > we(A1(b−e, b
′
e)): Then since we(A2(I ′, (b−e, b

′
e))) ≤ 1,

the claim follows.

We now concentrate on the computation of payments, and we provide a general
method to compute in polynomial time the thresholds for a certain class of
problems. We denote by TA and PA(e) the running time for algorithm A and
for computing the payment for agent ae with respect to A, respectively. Then
we have the following theorem.
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Theorem 3.3. Let A = A2 � A1 be a polynomial-time algorithm of a one-parameter
mechanism, where A1 is a stable SIM algorithm for a one-parameter problem,
and A2 is a monotone algorithm for a BD problem. If there exist polynomial-time
algorithms for computing the thresholds with respect to A1 and A2, respectively,
then the thresholds for agent ae with respect to A can be computed in O(PA1 (e)+
h(TCI + PA2(e))) time, where h is the number of thresholds for ae with respect
to A1, and TCI is the time required by the procedure CreateInstance.

Proof. We provide a polynomial-time procedure to compute thresholds with re-
spect to A. The proof of its correctness is quite simple, and we omit it. Let
b−e be fixed. Let θ1, . . . , θh be the thresholds for ae with respect to A1, and let
θ0 = 0, θh+1 = ∞. For 1 ≤ i ≤ h, we denote by ωi the workload assigned by A1

to ae when θi−1 < be < θi.
We now show how to compute thresholds of ae. A pre-threshold is a pair

(θ, ω), where θ is a threshold value and ω is the corresponding workload value.
The following procedure computes a list of pre-thresholds:

1. let L be the list of pairs (θi, ωi), ∀ 1 ≤ i ≤ h, ordered according to the θi;

2. ∀ 1 ≤ i ≤ h+ 1:

(a) let I(A1) be the instance computed by CreateInstance(A1(b−e, z)),
where θi−1 < z < θi (notice that since A1 is stable, the same instance
will be computed for any z in the interval between θi−1 and θi);

(b) let βi be the threshold for ae with respect to A2 on the instance I(A1);

(c) compare βi and (θi−1, θi):

i. case βi < θi−1: nothing happens;

ii. case θi−1 < βi < θi: insert (βi, ωi+1) in L (respecting the order);
iii. case θi < βi: update (θi, ωi) to (θi, ωi + 1).

Notice that L, computed as above, is sorted in increasing order with respect
to the pairs’ first values, and in nonincreasing order with respect to the pairs’
second values. Thresholds of A are then obtained by selecting the maximum
threshold value in each set of pre-thresholds having the same workload value.
The bound on the running time follows immediately.

The above result can be enhanced as soon as the algorithm A1 solves a one-
parameter problem that is also utilitarian. Indeed, in this case the following
lemma can be given, which shows how to compute thresholds for an agent with
respect to such an algorithm using a Newton-like iterative algorithm.
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Figure 1. The auxiliary function g(z) and a step of the execution of the Newton-
like algorithm.

Lemma 3.4. Given a one-parameter and utilitarian problem, solvable in polynomial
time by a given stable SIM algorithm A, the thresholds θ1, θ2, . . . , θh with respect
to A of any agent are computable in O(h TA) time.

Proof. For any vector bid b, A determines an optimal solution x and an associated
workload vectorw(x) using agent bids as the real costs of network links. We recall
that given an agent ae, for any fixed b−e, we(b−e, z) is the workload assigned to
ae by an optimal solution when the cost of e is z, and that in the cases of RPP
and MCPP, if e is required to occur at least once in any solution, we implicitly
consider (for the purpose of computing thresholds for ae) we(·) decremented by
1. Then since A is a SIM algorithm, we(b−e, z) has the following properties:

1. for any z, we(b−e, z) is a nonnegative integer;

2. we(b−e, z) is a nonincreasing function of z;

3. limz→∞we(b−e, z) = 0.3

Then for any agent ae, we consider the function

ge(z) =
∑

f∈E\{e}
bfwf (b−e, z) + we(b−e, z)z,

3This follows from the assumption that no agent is indispensable, i.e., there is always a
feasible solution not using e.
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Algorithm 2. (Computation of the threshold θi)
input : �i
z̃ = 0; {starting point of the sequence}
while (z̃, ge(z̃)) /∈ �i {loop until the threshold is discovered} do

let � be the support line containing (z̃, ge(z̃));
let z̃ be the abscissa of the intersection between � and �i;

end
return: θi = z̃ and �i−1 = �

which describes the evolution of the cost of the solution computed by A as ae’s bid
varies but b−e is fixed. From the above-mentioned properties of we(·), it is easy to
see that ge(·) is a piecewise-linear, continuous, nondecreasing, concave function
(see Figure 1) whose first derivative coincides with we(b−e, z) when z is not a
threshold.4 Then to compute thresholds means to compute the discontinuity
points of the first derivative of ge. Also, the properties of we(·) imply that for
z ≥ θh, we(b−e, z) = 0, so ge(z) reaches its maximum value ḡe.

Let us introduce the useful dummy thresholds θ0 = 0 and θh+1 = ∞. For any
0 ≤ i ≤ h we define the line connecting (θi, ge(θi)) with (θi+1, ge(θi+1)) as the
support line �i. Notice that since ge(·) is a concave function, for any i1, i2 such
that i1 < i2 ≤ h, �i1 has slope greater than that of �i2 (see Figure 1).

For a fixed value z of ae’s bid, we can compute we(z) and ge(z) by run-
ning A. Having the values we(z) and ge(z), it is trivial to determine the sup-
port line on which (z, ge(z)) lies. In particular, the value ḡe assumed by ge(·)
for points greater than the last threshold θh can be computed by running A
with input bid profile (b−e,∞), and �h is the horizontal line having constant
value ḡe.

Using the knowledge of the support line �i, it is possible to find the value of θi

using a Newton-like iterative approximation algorithm. Such an algorithm gives
as a byproduct the knowledge of support line �i−1, which can be used, applying
again the algorithm, to compute the threshold θi−1. The idea is to compute,
starting from the point z0 = 0, a sequence of points z1, z2, . . . such that zj is the
intersection of the support line containing (zj−1, ge(zj−1)) with �i. The sequence
halts when a point zj lying on �i is found. More formally, the computation of
the θi follows the pseudocode of Algorithm 2:

We now show that the sequence z0, z1, . . . converges to θi. By definition,
z0 ≤ θi. Assuming inductively that zj ≤ θi for some j ≥ 0, we now show that
either zj = θi or zj+1 ≤ θi. If (zj , ge(zj)) �∈ �i, the body of the while-loop is
executed and the next point in the sequence, i.e., zj+1, is computed. Observe

4Note that when z is a threshold, we(b−e, z) is defined, while the first derivative of ge is not.
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that (zj , ge(zj)) �∈ �i immediately implies that zj < θi, that (zj , ge(zj)) is strictly
below �i (since ge is a concave function), and that the support line �zj containing
(zj , ge(zj)) has slope greater than that of �i. Then zj < zj+1 follows.

Similarly, by the concavity of ge, the point (θi, ge(θi)) is not above �zj , and
since �zj has slope greater than that of �i, we have zj+1 ≤ θi at the beginning
of the next iteration of the loop. On the other hand, if (zj , ge(zj)) ∈ �i, the
algorithm halts. Then since by definition, θi = min(x,ge(x))∈�i

x, the inductive
hypothesis implies zj = θi.

Now we show that the sequence z0, z1, . . . converges in a finite number of
steps. More exactly, Algorithm 2 executes at most h iterations of the while-
loop, because either the support line �zj+1 of (zj+1, ge(zj+1)) is different from
�zj , or the algorithm halts. Indeed, suppose that �zj+1 is the same as �zj . Then
(zj+1, ge(zj+1)) is the intersection point of �zj and �i, so (zj+1, ge(zj+1)) ∈ �i.

Notice that the support line containing the penultimate point in the sequence
is �i−1. This knowledge allows us to compute θi−1 by repeating the same algo-
rithm. Therefore, since �h is known in advance, we can compute all thresholds
θ1, θ2, . . . , θh by iterating Algorithm 2 (at most) h times. Each run of Algorithm
2 calls A at most h times; hence to compute all thresholds requires O(h2 TA)
time.

We can in fact refine the upper bound of computation of the thresholds to
O(h TA) time. To this end, instead of computing a different sequence of points
for each threshold, we store a global sequence of points z0, z1, . . . and the cor-
responding values of ge(·) for all threshold computations. After determining the
threshold θi, the last point in the sequence, say (zj , ge(zj)), lies on �i−1, so it
can be dropped from the sequence, while zj−1 can be used as a new starting
point to discover more points up to a new threshold. It is clear that this im-
proved algorithm computes only one point for each support line, and that the
time complexity is proportional to the number of computed points.

Finally, combining the results of Lemma 3.4 and Theorem 3.3, we obtain the
following main result.

Theorem 3.5. Let A = A2 � A1 be a polynomial-time algorithm of a one-parameter
mechanism, where A1 is a stable SIM algorithm for a one-parameter utilitarian
problem, and A2 is a monotone algorithm for a BD problem. If the threshold for
ae with respect to A2 can be computed in O(TA2 ) time, then the thresholds for
ae with respect to A can be computed in O(h TA) time, where h is the number of
thresholds for ae with respect to A1.
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Proof. The theorem follows immediately from Theorem 3.3 if one uses the fact
that PA2(e) = O(TA2 ) and computes thresholds for ae with respect to A1 with
the method described in Lemma 3.4.

4. Solving the GTSP

Given an undirected graph G = (V,E), with n = |V |, m = |E|, we consider
the problem of computing a minimum-cost spanning tour of G. This problem
is utilitarian and is equivalent to the classical TSP for the metric instances.
Thus we can use for our problem a modified version of Christofides algorithm
[Christofides 76], where a path matching [Böckenhauer et al. 02] instead of a
matching takes place, and where we do not shortcut repeated vertex occurrences
(such modifications allow us to prove easily the algorithm’s monotonicity, and
do not change its approximation ratio):

1. Compute the minimum spanning tree (MST) T of G.

2. Let U ⊆ V be the set of odd-degree vertices in T , and letD be the complete
graph on U , where edge {u, v} has weight equal to the cost of a shortest
path connecting u and v in G, say dG(u, v).

3. Path-matching (PM) algorithm: compute a minimum-cost perfect match-
ingM ofD, and let F be the expansion of M , i.e., the multiset composed by
taking, for each {u, v} ∈ M , the edges forming the shortest path between
u and v in G.

4. Form an Eulerian multigraph H = (V,E′) on G consisting of the edges of
T and the edges in F ;

5. Return an Eulerian tour of H .

Notice that our algorithm is a composition (as defined in Section 3) of an
algorithm for the MST and the PM algorithms. It is easy to prove that it has
approximation ratio 3/2 and that its time complexity is dominated by the O(n3)
time required to compute a minimum-cost perfect matching on a complete graph.
It is well known that any MST algorithm is monotone, BD, as well as stable.
Since the expansion of M forms an edge-disjoint forest in G (see [Böckenhauer et
al. 02]), it is straightforward to see that the PM algorithm is BD (notice that this
implies that the workloads will be at most 2). Then to prove the step-integral
monotonicity of our algorithm, we use Theorem 3.2 after showing that PM is a
monotone algorithm.
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Lemma 4.1. The PM algorithm is monotone.

Proof. Let us fix a graph G and a set of vertices U ⊆ V as the input of the PM
algorithm. We denote the cost of a set S of edges of G when the bid profile is
b by c(b, S) =

∑
e∈S be. Let us consider a bid profile b given as input to PM,

and let F be the corresponding computed solution. Assume that e ∈ E \ F is
an edge not selected as part of the output. For b′e > be, let F ′ be the solution
computed by PM when the input bid profile is b′ = (b−e, b

′
e). We have to show

that e /∈ F ′.
For the sake of contradiction, assume that e ∈ F ′, which implies that c(b, F ′) <

c(b′, F ′). Since PM computes an optimal solution, c(b, F ) ≤ c(b, F ′), and since
e /∈ F , it follows that c(b′, F ) = c(b, F ). Then we have c(b′, F ) < c(b′, F ′), which
is a contradiction, since F ′ is the output of PM when the bid profile is b′.

Now we show how to compute thresholds with respect to the PM algorithm.
Given a bid profile b and U ⊆ V , let F be the solution computed by the PM
algorithm in b, and assume that e ∈ F is a selected edge. We denote by F¬e

the solution returned by the PM algorithm in G − e. It is easy to see that the
threshold for ae is c(b, F¬e) − c(b, F ) + be, which is clearly computable with the
same asymptotic time bound as PM. Similarly, the thresholds for ae with respect
to the MST algorithm can be computed by running the MST algorithm on G−e.
Then from Theorem 3.5, and observing that there are at most O(n) agents in a
feasible solution, we have the following theorem.

Theorem 4.2. There exists an O(n4)-time 3/2-approximate truthful mechanism for
the GTSP in which each edge is owned by a distinct selfish agent.

5. Solving the RPP

In the rural postman problem (RPP), we are given an undirected graph G =
(V,E), with n = |V |, m = |E|, and a set R ⊆ E, with k = |R|. We are required
to compute a minimum-cost tour in G traversing each edge of R at least once.

As observed in [Frederickson 79], this problem has a 3/2-approximation al-
gorithm that is a minor modification of Christofides’ algorithm. Similarly, our
algorithm for the GTSP can be adapted to this problem, still giving a 3/2-
approximation in O(n3) time (notice that in this case, edge workloads may be
greater than 2):

1. Let G′ be a complete graph on the vertex set V ′ = {v ∈ V | ∃e ∈ R∧v ∈ e},
where an edge e of G′ has weight equal to be if e = {u, v} ∈ R, and to
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dG(u, v) otherwise, and let T ′ be an MST of G′ containing R; then build
the multiset of edges x1 as the union of R and of the edges forming a
shortest path in G between u and v, for any {u, v} ∈ E(T ′) \R.

2. Let U ′ ⊆ V ′ be the set of odd-degree vertices in T ′, and let D′ be the
complete graph on U ′, where an edge {u, v} of D′ has weight dG(u, v).

3. (PM algorithm): compute a minimum-cost perfect matching M ′ of D′, and
let x2 be the multiset of edges forming a shortest path in G between u and
v, ∀{u, v} ∈M ′.

4. Form the Eulerian multigraph induced by edges in x1 and x2, and compute
an Eulerian tour x on it.

5. Return x.

To prove that the algorithm is SIM, it suffices to show that step 1 is a stable
SIM algorithm.

Lemma 5.1. Step 1 of the above algorithm is a stable SIM algorithm.

Proof. To prove that step 1 is a SIM algorithm, it suffices to show that it is
monotone. We first observe that any agent holding an edge in R has workload 1.
Let e be an edge of E \R. Then e belongs to some shortest paths in G between
pairs of vertices in V ′. If ae increases its bid, step 1 computes a new solution x′1
that retains all paths in x1 not containing e, but in which some of the paths of
x1 containing e may be replaced by an equal number of shortest (with respect
to the new bid profile) paths. Such new paths do not contain e; otherwise, they
would be cheaper than the previous ones also with respect to the old bid profile.
Then the workload of ae in x′1 is not greater than that in x1. The stability
follows from the tie-breaking rules, since if ae’s load in x′1 is the same as in x1,
then x1 has the same cost as x′1 with respect to the new profile.

Then by Lemma 4.1 and Theorem 3.2 we have that our algorithm is SIM.
Since we are able to compute the thresholds with respect to the PM algorithm
(see Section 4), in view of Theorem 3.3, to compute payments for the complete
algorithm we have only to find the thresholds of the algorithm in step 1. To this
end, we use the method given in Lemma 3.4. Referring to such an algorithm,
we observe that for each e ∈ R, the workload of ae is at least 1. We recall that
for such edges, we implicitly decrease the workload by 1 when computing the
integral appearing in the payment scheme (2.2), in order to guarantee that it
has a finite value.
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To analyze the time complexity of the mechanism, we first observe that the
time complexity of the algorithm is dominated by the PM algorithm on a com-
plete graph with 2k vertices, which requires O(k3) time, and by the computa-
tion of G′. The latter requires the computation of the all-pairs shortest paths
between 2k vertices of G, which, depending on k, can be accomplished either
in O(nm logα(m,n)) time by computing the all-pairs distances of G [Pettie and
Ramachandran 02], or in O(k(m + n logn)) time by k executions of Dijkstra’s
algorithm. To determine the time complexity of the computation of the thresh-
olds, we then use the result of Theorem 3.5, by noticing that for each agent ae

we have we(x1) ≤ k, and that there are at most O(n + k) distinct agents in
a feasible solution. Thus, the following theorem summarizes the results of this
section.

Theorem 5.2. There exists an O((n+k) k (min{nm logα(m,n), k(m+n logn)}+k3))-
time 3/2-approximate truthful mechanism for the RPP in which each edge is
owned by a distinct selfish agent.

6. Solving the MCPP

In the Chinese postman problem, we are given a graph G and we are required to
compute a minimum-cost spanning tour of G traversing each edge at least once.
The problem was shown to be efficiently solvable in [Edmonds 65] in the case that
the input graph is undirected, and in [Edmonds and Johnson 73] when the input
graph is directed. On the other hand, when a mixed input graph is permitted,
we have the MCPP, whose decision version was shown to be NP-complete in
[Papadimitriou 76]. We point out that the main difficulty of the MCPP is that
to obtain a feasible solution we have to extend the input graph G by duplicating
some edges, in order to obtain a multigraph satisfying two distinct properties:

1. Each vertex has even degree (even property).

2. Each vertex has equal in- and out-degrees (in–out property).

Note that it is possible to compute, in polynomial time, a cheapest extension
of G satisfying each of the above properties taken alone. The most successful
approach to approximating MCPP is to employ two distinct simpler algorithms.
Roughly speaking, the first algorithm duplicates edges optimally so to satisfy
the even property and then performs other duplications to satisfy the in–out
property. The second algorithm adopts the converse strategy. On each input in-
stance, both simpler algorithms are executed, and the best outcome is returned.
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This approach was introduced in [Frederickson 79], leading to a 5/3-approximate
algorithm that was later refined in [Raghavachari and Veerasamy 99] to a 3/2-
approximate algorithm. Unfortunately, both algorithms turn out not to be mono-
tone, as shown in Section 6.1. On the other hand, we show in Section 6.2 that
one of the above-mentioned simpler algorithms is, on its own, a monotone 2-
approximate algorithm.

6.1. Some Good Algorithms for MCPP Are Not Monotone

We first describe the 5/3-approximate algorithm designed in [Frederickson 79].
The algorithm selects the best outcome returned by two simpler algorithms,
named Mixed1 and Mixed2.
Mixed1 computes a feasible solution by first satisfying the even property and

then the in–out property. It proceeds as follows:

1. Extend G to a multigraph G′ satisfying the even property by running on
G a procedure called EvenDegree, which adds a min-cost path-matching
(ignoring edge directions) of the odd-degree vertices.

2. Satisfy the in–out property by means of Algorithm InOutDegree, described
in Section 6.2 and in [Frederickson 79], which orients some undirected edges
and duplicates some edges.

3. Restore the even property in case it was violated as a result of the pre-
vious step. This is feasible in polynomial time, without increasing the
cost of the provided solution, using the procedure EvenParity described
in [Frederickson 79].

Mixed2 computes a feasible solution by first satisfying the in–out property and
then the even property, as follows:

1. Duplicate edges ofG so as to satisfy the in–out property using InOutDegree.

2. Duplicate edges in the outcome of previous step to satisfy the even property
by adding a min-cost path-matching, formed by undirected edges only, of
the odd-degree vertices.

In Section 6.2 we will study in more detail Mixed2, showing that on its own,
it is a monotone algorithm.

The following example shows that the 5/3-approximate algorithm designed in
[Frederickson 79] is not monotone. Consider the input instance G depicted in
Figure 2, where the cost be of edge e is not yet fixed and ε is a very small value.

Since the input instance satisfies the in–out property, the first step of Mixed2
leaves it unmodified. For any value of be, the min-cost path-matching of the
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Figure 4. Outcome of Mixed1 for be = 9: labels count edge repetitions, and added
arrows indicate undirected edges oriented by the algorithm.

odd-degree vertices formed by undirected edges only, added in the second step,
doubles any undirected edge, forming the feasible solution illustrated in Figure 3.
Such a solution costs 1500 + 3 · ε+ 2 · be.

Suppose now that be = 9, and consider what Mixed1 does. In the first place,
it computes a min-cost path-matching (actually, a matching) of the odd-degree
vertices. It consists of the edges (v2, v3), {v4, v5}, {v7, v8}, {v10, v11}, (v12, v13).
Note that the augmented graph violates the in–out property. In its second step,
Mixed1 satisfies such a property just by orienting some undirected edges, thus
obtaining a feasible solution with no additional cost increase, as shown in Figure 4
(observe that in this case, the even property is preserved after the execution of
the second step; hence the third step does nothing).

The solution computed by Mixed1 for be = 9 costs 1140+5 · ε+2 · be, which is
smaller than the cost of the solution computed by Mixed2. Therefore, the former
is the solution returned by the whole algorithm, and we(b−e, 9) = 2.

Suppose now that ae increases its bid up to be = 11. Then the min-cost path-
matching of the odd-degree vertices computed in the first step changes. Now it
consists of the edges (v2, v3), {v4, v10}, {v5, v8}, {v7, v11}, (v12, v13). Also in this
case, the augmented graph violates the in–out property. To restore that property,
it is not hard to check that Mixed1 orients some undirected edges and also adds
two additional copies of e. The obtained feasible solution is shown in Figure 5
(in this case, too, the second step of Mixed1 preserves the even property, so the
third one does nothing).
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Figure 5. Outcome of Mixed1 for be = 11: labels count edge repetitions, and
added arrows indicate undirected edges oriented by the algorithm.

The solution computed by Mixed1 for be = 11 costs 1150 + 6 · ε+ 3 · be, which
is again smaller than the cost of the solution computed by Mixed2. Therefore,
the former is the solution returned by the whole algorithm, and we(b−e, 11) =
3 > we(b−e, 9), thus showing the nonmonotonicity.

We now study the 3/2-approximate algorithm designed in [Raghavachari and
Veerasamy 99]. The algorithm selects the best outcome returned by Mixed2 and
an algorithm named Modified Mixed1.
Modified Mixed1, like Mixed1, from which it derives, computes a feasible

solution by first satisfying the even property, and then the in–out property. It
diverges from Mixed1 in that it executes a preliminary step that changes the cost
of some edge just for the following step. Then the input instance is extended to
satisfy the even property in a suboptimal way, which then makes it possible also
to satisfy the in–out property with a better approximation guarantee. In detail:

1. Run InOutDegree applied to G to determine a minimum-cost extension M
of G that satisfies the in–out property.

2. Run EvenDegree applied to G with costs of edges contained in M set to
0, so as to satisfy the even property.

3. Run InOutDegree applied to the outcome of the previous step, so as to
satisfy the in–out property.
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4. In case the outcome of the previous step violates the even property, restore
it by running EvenParity.

Let us see how the 3/2-approximate algorithm designed in [Raghavachari and
Veerasamy 99] performs on the input instance in Figure 2. Mixed2 runs as when
used within the 5/3-approximate algorithm, as previously described. On the
other hand, since the input instance already satisfies the in–out property, the
first step of Modified Mixed1 does not extend it, and sets M equal to the set
of directed edges of G. Therefore, in the second step, EvenDegree is run on G

with the cost of the directed edges set to 0. In both cases be = 9 and be = 11,
the minimum-cost matching computed with all edge costs set to the original
values (i.e., by Mixed1) is a minimum-cost matching with the modified costs,
too. If such a matching is returned in the second step, the algorithm proceeds
like Mixed1, producing the same feasible solutions. Hence we(b−e, 11) = 3 >

2 = we(b−e, 9), which means that the 3/2-approximate algorithm, too, is not
monotone. Notice that in both cases be = 9 and be = 11, other minimum-cost
matching could be computed (for instance

(v3, v1), (v1, v0), (v0, v2), {v4, v5}, {v7, v8}, {v10, v11}, (v12, v13)

for be = 9), leading to different feasible solutions not proving nonmonotonicity.
However, if we change the value of ε to a greater value, say 80, one can check
that the 3/2-approximate algorithm computes feasible solutions exhibiting non-
monotonicity regardless of the selected minimum-cost matchings.

6.2. A Monotone Algorithm for MCPP

In search of an approximate truthful mechanism for the MCPP, we restrict our
attention to the algorithm Mixed2, which was originally developed in [Frederick-
son 79], and for which we can prove monotonicity. This algorithm was shown to
have an approximation ratio of 2.
Mixed2 takes as input a mixed graph G = (V,E,A), where E is the set of

undirected edges and A is the set of directed edges, with n = |V |, m = |E| +
|A|. Following a common strategy to attack the MCPP, the algorithm starts
by inserting into the graph a multiset of additional directed edges, which are
obtained either by duplicating a directed edge of G or by orienting a copy of an
undirected edge of G:

1. Find the minimum-cost multiset set of additional directed edges of G, so as
to obtain a multigraph (V,N,M) in which the in-degree and the out-degree
of each vertex are equal.
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2. Let U ⊆ V be the set of odd-degree vertices in G′ = (V,N), and let D be
the complete undirected graph on U where the weight of {u, v} is the cost
of the shortest path between u and v in the graph G′′ = (V,E).

3. (PM algorithm): compute a minimum-cost perfect matching P of D; for
any edge {u, v} ∈ P , add to N edges forming the corresponding shortest
path in G′′.

4. Form an Eulerian multigraph (V,N,M).

5. Return an Eulerian tour of (V,N,M).

The problem addressed in step 1 can be formulated in terms of a network
minimum-cost flow problem (see [Edmonds and Johnson 73]), in which the cost of
the additional directed edges is minimized, as follows. We let F = {(u, v), (v, u) |
{u, v} ∈ E} contain a pair of opposed directed copies of each undirected edge;
then we set E1 = E2 = F and Et = E1 � E2 � A, where � denotes the multiset
union operator. For each v ∈ V we let δv = δ−A(v) − δ+A(v) be the difference
between the in-degree and the out-degree of the vertex.

Step 1 is implemented by algorithm InOutDegree, which proceeds as follows.

1. Solve the integer linear program (ILP) defined by

minμ(y) =
∑
e∈A

beye +
∑
e∈E1

beye,

∑
e∈Et
e↖v

ye −
∑
e∈Et
e↗v

ye = δv, ∀v ∈ V,

ye ∈ {0, 1} ∀e ∈ E2,

ye ∈ N ∀e ∈ E1 �A,

where e ↖ v (respectively e ↗ v) means that e is directed away from
(respectively toward) v.

2. Let N = ∅ and M = A.

3. For all e1, e2 ∈ E2 such that e1 = (u, v), e2 = (v, u), if ye1 + ye2 = 1, then
add ye1 copies of e1 and ye2 to M ; else add {u, v} to N .

4. For all e ∈ A add ye copies of e to M .

5. For all e ∈ E1 add ye copies of e to M .

6. x1 = M �N .
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We again take advantage of Theorem 3.2, which allows us to deduce the step-
integral monotonicity of Mixed2 after proving that InOutDegree is a stable SIM
algorithm. The first step toward such a proof is the following lemma, giving an
upper bound on the agents’ workloads.

Lemma 6.1. For each agent ae, we(x1) ≤ |A| + 1.

Proof. Let y∗ be an optimal solution for the ILP. We will transform y∗ in polyno-
mial time into another optimal solution ỹ such that the corresponding solution
x1 computed by the algorithm satisfies the lemma. Notice that it suffices to
prove that:

(i) ỹe ≤ |A|, ∀e ∈ A;

(ii) ỹe′ + ỹe′′ ≤ |A|, ∀e ∈ E, where e′, e′′ ∈ E1 are the two corresponding
oriented versions of e.

Start with ỹ = y∗. Clearly the multigraph G′ = (V, F ), where F is equal
to A plus y∗e copies of e, ∀e ∈ Et, is made up of G1, . . . , Gk, k ≥ 1, strong
connected components. Moreover, since each vertex has its in-degree equal to
its out-degree, each Gi, for i = 1, . . . , k, admits an Eulerian tour.

It is easy to see that it suffices to prove the claim for one of the Gi. Hence
we can assume without loss of generality that G′ is strongly connected and that
E = v0e0v1e1 . . . vh−1eh−1vh is an Eulerian tour of G′. Let φX(e) denote the
number of occurrences of the edges e in a multigraph X .

For any e ∈ A define a Boolean variable ψe and set its initial value to 0. Now
repeat the following until E does not contain any edge:

1. find the minimum integer j such that vi = vj for some i < j;

2. let C be the cycle vieivi+1 . . . vj−1ej−1vj ;

3. if ∀k = i, . . . , j − 1 such that ek ∈ A, the corresponding variable ψek
is

equal to 1, then ∀e ∈ Et update ỹe = ỹe − φC(e);

4. ∀k = i, . . . , j − 1 such that ek ∈ A set yek
to 1;

5. delete C from E .

Since C is a cycle, whenever ỹ is updated, it continues to be a feasible solution
for the ILP, with μ(ỹ) ≤ μ(y∗); hence it is optimal. Moreover, since the number
of steps in which ỹ is not updated is at most |A| (because there always exists
e ∈ A such that ψe = 0) and since C is a cycle, (i) and (ii) follow.
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We also need a tie-breaking rule for the optimal solutions of the ILP. One is
provided by the following lemma.

Lemma 6.2. It is possible to modify the objective function in order to have a unique
optimal solution for the ILP. This implies the existence of a tie-breaking rule.

Proof. Let K = |A|+2, m = |E1 �A|, and let χ : E1 �A −→ {0, . . . ,K− 1} be an
injective function. Now let us consider the function μ̂ obtained by replacing in μ
each be with the value b̂e = beK

m +Kχ(e). For any solution y of the ILP, μ̂(y)
consists of the value μ(y) scaled by a factorKm, plus a term less than Km; hence
suboptimal solutions are not also optimal minimizing μ̂. Let y∗ be an optimal
solution for the ILP. Since for each e we have y∗e ≤ |A|+1, as shown in the proof
of Lemma 6.1, it is clear that μ̂(y∗) mod Km is an encoding of y∗ (in a base-K
representation of μ̂(y∗) mod Km, the χ(e)th digit is the value assumed by y∗e).
Therefore, we can replace the objective function μ by μ̂ in the ILP and satisfy
the claim. Since each b′e needs O(log beKm) = O(log be +m logK) = O(log be +
m logm) binary digits to be represented, the replacement takes polynomial time.

We are now ready to prove InOutDegree’s monotonicity.

Lemma 6.3. Algorithm InOutDegree is a stable SIM algorithm.

Proof. First of all, notice that after step 3 of A1, M �N contains exactly one copy
of A and exactly one copy (either directed or undirected) of every e ∈ E. Hence,
in order to prove monotonicity, it suffices to consider the workload deriving from
variables ye appearing in the objective function μ.

Concerning the step-integral monotonicity, let we(x1) be ae’s workload when
ae’s bid is be. Suppose, for the sake of a contradiction, that for a new bid
b′e = be + Δe, with Δe > 0, we have we(x′1) > we(x1), where x′1 is the solution
computed by InOutDegree for a bid profile b′ = (b−e, b

′
e). Let y1 and y2 be

the optimal solutions for bid profiles b and b′, respectively, and let μ1 and μ2

be the corresponding values of the objective function. Since tie-breaking rules
guarantee a unique optimal solution, by evaluating y1 for bid profile b′, we get
μ2 < μ1 + Δe(we(x1) − 1). Then we have a contradiction, since the value of y2
for the bid profile b is

μ2 − Δe(we(x′1) − 1) < μ1 + Δe(we(x1) − 1) − Δe(we(x′1) − 1)

< μ1 + Δe(we(x1) − we(x′1)) < μ1.

On the other hand, the stability follows from the tie-breaking rules.
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To compute payments, from Theorem 3.3 it suffices once again to find, for each
edge e in x1, the thresholds with respect to InOutDegree. We use the method
described in Lemma 3.4, which allows us to compute thresholds θ1, . . . , θh for
InOutDegree in O(h TInOutDegree) time. The ILP used in InOutDegree models a
minimum-cost flow problem. Then the time complexity of Mixed2 is dominated
by the TMCF = O(m2 logn + mn log2 n) time required to compute a minimum-
cost flow (see [Schrijver 03]), and the O(n3) time required by the PM algorithm.
To determine the time complexity of the computation of thresholds we use The-
orem 3.5, noticing that Lemma 6.1 gives a polynomial bound on the value of h,
and that in a feasible solution x, there are at most m agents for which, since
we(x) > 1, it is necessary to compute payments.

We have proved the following theorem.

Theorem 6.4. There exists an O(m|A|(TMCF + n3))-time 2-approximate truthful
mechanism for the MCPP in which each edge is owned by a distinct selfish agent.

7. Conclusions

In this paper we have developed a general composition technique between al-
gorithms satisfying certain monotonicity properties that are relatively easy to
check. The usefulness of our technique is twofold: on the one hand, it allows
us to simplify the question of designing monotone algorithms, and on the other
hand, it provides a way to compute efficiently the payments returned to the
agents. Furthermore, our technique is practical, as witnessed by its application
to a set of graph-traversal problems in an adversarial setting in which each agent
owns a single edge of the underlying graph.

For future work, a first goal is that of closing the gap between the approx-
imation of the canonical MCPP and that in which each edge is owned by a
selfish agent. Moreover, putting our result into perspective, a major issue that
needs to be addressed is to what extent, if any, our technique is amenable to
additional boundary constraints on the problem (e.g., frugality, multiple-edge
ownership). Finally, it would be interesting to extend the focus to other graph
(traversal) problems for which the currently known solution algorithms can be
naturally decomposed as our technique suggests. Potential candidates in this di-
rection are, for instance, MST-based approximation algorithms for several graph
connectivity problems.
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Model for Toll Optimization on a Multicommodity Transportation Network.” Trans-
portation Science 35 (2001), 1–14.

[Christofides 76] N. Christofides. “Worst-Case Analysis of a New Heuristic for the
Traveling Salesman Problem.” Technical report, Graduate School of Industrial Ad-
ministration, Carnegie Mellon University, 1976.

[Clarke 71] E. H. Clarke. “Multipart Pricing of Public Goods.” Public Choice 11:1
(1971), 17–33.

[Edmonds 65] J. Edmonds. “The Chinese Postman Problem.” Operations Research 13
(1965), 73–77.

[Edmonds and Johnson 73] J. Edmonds and E. L. Johnson. “Matching, Euler Tours
and the Chinese Postman.” Math. Programming 5 (1973), 88–124.

[Frederickson 79] G. N. Frederickson. “Approximation Algorithms for Some Postman
Problems.” J. ACM 26:3 (1979), 538–554.

[Groves 73] T. Groves. “Incentive in Teams.” Econometrica 41 (1973), 617–631.
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