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Percolation on Sparse Random
Graphs with Given Degree
Sequence
N. Fountoulakis

Abstract. We study the two most common types of percolation processes on a sparse
random graph with a given degree sequence. Namely, we examine first a bond per-
colation process where the edges of the graph are retained with probability p, and
afterwards we focus on site percolation where the vertices are retained with probability
p. We establish critical values for p above which a giant component emerges in both
cases. Moreover, we show that, in fact, these coincide. As a special case, our results
apply to power-law random graphs. We obtain rigorous proofs for formulas derived by
several physicists for such graphs.

1. Introduction

Traditionally percolation theory has been the study of the properties of a random
subgraph of an infinite graph, which is obtained by deleting each edge of the
graph with probability 1 − p for some p ∈ (0, 1) independently of every other
edge. The question that has been mainly investigated is whether the subgraph
that is spanned by the remaining edges has an infinite component or not. The
classical type of graphs that was studied in percolation theory is the lattice
Z

d in various dimensions d ≥ 2 (see [Grimmett 99]). Various other types of
lattices have also been studied. In each of the above cases the main problem
is the calculation of a critical pc so that if p < pc then the random subgraph
obtained as above has no infinite components, whereas if p > pc there is an
infinite component with probability 1.
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In the present work, we study percolation on finite graphs that have a large
number of vertices. This problem is old, in the sense that, for example, a Gn,p

random graph is a random subgraph of the complete graph on n vertices, where
each edge appears with probability p independently of every other edge. In this
context, a question about the appearance of an infinite component is senseless. A
somehow analogous question is whether there exists a component of the random
subgraph containing a certain proportion of the vertices or, as we customarily
say, a giant component. More specifically, if the initial graph has n vertices, the
question now is whether there exists an ε > 0 for which there is a component of
the random subgraph that has at least εn vertices with probability 1 − o(1) (as
n → ∞). Hence, we also ask (quite informally) for the existence of a critical pc

for which (a) whenever p < (1− δ)pc then for every ε > 0 there is no component
having at least εn vertices with probability 1 − o(1) and (b) whenever p >

pc(1 + δ) then there is a component with at least εn vertices for some ε >

0 with probability 1 − o(1). A classical example of this is the Gn,p random
subgraph of Kn, the complete graph on n vertices, where as it was proved by
Erdős and Rényi [Erdős and Rényi 60] the critical probability is equal to 1/n

(see also [Bollobás 01] or [Janson et al. 00] for an extensive discussion).
More generally, Bollobás et al. [Bollobás et al. 92] raised the following question:

given a sequence of graphs {Gn} with order that tends to infinity as n grows,
is there such a phase transition? Assume that Gn has |Gn| vertices and en

edges. For each such n we have a probability space on the set of spanning
subgraphs of Gn, and the probability of such a subgraph of Gn that has e edges is
pe(1−p)en−e, where en is the number of edges of Gn. Let Gn(p) be a sample from
this probability space. Thus, we are seeking a pc such that (a) if p < (1 − δ)pc,
then for every ε > 0 as n → ∞ all the components of Gn(p) have at most
ε|Gn| vertices with probability 1 − o(1), and (b) if p > pc(1 + δ), then there
exists ε = ε(p) > 0 for which the largest component of Gn(p) has at least ε|Gn|
vertices with probability 1 − o(1). If the sequence of graphs is {Kn}, this is
simply the case of a Gn,p random graph.

Other families of sequences have also been studied. For example, percola-
tion on the hypercube with 2n vertices has been analyzed by Ajtai et al. where
the critical edge probability turns out to be also equal to 1/n [Ajtai et al. 82].
More detailed analysis of this phase transition was carried out recently by Borgs
et al. [Borgs et al. 06].

On the other hand, recent research has also focused on finite graphs with
bounded maximum degree. Here we consider sequences of graphs {Gn}, where
each Gn is a graph on n vertices, with uniformly bounded maximum degree. Alon
et al. have investigated percolation on such sequences of graphs [Alon et al. 04].
Among other things, they proved that the critical probability for the emergence
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of a component of linear size in a d-regular graph on n vertices whose girth tends
to infinity with n is 1/(d−1) [Alon et al. 04, Theorem 3.2]. Phase transitions on
specific sequences of finite graphs were studied more closely by Borgs et al. [Borgs
et al. 05a, Borgs et al. 05b].

More recently, Bollobás et al. analyzed the phase transition in sequences of
dense graphs that are convergent in a certain sense [Bollobás et al. 07].

Also, Frieze et al. have proved that pc = 1/d for sequences of d-regular graphs
on n vertices which are quasi-random, when d → ∞ as n grows [Frieze et al. 04].
These are graphs whose structures resemble that of a d-regular random graph.

In the present paper, we determine a percolation threshold in the case where
the sequence {Gn}n∈Z+ is a sequence of sparse random graphs on n vertices.
In particular, for every integer n ≥ 1, Gn is a uniformly random graph on the
set Vn = {1, . . . , n} having a given degree sequence d(n) = (d1, . . . , dn), i.e.,
for i = 1, . . . n vertex i has degree di. More formally, a degree sequence on
the set Vn is a vector d = (d1, . . . , dn) consisting of natural numbers, where
d1 ≤ · · · ≤ dn, and

∑n
i=1 di is even. We let 2M denote this sum, and M = M(n)

is the number of edges that d spans. For a given d = d(n), if d(n) = (d1, . . . , dn)
for n ∈ Z

+, we set Di = Di(n) = |{j ∈ Vn : dj = i}|, for i ∈ N and
Δ = Δ(n) = max1≤i≤n{di} = dn. Finally, if G is a graph on Vn, then D(G)
denotes its degree sequence.

An asymptotic degree sequence is a sequence (d(n))n∈Z+ , where for each n ∈
Z

+ the vector d(n) is a degree sequence on Vn. An asymptotic degree sequence
is sparse if for every i ∈ N we have limn→∞ Di(n)/n = λi, for some λi ∈ [0, 1],
where

∑
i≥0 λi = 1, and moreover

lim
n→∞

1
n

∑
i≥1

i(i − 2)Di(n) =
∑
i≥1

i(i − 2)λi < ∞.

This implies that for every ε > 0 there exists i∗(ε) and N = N(ε) such that for
every n > N we have∣∣∣∣∣∣

1
n

∑
i≤i∗(ε)

i(i − 2)Di(n) −
∑
i≥1

i(i − 2)λi

∣∣∣∣∣∣ < ε. (1.1)

The generating polynomial of a sparse asymptotic degree sequence is defined as
L(s) :=

∑∞
i=0 λis

i. We assume that every asymptotic degree sequence (d(n))n∈Z+

with which we work is such that for every n the set of simple graphs that have
d(n) as their degree sequence is nonempty.

Let (d(n))n∈Z+ be a sparse asymptotic degree sequence. For every n ≥ 1,
we let Gn be a uniformly random graph on Vn with degree sequence d(n) and
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we consider two types of percolation. First, for some p ∈ (0, 1), each edge of
Gn is present with probability p independently of every other edge. This type
of percolation is usually called bond percolation, in that we randomly delete
the edges (i.e., the bonds) of Gn. This is distinguished from another type of
percolation called site percolation. Here, we go through the vertices of Gn, and
we make each of them isolated with probability 1 − p independently of every
other vertex (or as we say we delete this vertex). The random subgraph in this
case is the spanning subgraph of Gn that does not contain the edges that are
attached to the vertices that were deleted. The terms bond and site percolation
were originally used in the context of percolation processes on infinite graphs
(see [Grimmett 99] for an extensive discussion on both types as well as the
references therein).

We shall now define the percolation threshold in each of the above cases.
Let G′

n(p) denote the random subgraph that is obtained in either case and let
L1(G′

n(p)) be the largest component of G′
n(p). (In the case that there are at least

two largest components, we choose the one whose smallest vertex is smaller than
the smallest vertex of every other component of maximum order—the comparison
between the vertices is by means of the total ordering on Vn.) Starting from the
bond percolation we set

p bond
c := sup

{
p ∈ [0, 1] :

|L1(G′
n(p))|

n

p→ 0 as n → ∞
}

,

where the symbol
p→ denotes convergence in probability, i.e., we say that Xn

p→ 0
if for every ε > 0 we have P[|Xn| > ε] → 0 as n → 0. The convergence in
probability is meant with respect to the sequence of probability spaces indexed
by the set Z

+, where for each n ∈ Z
+ the probability of a certain spanning

subgraph is the probability that this is the subgraph that is spanned by the
edges that survive the random deletion of the edges of the random graph Gn.
Similarly, in the case of site percolation, we define

p site
c := sup

{
p ∈ [0, 1] :

|L1(G′
n(p))|

n

p→ 0 as n → ∞
}

,

where G′
n(p) is now the spanning subgraph of Gn that is the outcome of the

deletion of those edges that attached to the deleted vertices, i.e., the vertices that
we make isolated. Note that in both cases there are two levels of randomness.

These definitions of the critical probabilities are, generally speaking, coarse in
that they do not capture critical probabilities that converge to 0. For example,
the critical probability in an Erdős-Rényi random graph (that is, bond perco-
lation on Kn) or the critical probability in the case of bond percolation on the
hypercube with 2n vertices are both equal to 0 under our definition. The actual
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critical probabilities are roughly equal to the inverse of the average degree of the
graph to which the percolation processes are applied. However, our definition
is sufficient for the class of random graphs that we are considering, since these
have constant average degree and, furthermore, it allows for a cleaner statement
of our main result.

Goerdt proved that if Gn is a random d-regular graph on Vn, for some fixed d ≥
3, then p bond

c = 1/(d− 1) [Goerdt 01]. (Nachmias and Peres recently considered
this problem when the retainment probability p is close to the critical value 1/(d−
1) and determined the critical window of the phase transition [Nachmias and
Peres 09].) Before this, bond percolation in random regular graphs was studied
by Nikoletseas et al., who proved that the critical probability is at most 32/d,
for d large enough [Nikoletseas and Spirakis 95]. Also, Nikoletseas and Spirakis
studied the edge expansion properties of the giant component that remains after
the edge deletion process [Nikoletseas et al. 94]. However, these papers did not
provide any analysis of the site percolation process. Our main theorem involves
the latter and is stated as follows.

Theorem 1.1. If (d(n))n∈Z+ is a sparse asymptotic degree sequence of maximum de-
gree Δ(n) ≤ n1/9 and L(s) is its generating polynomial that is twice differentiable
at 1 and moreover L′′(1) > L′(1), then

p site
c = p bond

c =
L′(1)
L′′(1)

.

Moreover, whenever p > p bond
c (respectively p > p site

c ), there is an ε > 0 such
that |L1(G′

n(p))| > εn with probability 1 − o(1).

The formula for both critical probabilities was obtained by Dorogovtsev and
Mendes using qualitative (that is, nonrigorous) arguments [Dorogovtsev and
Mendes 02]. Recently, Janson extended the study of percolation processes on
such random graphs proving, among other things, precise results about the or-
der of the giant component, its degree sequence as well as the number of its
edges [Janson 09].

To make the statement of Theorem 1.1 slightly clearer, let us consider the case
of bond percolation (the case of site percolation is similar). Let G(n) be the set
of graphs on Vn with degree sequence d(n). Each graph G ∈ G(n) gives rise to a
probability space that consists of all its spanning subgraphs. In particular, if G

has e edges and G′ is a spanning subgraph of G that has e′ ≤ e edges, then its
probability is pe′

(1 − p)e−e′
; let P

G
p [·] denote this measure. In other words, this

space accommodates the outcomes of the bond percolation process applied to G,
and we call it the percolation space of G. For any ε ∈ (0, 1) we let gε(G) be the set
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of all spanning subgraphs of G whose largest component has at least εn vertices.
This event has probability P

G
p [gε(G)] in the percolation space of G. Now, assume

that p < p bond
c . Theorem 1.1 implies that, for any given ρ ∈ (0, 1), the event

{G ∈ G(n) : P
G
p (gε(G)) < ρ} occurs with probability 1 − o(1) in the uniform

space G(n). That is, asymptotically for almost every graph in G(n), the random
deletion of the edges leaves a component of order at least εn with probability
no more than ρ. If p > p bond

c , then the second part of Theorem 1.1 implies
that there exists ε > 0 such that the event {G ∈ G(n) : P

G
p (gε(G)) > 1 − ρ}

occurs with probability 1− o(1) in G(n). Hence, as n → ∞ almost all the graphs
in G(n) are such that if we apply the bond percolation process to them with
retainment probability p, then there is a component having at least εn vertices
with probability at least 1 − ρ (in the percolation space).

The fact that the critical probabilities coincide reflects a behavior that is sim-
ilar to that of percolation on an infinite regular tree. Of course, in that context
the critical probabilities are defined with respect to the appearance of an infinite
component that contains the (vertex that has been selected as the) root. Using
the fundamental theorem of Galton-Watson processes (see, for example, [Athreya
and Ney 72]), it can be shown that the bond and the site critical probabilities
coincide and that they are equal to 1/(d−1), where d is the degree of each vertex
of the tree. Observe that, for the case of a random d-regular graph, Theorem 1.1
implies that p site

c = p bond
c = 1/(d − 1). This is not a coincidence as it is well

known that a random d-regular graph locally (e.g., at distance no more than i

from a given vertex for some fixed i) looks like a d-regular tree.
More generally, the typical local structure of the class of random graphs that

we are investigating is also tree-like. Note that the ratio L′′(1)/L′(1) equals

L′′(1)
L′(1)

=
∞∑

i=2

(i − 1)
iλi∑∞

j=1 jλj
. (1.2)

Consider a vertex v ∈ Vn that has positive degree, and let us examine more
closely the behavior of one of its neighbors. It can be shown that the probability
that this has degree i is proportional to iDi(n). In particular, it is almost equal
to iDi(n)/

∑
j jDj(n), and this tends to iλi/

∑∞
j=1 jλj as n grows. Moreover,

one can show that with probability 1 − o(1) there are no edges between the
neighbors of v. Therefore (1.2) is the limit of the expected number of children
that a neighbor of v has. This scenario is repeated for every vertex in the dth
neighborhood of v, where d is fixed. More precisely, the vertices that are at
distance no more than d induce a tree rooted at v that contains at most ln lnn

vertices, with probability 1− o(1). Suppose that there are ti vertices of degree i

in this tree. Thus, for a vertex that is at distance d from v, the probability that
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it has degree i is proportional to i(Di(n) − ti) = iλin(1 − o(1)). More precisely,
it is

i(Di(n) − ti)∑
j j(Dj(n) − tj)

.

Since Δ ≤ n1/9 and ti ≤ ln lnn, it follows that∑
i

iti ≤ ln lnn
∑

i≤n1/9

i = O(n1/3).

Hence, the limit of the above probability as n → ∞ is again iλi/
∑∞

j=1 jλj and
(1.2) gives the limiting expected number of children of such a vertex. In other
words, the graph that is induced by the vertices that are at distance no more
than d from v behaves like the tree of a branching process that started at v,
with the ratio L′′(1)/L′(1) being the expected progeny of each vertex. Observe
here that the condition L′′(1) > L′(1) implies that, in fact, this is a supercritical
branching process that yields an infinite tree with probability 1.

Therefore, at least locally, either bond or site percolation is essentially per-
colation on such a random rooted tree. In both types of percolation, if p <

L′(1)/L′′(1), then the expected number of children of a vertex that survive is
pL′′(1)/L′(1) < 1. Thus, the random tree rooted at v that remains after the
random deletions of the edges or the vertices will be distributed as the tree of a
subcritical branching process. In particular, the tree that surrounds most of the
vertices will be cut off from the rest of the graph at a relatively small depth. On
the other hand, if p > L′(1)/L′′(1), a large proportion from each of these local
trees is preserved, and moreover they are big enough to guarantee that there are
enough edges going out of them. So, eventually there is a fair chance that some
of them are joined together and form a component of linear order. However,
this is only a qualitative approach to Theorem 1.1. The actual proof and the
structure of the paper are described in Section 2.

1.1. Theorem 1.1 and Power-Law Graphs

The power-law degree sequences are those for which one has λk = ck−γ for any
k ≥ 1 and for some constants c, γ > 0. We should point out that the crucial
parameter here is γ. Such degree sequences have attracted much attention in the
last few years mainly because of the fact that they arise in “natural” networks
such as the Internet, the World Wide Web, or biological networks (see [Bollobás
and Riordan 03a], [Albert and Barabási 02], or [Dorogovtsev and Mendes 02] for
a survey of results or the recent book by Chung and Lu [Chung and Lu 06] for a
more detailed discussion). For example, Faloutsos et al. have given evidence that
the Internet as it looked like in 1995, viewed as a graph with vertices that are
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the routers and edges that are the physical links between them, has a power-law
degree sequence with γ ≈ 2.48 [Faloutsos et al. 99]. A bond or site percolation
on such networks naturally corresponds to random failures of the links or of the
nodes, respectively. Thus, a site or bond percolation process on the Internet may
be seen as modeling random failures of the links or of the routers, respectively.

For a power-law degree sequence with γ > 3, one has L(s) = c
∑

k≥1
sk

kγ where
|s| ≤ 1. Thus, if ζ(λ) =

∑
k≥1

1
kλ is the Riemann’s zeta function, then

L′(1) = c
∑
k≥1

k

kγ
= c

∑
k≥1

1
kγ−1

= cζ(γ − 1)

and

L′′(1) = c
∑
k≥2

k(k − 1)
kγ

= c
∑
k≥2

1
kγ−2

− c
∑
k≥2

1
kγ−1

= c(ζ(γ − 2) − ζ(γ − 1))

(of course here the derivatives are left derivatives). Let

γ0 = sup
{

γ : γ > 3,
ζ(γ − 2)
ζ(γ − 1)

> 2
}

.

Theorem 1.1 implies that the critical probabilities for a power-law degree se-
quence with 3 < γ < γ0 but maximum degree at most n1/9 are

p site
c = p bond

c =
ζ(γ − 1)

ζ(γ − 2) − ζ(γ − 1)
. (1.3)

This agrees with the analysis by Callaway et al. for the case of site percolation
on a random graph whose degree sequence follows a “truncated” power-law,
that is, λk = Ck−γe−k/κ, for C, κ > 0 [Callaway et al. 00]. As κ → ∞, this
approaches a power-law distribution with parameter γ. It can be shown that in
this case the critical probability they obtain converges to the expression in (1.3)
(see, for example, [Albert and Barabási 02, Equation (141)]). Similar analysis
by Cohen et al. suggests that if γ ≤ 3 there is no phase transition at all [Cohen
et al. 00]. Also, Boguñá et al. have argued that this happens whenever 2 <

γ ≤ 3 [Boguñá et al. 03]. However, Dorogovtsev and Mendes, applying the
formula of Theorem 1.1 (which they also obtain in their paper [Dorogovtsev
and Mendes 02]) but without our degree restrictions, gave the scaling of the
critical probabilities as functions of n as n → ∞, for 2 < γ ≤ 3. In that
context the critical probabilities are defined empirically, according to whether
or not the proportion of vertices in the largest component after the percolation
process is almost zero. Also, Albert et al. gave experimental evidence of the
result of a site percolation process on a random graph (obtained from a different
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model) with power-law degree sequence γ = 3, and they observe no threshold
behavior [Albert et al. 00]. That is, even if a large proportion of vertices are
deleted, there is always a component of linear order. This was verified rigorously
by Bollobás and Riordan, who also provided an expression for the order of the
largest component as a function of the retainment probability p [Bollobás and
Riordan 03b]. Experimental evidence on samples of the Internet and the World
Wide Web have also been given, reaching the conclusion that no phase transition
occurs even for small values of p [Albert et al. 00].

The case γ ≤ 3 corresponds to L′′(1) being divergent, which suggests that
p site

c and p bond
c vanish. However, Theorem 1.1 works under the assumption that

L′′(1) converges. It would be an interesting and natural next step to prove or
disprove the existence of a positive critical probability in the case where L′′(1)
is divergent.

2. Definitions and Sketch of the Proof

In this paper we are interested in sparse asymptotic degree sequences D satisfying
Q(D) :=

∑∞
i=1 i(i−2)λi > 0. This is equivalent to saying that

∑∞
i=1 i(i−1)λi =

L′′(1) > L′(1) =
∑∞

i=1 iλi, where L(s) is the generating polynomial of D.
One of the main tools we use in the present work is the configuration model,

which was introduced in different versions by Bender and Canfield [Bender and
Canfield 78] and by Bollobás [Bollobás 80]. If d is a degree sequence on Vn, for
some n ∈ Z

+, we define the set of points P = P (d) as {1 × [d1], . . . , n × [dn]},
where [di] = {1, . . . , di} if di > 0 or is the empty set otherwise. That is, to
every vertex in Vn correspond di points. Clearly, there are 2M points in P .
Thus, observe that there are (2M)!/M !2M perfect matchings on P . If M(d)
is such a perfect matching, then we can obtain a (multi)graph GM(d) if we
project P onto Vn preserving adjacencies; namely, for any two vertices i, j ∈ Vn,
if M(d) contains an edge between a point in i × [di] and a point in j × [dj ],
then GM(d) contains a copy of the edge (i, j). Of course, in a perfect matching
there might be edges that join two points corresponding to the same vertex,
in which case GM(d) obtains a loop on the vertex. Similarly, there might be
two vertices that are joined to each other with more than one pair of points,
and in this case GM(d) obtains multiple copies of the corresponding edge. If
M(d) is a uniformly random perfect matching on P , then observe that GM(d)
is not uniformly distributed over the set of multigraphs having d as their degree
sequence. However, if we condition on the event that GM(d) is a simple graph,
then it is uniformly distributed over the set of simple graphs that have d as their
degree sequence (see, for example, [Janson et al. 00, p. 235]).
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Consider now an asymptotic degree sequence D = (d(n))n∈Z+ . For each n ∈
Z

+, we set P (n) to be the set of points that corresponds to the degree sequence
d(n). Let Mn be a uniformly random perfect matching on P (n), and let G̃(n)
be the multigraph that is obtained from the projection of Mn onto Vn. The
following theorem was proved by M. Molloy and B. Reed [Molloy and Reed 95]
and has a key role in the proof of Theorem 1.1.

Theorem 2.1. Let D = (d(n))n∈Z+ be a sparse asymptotic degree sequence of maxi-
mum degree at most n1/9.

• If Q(D) > 0, then there exists an ε > 0 such that P[|L1(G̃(n))| ≥ εn] → 1,
as n → ∞.

• If Q(D) < 0, then for every ε > 0 we have P[|L1(G̃(n))| ≥ εn] → 0, as
n → ∞.

Of course, Theorem 2.1 as stated by Molloy and Reed was referring to simple
graphs rather than multigraphs. However, it was actually proved for the random
multigraph G̃(n), and by adding the condition of being simple, it can be stated
for random simple graphs having this particular degree sequence. In fact, in the
first case Molloy and Reed proved the uniqueness of the component that has
linear order; in particular, the second largest component has logarithmic order.
The restriction on the maximum degree can be slightly relaxed (see [Molloy
and Reed 95]), but for the simplicity of our proofs, we assume it to be as in
Theorem 2.1. The way we use this result will become apparent during the sketch
of our proofs that is about to follow.

Note that when we assume that D has L′′(1) > L′(1), Theorem 2.1 implies
that G̃(n) will have a giant component with probability 1 − o(1).

Here are the two deletion processes that we consider separately:

• Bond percolation process. For some p ∈ (0, 1), we delete at random each
edge of G̃(n) with probability 1 − p independently of every other edge.

• Site percolation process. With probability 1− p we make a vertex isolated
by deleting the edges that are incident to it independently for every vertex
of G̃(n).

In either case, the random multigraph that is the outcome of the random dele-
tions is denoted by G′(n) = G′(n, p).

Eventually we want to know the structure of G′(n), if G̃(n) is a simple graph.
Thus, we will show that if A(n) is a set of multigraphs on Vn and P[G′(n) ∈
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A(n)] → 0 as n → ∞, then P[G′(n) ∈ A(n) | G̃(n) is simple] → 0 as n → ∞ as
well. Hence, it will be sufficient for our purposes to perform the random deletion
on the edges or the vertices of a random perfect matching on P (n) without any
conditioning and henceforth to consider the multigraph that is obtained from
the remaining edges; this is going to make the calculations much simpler.

Thus, we prove the following lemma.

Lemma 2.2. Let D be a sparse asymptotic degree sequence such that Δ = o(n1/3).
Let A(n) be a set of multigraphs on Vn, and suppose that P[G′(n) ∈ A(n)] → 0
as n → ∞. Then, limn→∞ P[G′(n) ∈ A(n) | G̃(n) is simple] = 0, as well.

Proof. Note that

P[G′(n) ∈ A(n) | G̃(n) is simple] ≤ P[G′(n) ∈ A(n)]
P[G̃(n) is simple]

. (2.1)

The asymptotic enumeration formula for graphs with a given degree sequence,
such that M = Θ(n) and Δ = o(n1/3), obtained by McKay and Wormald [McKay
and Wormald 91], yields

P[G̃(n) is simple] = (1 + o(1))e−λ/2−λ2/4,

where λ = 1
M

∑n
i=1

(
di

2

)
. But, observe that

λ =
∑n

i=1 di(di − 1)∑n
i=1 di

=

∑
i≥1 i(i − 1)Di(n)∑

i≥1 iDi(n)
=

L′′(1)
L′(1)

(1 + o(1)).

Thus,
lim inf
n→∞ P[G̃(n) is simple] > 0,

and this concludes the proof of the lemma as the numerator in (2.1) converges
to zero.

In both cases the random deletion induces a (random) degree sequence on
Vn, which we denote by d′(n) (the use of the same symbol for the two kinds of
percolation should cause no confusion). So, for each n ∈ Z

+, let Dn be the set
of degree sequences on Vn that are the result of the random deletion equipped
with the probability distribution inherited by the random experiment we just
described. That is, the probability of a certain degree sequence d′(n) ∈ Dn is
the probability that the degree sequence induced by the random deletion (either
of edges or of vertices) on G̃(n) is d′(n). We set D =

∏∞
n=1 Dn to be the product

space equipped with the product measure, which we denote by μ. Thus, each
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element of D is an asymptotic degree sequence and Q is now a random variable
on D.

The strategy of our proof is quite different from that used by Goerdt [Go-
erdt 01], in that we make explicit use of Theorem 2.1. We first prove that the
perfect matching between those points that are the endpoints of the edges that
survive the deletion either in bond percolation or in site percolation is uniformly
random among the perfect matchings on these points. Hence, to study the
asymptotic properties of G′(n), we shall condition first on its degree sequence
for every n ∈ Z

+ and then we shall study the asymptotic behavior of G′(n)
conditioned on this asymptotic degree sequence. Of course, to show that G′(n)
has a certain property with probability tending to 1 as n → ∞, we have to
show that almost all the asymptotic degree sequences in D have similar behav-
ior. In particular, if D′

i(n) is the number of vertices of degree i in G′(n), we
shall prove that the random variable 1

n

∑
i≥1 i(i − 2)D′

i(n) converges μ-almost
surely (μ-a.s.) to a quantity Q′ that depends only on the λi and on p, which we
will calculate explicitly in both cases. From this we derive the critical pc, which
we denote by p bond

c for the case of bond percolation and p site
c for the case of

site percolation. We show that if p > pc then Q′ is positive, whereas if p < pc

we have Q′ < 0. Using Theorem 2.1, we deduce the sudden appearance of a
giant component in G′(n) when p crosses pc, with probability that tends to 1 as
n → ∞.

We conclude this section stating a concentration inequality which we use in
our proofs and it follows from a theorem of McDiarmid [McDiarmid 89, Theorem
7.4]. Let S be a finite set, and let f be a real-valued function on the set of those
subsets of S that have size k. Assume that whenever c, c′ are two such subsets
of symmetric difference 2, then |f(c) − f(c′)| ≤ 2. If C is chosen uniformly at
random among the k-subsets of S, then

P [|f(C) − E[f(C)]| > t] ≤ 2 exp
(
− t2

2k

)
. (2.2)

3. Bond Percolation

In this case, we start with the random graph G̃(n) that is the multigraph that is
the projection onto Vn of a uniformly random perfect matching on P (n), and we
create the multigraph G′(n), deleting each edge of the matching with probability
1 − p independently of every other edge. Thus, the number of edges of G′(n) is
distributed as Bin(M(n), p). Throughout this section we will be assuming that
p ∈ (0, 1) is fixed.
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Firstly, we will prove that the perfect matching on the remaining points in
P (n) conditional on the degree sequence that is created after the deletion is
uniformly distributed on the set of perfect matchings on the set of points in
P (n) that survive the deletion. In particular, if C is the set of points in P (n)
that are the end-points of the surviving edges, then for every i ∈ Vn the new
degree of vertex i is |C ∩ (i × [di(n)])|, where di(n) denotes the ith coordinate
of d(n). Hence, the (random) set C induces a degree sequence on Vn, which we
denote d′(n). We set P ′(n) = P (d′(n)).

Let d ∈ {0, . . . , Δ} and assume that the vertices i1, . . . , ikd
(and only these)

have new degree equal to d after the edge deletion. Hence, d′(n) contains exactly
kd vertices of degree d; assume that these are i, . . . , i + kd − 1. We identify ij
with i + j − 1, for every j = 1, . . . , kd. Moreover, provided that d ≥ 1, we also
identify the d points of C ∩ (ij × [dij (n)]) with the points {i+ j−1}×{1, . . . , d}
in P ′(n). Hence, any perfect matching between the points in C corresponds to a
perfect matching on P ′(n) and vice versa. In other words, we obtain a bijection
between the perfect matchings on these two sets of points.

In the case of bond percolation, the probability space Dn consists of degree
sequences on Vn, where the probability of a certain degree sequence is the prob-
ability that this is the induced degree sequence after the random deletion of
the edges of a random perfect matching on P (n). Our aim is to show that,
conditional on d′(n) = d′, each perfect matching on P ′(n) = P (d′) is equally
likely.

To do so, we first prove the following lemma.

Lemma 3.1. Conditional on having k edges that survive the random deletion of the
edges of the perfect matching on P (n), the set of their 2k end-points is uniformly
distributed among the 2k-subsets of P (n).

Proof. The probability that a specific 2k-subset of P (n) is the set of the end-
points of the k edges that survive is the probability that the perfect matching on
P (n) consists of a perfect matching on these 2k points and a perfect matching
between the 2M − 2k remaining points, and that it is the set of the k edges on
this 2k-subset that survive the deletion. The probability of this event is exactly

(2M−2k)!
(M−k)!2M−k

2k!
k!2k

2M !
M !2M

1(
M
k

) =
1(

2M
2k

) .
This concludes the proof of the lemma.

With a little more work, we obtain what we were aiming for.



342 Internet Mathematics

Lemma 3.2. Let d′(n) be the degree sequence that is induced by the random deletion
of the edges of a uniformly random perfect matching on P (n). Conditional on
d′(n) = d′, all perfect matchings on P (d′) are equally likely.

Proof. Assume that the sum of the degrees in d′ is 2k, and let Sd′ be the set
of those 2k-subsets of P (n) that induce the degree sequence d′. Let m be a
particular perfect matching on P ′(n), conditional on d′(n) = d′. In other words,
m is a perfect matching on P (d′). Now, let us condition on |P ′(n)| = 2k. If
C′ ∈ Sd′ , the probability that C = C′ and that the particular perfect matching
that corresponds to m is realized on C is

1(
M
k

) (2M−2k)!
(M−k)!2M−k

2M !
M !2M

.

Thus,

P[m, d′(n) = d′ | |P ′(n)| = 2k] =
∑

C′∈Sd′

1(
M
k

) (2M−2k)!
(M−k)!2M−k

2M !
M !2M

=
|Sd′ |(

M
k

) (2M−2k)!
(M−k)!2M−k

2M !
M !2M

.

(3.1)

By Lemma 3.1, conditional on |P ′(n)| = 2k every set in Sd′ has probability
1/
(
2M
2k

)
. Therefore,

P[d′(n) = d′ ||P ′(n)| = 2k] =
|Sd′ |(
2M
2k

) .
Now, Bayes’ rule (i.e., dividing (3.1) by the above probability) yields

P[m | d′(n) = d′, |P ′(n)| = 2k] =
1(
M
k

) (2M−2k)!
(M−k)!2M−k

2M !
M !2M

(
2M

2k

)

=
k!(M − k)!

M !

(2M−2k)!
(M−k)!2M−k

2M !
M !2M

2M !
(2M − 2k)!2k!

=
1

2k!
k!2k

.

But,

P[m | d′(n) = d′] = P[m ∩ |P ′(n)| = 2k | d′(n) = d′]

= P[m | |P ′(n)| = 2k, d′(n) = d′]

× P[|P ′(n)| = 2k | d′(n) = d′]

= P[m | |P ′(n)| = 2k, d′(n) = d′],

since P[|P ′(n)| = 2k | d′(n) = d′] = 1, and the lemma follows.



Fountoulakis: Percolation on Sparse Random Graphs with Given Degree Sequence 343

For i ∈ N, let D′
i(n) be the number of vertices of degree i in d′(n). The critical

probability will be determined by the quantity
∑

i≥1 i(i − 2)λbond
i , where

λbond
i := lim

n→∞
1
n

E[D′
i(n)].

Hence we need to determine each λbond
i , proving the existence of this limit;

to do so we will first calculate the expected value of D′
i(n). We begin with

the conditional expectation given the size of C that is conditional on the num-
ber of points in P (n) that survive the deletion. For any k = 0, . . . , M , we
have

E[D′
i(n) | |C| = 2k] =

Δ∑
d=i

Dd(n)P[a given vertex of degree d

has new degree i | |C| = 2k].

Recall that |C|/2, which equals the number of edges that survive the ran-
dom deletion, is distributed as Bin(M, p). Therefore, a standard concentration
argument yields

P[||C|/2 − Mp| > ln n
√

n] ≤ exp
(−Ω(ln2 n)

)
. (3.2)

This indicates that we may restrict ourselves to k ∈ I = [Mp − ln n
√

n, Mp +
ln n

√
n].

By Lemma 3.1, conditional on |C| = 2k, the set C is uniformly distributed
among all 2k-subsets of P (n). Hence, since p is fixed we obtain

P[a given vertex of degree d has new degree i | |C| = 2k]

=
(

d

i

)(2M−d
2k−i

)
(
2M
2k

)
=

(
d

i

)
(2M − d)!

2M !
2k!

(2k − i)!
(2M − 2k)!

(2M − d − 2k + i)!

=
(

d

i

)
(2k)i

(2M)d
(2M − 2k)d−i

(
1 + O

(
1

n7/9

))

=
(

d

i

)
pi(1 − p)d−i

(
1 + O

(
ln n

n7/18

))
,

uniformly for any d ≤ Δ and any k ∈ I.
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Therefore, since D′
d(n) ≤ n, by (3.2) we obtain

E[D′
i(n)] =

M∑
k=0

E[D′
i(n) | |C| = 2k]P[|C| = 2k]

=
∑
k∈I

Δ∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i

(
1 + O

(
ln n

n7/18

))
P[|C| = 2k]

+ o

(
1
n3

)

=
(

1 + O

(
ln n

n7/18

)) Δ∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i + o

(
1
n3

)
.

For every ε > 0, if i′ and n are large enough, then

1
n

Δ∑
d=i′+1

Dd(n)
(

d

i

)
pi(1 − p)d−i ≤ 1

n

Δ∑
d=i′+1

Dd(n) < ε.

Therefore,

1
n

i′∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i ≤ 1

n

Δ∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i

≤ 1
n

i′∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i + ε.

Taking limits on both sides, we obtain

i′∑
d=i

λd

(
d

i

)
pi(1 − p)d−i ≤ lim inf

n→∞
1
n

Δ∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i

and

lim sup
n→∞

1
n

Δ∑
d=i

Dd(n)
(

d

i

)
pi(1 − p)d−i ≤

i′∑
d=i

λd

(
d

i

)
pi(1 − p)d−i + ε.

Letting i′ → ∞ and then ε → 0, we obtain the value of λbond
i :

λbond
i = lim

n→∞
E[D′

i(n)]
n

=
∞∑

d=i

λd

(
d

i

)
pi(1 − p)d−i. (3.3)
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We will show that the critical probability p bond
c is equal to the root of the equa-

tion Q′ :=
∑∞

i=1 i(i − 2)λbond
i = 0, which we denote by p̂ bond. Firstly, let us

calculate p̂ bond. We have
∞∑

i=1

i(i − 2)λbond
i =

∞∑
i=1

i(i − 2)
∞∑

d=i

λd

(
d

i

)
pi(1 − p)d−i

=
∞∑

d=1

λd

d∑
i=1

i(i − 2)
(

d

i

)
pi(1 − p)d−i

=
∞∑

d=1

λd

(
dp(1 − p) + (dp)2 − 2dp

)

=
∞∑

d=1

λd (1 − p + dp − 2)dp

=
∞∑

d=1

λd ((d − 1)p − 1)dp

=
∞∑

d=1

λdd(d − 1)p2 − p

∞∑
d=1

dλd

= p

(
p

∞∑
d=1

d(d − 1)λd −
∞∑

d=1

dλd

)
.

Therefore,

p̂ bond =
L′(1)
L′′(1)

.

We now let Q′
n := 1

n

∑
i≥1 i(i− 2)D′

i(n) and will show that limn→∞ Q′
n exists

μ-a.s. and is equal to Q′. Hence, the sign of Q′ determines the sign of limn→∞ Q′
n

for almost every asymptotic degree sequence in D.
For notational convenience, we set Xi′,n := 1

n

∑
i≤i′ i(i − 2)D′

i(n). Clearly,
Q′

n ≥ Xi′,n. On the other hand, (1.1) implies that for every ε > 0 there exists
i0 = i0(ε) such that whenever i′ > i0 for n sufficiently large

1
n

∑
i>i′

i(i − 2)Di(n) < ε.

Since D′
i(n) ≤ Di(n), for any i′ > i0 we have

Q′
n ≤ Xi′,n + ε.

We shall prove that for every such i′, μ-a.s.

lim
n→∞ Xi′,n =

∑
i≤i′

i(i − 2)λbond
i =: X̃i′ . (3.4)



346 Internet Mathematics

In turn, this will imply that for every i′ > i0

X̃i′ ≤ lim inf
n→∞ Q′

n ≤ lim sup
n→∞

Q′
n ≤ X̃i′ + ε, μ-a.s.

Now, letting i′ → ∞ yields

Q′ ≤ lim inf
n→∞ Q′

n ≤ lim sup
n→∞

Q′
n ≤ Q′ + ε, μ-a.s.

Since the choice of ε is arbitrary, we may eventually deduce that

lim
n→∞Q′

n = Q′, μ-a.s. (3.5)

So let us focus on proving (3.4). This will follow, if we show that for every
ε > 0 ∑

n

P

[∣∣∣Xi′,n − X̃i′

∣∣∣ > ε
]

< ∞. (3.6)

(See, for example, [Petrov 95, Lemma 6.8].) We will deduce the above inequality,
proving that the summands are o(1/n3).

Thus, we continue with estimating

P

[∣∣∣Xi′,n − X̃i′

∣∣∣ > ε
]
,

for some fixed ε > 0. Note that for n sufficiently large∣∣∣E[Xi′,n] − X̃i′

∣∣∣ ≤ ε

2
.

Thus,

P

[∣∣∣Xi′,n − X̃i′

∣∣∣ > ε
]
≤ P

[
|Xi′,n − E[Xi′,n]| >

ε

2

]
.

If the latter is realized, then there exists i ≤ i′ for which

1
n
|D′

i(n) − E[D′
i(n)]| >

ε

2
∑

i≤i′ i(i − 2)
.

Therefore, setting ε′ = ε/(2
∑

i≤i′ i(i − 2)), we have

P

[
|Xi′,n − E[Xi′,n]| >

ε

2

]
≤
∑
i≤i′

P

[
1
n
|D′

i(n) − E[D′
i(n)]| > ε′

]
.

We now show that each summand is o(1/n3). To do so, we will condition on
the size of C. Recall that by Lemma 3.1 conditional on |C| = 2k, the set C
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is uniformly distributed among the 2k-subsets of P (n). Moreover, if we replace
one of the points in C with another one that does not belong to C, then D′

i(n)
can change by at most 2. Therefore, applying (2.2), we obtain uniformly for any
k ∈ I

P [|D′
i(n) − E[D′

i(n)]| > ε′n | |C| = 2k] ≤ 2 exp
(
−ε′2n2

4k

)

≤ 2 exp
(
− ε′2n2

4(Mp + ln n
√

n)

)

= o

(
1
n3

)
.

Therefore, by (3.2),

P [|D′
i(n) − E[D′

i(n)]| > ε′n]

=
∑
k∈I

P [|D′
i(n) − E[D′

i(n)]| > ε′n | |C| = 2k] P[|C| = 2k] + o

(
1
n3

)

= o

(
1
n3

)
,

for every i.
Now that we have proved (3.5), we are ready to conclude the proof that

p bond
c = p̂ bond. Let E ⊆ D be the event over which limn→∞ Q′

n = Q′; re-
call that μ(E) = 1. Let (d′(n))n∈Z+ ∈ E. If we condition on d′(n) being the
degree sequence on G′(n), then Lemma 3.2 implies that G′(n) is the multigraph
that arises as the projection of a uniformly random perfect matching on P ′(n)
onto Vn.

If p < p̂ bond, then Q′ < 0. For an arbitrary ε > 0, we define A(n) to be
the set of multigraphs on Vn whose largest component has no more than εn

vertices, for an arbitrary ε ∈ (0, 1). In this case, since p is fixed and, there-
fore, is asymptotically bounded away from p̂ bond, Theorem 2.1 implies that
limn→∞ P[G′(n) ∈ A(n) | D(G′(n)) = d′(n)] = 1, for every ε > 0.

On the other hand, if p > p̂ bond, then Q′ > 0. Again by Theorem 2.1 and
since p is bounded away from p̂ bond, we deduce that there exists ε > 0 such
that for any (d′(n))n∈Z+ ∈ E, if we define A(n) to be the set of multigraphs
on Vn whose largest component has at least εn vertices, then limn→∞ P[G′(n) ∈
A(n) | D(G′(n)) = d′(n)] = 1.

However, in either case we want to know the limit of P[G′(n) ∈ A(n)] as
n → ∞ without conditioning on the degree sequence. If ω ∈ D, then we let
πn(ω) denote the projection of ω onto its nth factor—recall that this is a degree
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sequence on Vn. Thus, this probability can be expressed as follows:

P[G′(n) ∈ A(n)] =
∑

d′(n)∈Dn

P[G′(n) ∈ A(n) | D(G′(n)) = d′(n)]

× P[D(G′(n)) = d′(n)]

=
∑

d′(n)∈Dn

∫
{ω∈D : πn(ω)=d′(n)}

P[G′(n) ∈ A(n) |
D(G′(n)) = d′(n)] μ(dω)

=
∫

P[G′(n) ∈ A(n) | D(G′(n)) = πn(ω)] μ(dω).

Since the integrand is bounded below by 0, applying Fatou’s Lemma, we obtain

lim inf
n→∞ P[G′(n) ∈ A(n)] = lim inf

n→∞

∫
P[G′(n) ∈ A(n) | D(G′(n)) = πn(ω)] μ(dω)

≥
∫

lim inf
n→∞ P[G′(n) ∈ A(n) | D(G′(n)) = πn(ω)] μ(dω)

=
∫

E

lim inf
n→∞ P[G′(n) ∈ A(n) | D(G′(n)) = πn(ω)] μ(dω)

=
∫

E

μ(dω) = 1.

Also, since the integrand is bounded above by 1, we have

lim sup
n→∞

P[G′(n) ∈ A(n)] = lim sup
n→∞

∫
P[G′(n) ∈ A(n) | D(G′(n)) = πn(ω)]

× μ(d(ω))

≤
∫

μ(dω) = 1.

The last two inequalities along with Lemma 2.2 complete the proof of Theo-
rem 1.1 for the bond percolation process.

4. Site Percolation

In this section, we are dealing with site percolation, where for p ∈ (0, 1) fixed,
we make each vertex of G̃(n) isolated with probability 1 − p independently of
every other vertex, deleting all of the edges that are attached to it. We will be
referring to this process as the deletion of the vertices. This process applied to
G̃(n) induces a random degree sequence on Vn, which, as in the previous section,
we denote by d′(n). Now consider the effect of the deletion on the uniformly
random perfect matching on P (n): if a vertex is deleted, then the points of P (n)
that are the end-points of the edges attached to that vertex are deleted (i.e., we
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remove them from P (n)). Eventually, we are left with a set points of P (n) that
are the end-points of the remaining edges, and we denote it by C. Also, we let
P ′(n) = P (d′(n)). As in the case of bond percolation, we fix a bijection between
C and P ′(n). In turn, this gives rise to a bijection between the set of perfect
matchings on C and the set of perfect matchings on P ′(n).

In the present setting, the probability space Dn consists of degree sequences
on Vn, where the probability of a certain degree sequence is the probability that
this is the induced degree sequence after exposing a random perfect matching
on P (n) and deleting randomly the vertices of Vn.

We now argue that conditional on the choice of the points of C, each perfect
matching on C has the same probability. The perfect matching that is realized
after the deletion of the vertices is obtained in two independent stages: first,
the uniform perfect matching on P (n) is realized, and afterward the random
deletion of the vertices takes place. It is the independence that allows us to
consider these two random experiments in reverse order. Thus, we choose first
those vertices that will be deleted and then we realize the perfect matching on
P (n). Let P1(n) and P2(n) denote the sets of points corresponding to the deleted
vertices and the vertices that remain, respectively. Let B be the subset of points
in P2(n) that are matched with points in P1(n). Observe now that conditioning
on the choice of P1(n) and B is equivalent to conditioning on the choice of C,
as the disjoint union of B and C is P2(n). Under this conditioning each perfect
matching on C has the same probability, since the number of perfect matchings
on the remaining points is the same for every perfect matching on C. Thus, if
|C| = 2k, then each perfect matching on C has probability k!2k/(2k)!.

For a degree sequence d′, we let Sd′ be the set of subsets of P (n) that realize
d′. Assume that the sum of the degrees in d′ is 2k. Note that if d′(n) = d′,
then P ′(n) = P (d′). Hence, if m is a perfect matching on P (d′), then

P[m | d′(n) = d′] =
∑

C′∈Sd′

P[m | C = C′, d′(n) = d′] P[C = C′ | d′(n) = d′]

=
k!2k

(2k)!

∑
C′∈Sd′

P[C = C′ | d′(n) = d′] =
k!2k

(2k)!
.

The parameter p site
c will be determined by d′(n). If D′

i(n) denotes the number
of vertices that have degree i in d′(n), then letting

λsite
i := lim

n→∞
1
n

E[D′
i(n)], (4.1)

we shall prove that this limit exists for every i ∈ N. In fact, we show that

λsite
i = pλbond

i . (4.2)
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This implies that ∑
i≥1

i(i − 2)λsite
i = p

∑
i≥1

i(i − 2)λbond
i . (4.3)

Let p̂ site be the root of
∑

i i(i − 2)λsite
i = 0. We will show that p site

c = p̂ site.
Then, by (4.3), we will deduce that p site

c = p bond
c .

We now prove the existence of the limit in (4.1). First of all, we estimate the
number of points in P2(n). Then we shall condition on a certain realization of
P2(n), and afterward, we shall condition on the size of B (that is, on the size
of C). From this we will be able to estimate E[D′

i(n)]. Let D′′
d = D′′

d(n) be the
number of vertices of degree d that survive the deletion—therefore E[D′′

d ] = Ddp.
The total degree in P2(n) is M2 =

∑Δ
d=1 dD′′

d , and the linearity of expectation
yields E[M2] =

∑Δ
d=1 dDdp = 2Mp. As for every n the maximum degree in d(n)

is no more than n1/9, a bounded differences inequality (see, for example, [McDi-
armid 89, Theorem 5.7]) yields

P[|M2 − E[M2]| > n2/3 ln n] ≤ exp
(−Ω(ln2 n)

)
. (4.4)

Now note that if we condition on |B| = b, then any b-subset of P2(n) is equally
likely to occur as the set B and it is the points of B that are deleted along with
the points of P1(n).

Thus, if Pd−i(d) denotes the probability that after the random allocation of B

a certain vertex in P2(n) of degree d loses d − i points, thus becoming a vertex
of degree i, the expected value of D′

i is

E[D′
i] =

Δ∑
d=i

E[D′′
d ]Pd−i(d).

But, for every ε > 0, there exists i′ ≥ i such that
∑

d>i′ Dd ≤ εn, for n sufficiently
large. Since D′′

d (n) ≤ Dd(n), we obtain

i′∑
d=i

E[D′′
d ]Pd−i(d) ≤ E[D′

i] ≤
i′∑

d=i

E[D′′
d ]Pd−i(d) + εn. (4.5)

We now calculate Pd−i(d), for i ≤ d ≤ i′. Suppose that M2 = m2 and |B| = b.
Then, if Pd−i(d, b, m2) is the conditional probability that after the random choice
of the b points in P2(n), which has m2 points, a certain vertex of degree d loses
d − i points, we have

Pd−i(d, b, m2) =
(

d

d − i

)(m2−d
b−d+i

)
(
m2
b

)
=

(
d

d − i

)
(m2 − d)!

m2!
b!

(b − d + i)!
(m2 − b)!

(m2 − b − i)!
. (4.6)
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We shall assume that for any n sufficiently large

b ∈ [2Mp(1 − p) − n2/3 ln2 n, 2Mp(1 − p) + n2/3 ln2 n].

Indeed the following lemma holds.

Lemma 4.1. Conditional on M2 ∈ I ′ := [2Mp − n2/3 ln n, 2Mp + n2/3 ln n] we
have b ∈ I := [2Mp(1 − p) − n2/3 ln2 n, 2Mp(1− p) + n2/3 ln2 n] with probability
1 − exp

(−Ω(ln2 n)
)
.

Proof. Assume that M2 = m2 for some m2 ∈ I ′. Therefore, M1 = 2M − m2 ∈
[2M(1 − p) − n2/3 ln n, 2M(1 − p) + n2/3 ln n]. We shall also condition on a
particular realization of the sets P1(n) and P2(n).

The probability that a certain point in P2(n) is adjacent to a point in P1(n) is
M1/(2M−1) = (1−p)(1+O(n−1/3 ln n)). Thus, E[b] = 2Mp(1−p)+O(n2/3 ln n).

We now show that b is concentrated around its expected value, using Theorem
7.4 from [McDiarmid 89]. We first describe here the more general setting to which
this theorem applies, and afterward we will consider b.

Let W be a finite probability space that is also a metric space with its metric
denoted by g. Assume that P0, . . . , Ps is a sequence of partitions on W , such
that Pi+1 is a refinement of Pi, P0 is the partition consisting of only one part,
that is W , and Ps is the partition where each part is a single element of W .
Assume that for i = 1, . . . , s whenever A, B ∈ Pi and C ∈ Pi−1 are such that
A, B ⊆ C, then there is a bijection φ : A → B such that g(x, φ(x)) ≤ ci.

Now, let V be a uniformly random element of W , and let f : W → R be a
function on W satisfying |f(x) − f(y)| ≤ g(x, y). Then,

P[|f(V ) − E[f(V )]| > t] ≤ 2 exp
(
−2

t2∑s
i=1 c2

i

)
. (4.7)

In our context the uniform space of all perfect matchings on P (n) will play
the role of W . Let M denote it. Its metric will be the symmetric difference of
any two perfect matchings, regarded as sets of edges. It is easy to see that this
satisfies the properties a metric has by its definition. We shall consider a series
of partitions on M denoted by P0, . . . , PM−1, where P0 is M itself and each
part of PM−1 will be a perfect matching in M. To define the ith partition, we
define an ordering on the edges of each perfect matching. Consider first a linear
ordering of all the points in P (n). This induces a linear ordering on the edges
of a perfect matching: if e1 and e2 are two edges, then e1 < e2 if the smallest
point in e1 is smaller than the smallest point in e2. Now, a part of Pi consists
of those perfect matchings whose i smallest edges are a particular set of i edges,



352 Internet Mathematics

provided that such a set of perfect matchings is nonempty. We call such an i-set
of edges a prefix. Moreover, given a perfect matching, we call its i smallest edges
its i-prefix.

For i = 1, . . . , M − 1, given such an (i − 1)-set of edges, let C be the set of
perfect matchings that have these i−1 edges as their (i−1)-prefix. Now consider
two i-subsets that contain this (i−1)-set and are both prefixes. Suppose that eA

and eB are the last edges on which they differ. Let A and B respectively denote
the sets of perfect matchings that have these two i-sets as their i-prefixes.

There is a natural bijection φ : A → B between them. Observe first that
the smallest vertex in eA and eB is the same. In particular, let us assume that
eA = (x, yA) and eB = (x, yB). If m is a matching in A, then φ(m) is the
matching in B, where yA is adjacent to the vertex that yB was adjacent to in
m; every other edge remains unchanged. Note that the symmetric difference of
m and φ(m) is 4. In other words, ci = 4.

Now, we are ready to apply the concentration bound (4.7) to b. For any
m ∈ M, we let b(m) be the number of edges between P1(n) and P2(n). Observe
that for any two perfect matchings m, m′ ∈ M, always |b(m)− b(m′)| is no more
than the size of the symmetric difference of m and m′. Thus, applying (4.7) with
t = n2/3 ln2 n, the lemma follows.

Thus, by (4.6), uniformly for any b ∈ I and any m2 ∈ I ′, we have

Pd−i(d, b, m2) =
(

d

d − i

)
bd−i(m2 − b)i

md
2

(
1 + O

(
1
n

))

=
(

d

i

)
(1 − p)d−ipi

(
1 + O

(
ln2 n

n1/3

))
.

A standard concentration argument shows that uniformly for any d ≤ i′ we have

P[|D′′
d (n) − E[D′′

d (n)]| ≥ √
n ln n] ≤ exp(−Ω(ln2 n)). (4.8)

Thus, if we also set I ′′(d) = [max{pDd − ln n
√

n, 0}, pDd + ln n
√

n], we have

P[b �∈ I or M2 �∈ I ′or D′′
d �∈ I ′′(d), for some d ≤ i′] = o(n−3).

Therefore, the left-hand side of (4.5) becomes

E[D′
i] ≥

∑
k∈I

∑
k′∈I′

i′∑
d=i

∑
k′′

d
∈I′′(d)

k′′
dPd−i(d, k, k′)P[b = k, M2 = k′, D′′

d = k′′
d ]

+ o(n−2)

=
i′∑

d=i

∑
k′′

d ∈I′′(d)

k′′
d

(
d

i

)
(1 − p)d−ipi

P[D′′
d = k′′

d ]
(

1 + O

(
ln2 n

n1/3

))
+ o(n−2).
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But, by (4.8), we have
∑

k′′
d ∈I′′(d) k′′

d P[D′′
d = k′′

d ] = E[D′′
d(n)]−o(n−2) = Dd(n)p−

o(n−2). Substituting this into the above expression, (4.5) now yields

E[D′
i] ≥ p

i′∑
d=i

Dd(n)
(

d

i

)
(1 − p)d−ipi

(
1 + O

(
ln2 n

n1/3

))
+ o(n−2)

and also, repeating the above estimations,

E[D′
i] ≤ p

i′∑
d=i

Dd(n)
(

d

i

)
(1 − p)d−ipi

(
1 + O

(
ln2 n

n1/3

))
+ εn + o(n−2).

Therefore,

p

i′∑
d=i

λd

(
d

i

)
(1 − p)d−ipi ≤ lim inf

n→∞
1
n

E[D′
i]

and

lim sup
n→∞

1
n

E[D′
i] ≤ p

i′∑
d=i

λd

(
d

i

)
(1 − p)d−ipi + ε.

Letting i′ → ∞ and ε → 0, we obtain

λsite
i = lim

n→∞
1
n

E[D′
i] = p

∞∑
d=i

λd

(
d

i

)
(1 − p)d−ipi,

which yields (4.2) through (3.3).
Now we let Q′

n := 1
n

∑
i≥1 i(i − 2)D′

i(n). We will show that μ-a.s.

lim
n→∞Q′

n =
∑
i≥1

i(i − 2)λsite
i =: Q′. (4.9)

To prove this we argue as in the case of bond percolation: setting Xi′,n =
1
n

∑
i≤i′ i(i − 2)D′

i(n), for every ε > 0 and any i′ large enough, we have

Xi′,n ≤ Q′
n ≤ Xi′,n + ε,

if n is also large enough. (Obviously, the first inequality holds for every i′ and
n.) Thus, the existence of the μ-a.s. limit of Q′

n will be established once we show
that for any i′ μ-a.s. limn→∞ Xi′,n =

∑
i≤i′ i(i − 2)λsite

i . We then let i′ → ∞
and ε → 0 to deduce that μ-a.s. limn→∞ Q′

n = Q′.
The almost sure convergence of Xi′,n can be shown as in the case of bond

percolation. In other words, we need to prove that the condition in (3.6) is
satisfied in the present context. As before, we will show that for every i ≤ i′ the
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random variable D′
i(n) is sharply concentrated around its expected value: that

is, its tails converge to 0 exponentially fast. Recall that the total degree in P2(n)
is denoted by M2.

Conditional on a certain realization of P2(n), with M2 = m2 for some m2 ∈ I ′

and |B| = b for some b ∈ I, the value of D′
i(n) is determined by the random

choice of the set B in P2(n). Note that D′
i can change by at most 2, if we replace

one element of B by another one. Therefore, we may apply (2.2) to get

P
[|D′

i(n) − E[D′
i(n)]| > ln n

√
n | |B| = b, P2(n), |P2(n)| = m2

]
≤ 2 exp

(
− n ln2 n

2(2Mp(1 − p) + n2/3 ln2 n)

)
= exp

(−Ω(ln2 n)
)
,

uniformly for any b ∈ I and m2 ∈ I ′. Hence, the above inequality along with
(4.4) and Lemma 4.1 implies that

P
[|D′

i(n) − E[D′
i(n)]| > ln n

√
n
]

= o(n−3).

Since i ≤ i′ and i′ is bounded, condition (3.6) is satisfied, and therefore, μ-a.s.
limn→∞ Xi′,n =

∑
i≤i′ i(i − 2)λsite

i . Now this concludes the proof of (4.9).
The proof that p site

c = p̂ site is identical to that for p̂ bond, and it is omitted.
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[Boguñá et al. 03] M. Boguñá, R. Pastor-Satorras, and A. Vespignani. “Absence of
Epidemic Threshold in Scale-Free Networks with Degree Correlations.” Phys. Rev.
Let. 90 (2003), 028701-1–4.

[Bollobás 80] B. Bollobás. “A Probabilistic Proof of an Asymptotic Formula for the
Number of Labelled Regular Graphs.” European J. Combin. 1 (1980), 311–316.

[Bollobás 01] B. Bollobás. Random Graphs. Cambridge, UK: Cambridge University
Press, 2001.

[Bollobás and Riordan 03a] B. Bollobás and O. Riordan. “Mathematical Results on
Scale-Free Random Graphs.” In Handbook on Graphs and Networks, edited by S.
Bornholdt and H. G. Schuster, pp. 1–34. Weinheim: Wiley-VCH, 2003.

[Bollobás and Riordan 03b] B. Bollobás and O. Riordan. “Robustness and Vulnerabil-
ity of Scale-Free Random Graphs.” Internet Math. 1 (2003), 1–35.

[Bollobás et al. 92] B. Bollobás, Y. Kohayakawa, and T. �Luczak. “The Evolution of
Random Subgraphs of the Cube.” Random Structures Algorithms 3 (1992), 55–90.

[Bollobás et al. 07] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. “Percolation on
Dense Graph Sequences.” Preprint, 2007. Available at arXiv:math.PR/0701346.

[Borgs et al. 05a] C. Borgs, J. Chayes, R. van der Hofstad, G. Slade, and J. Spencer.
“Random Subgraphs of Finite Graphs. I. The Scaling Window under the Triangle
Condition.” Random Structures Algorithms 27 (2005), 137–184.

[Borgs et al. 05b] C. Borgs, J. Chayes, R. van der Hofstad, G. Slade, and J. Spencer.
“Random Subgraphs of Finite Graphs. II. The Lace Expansion and the Triangle
Condition.” Ann. Probab. 33:5 (2005), 1886–1944.

[Borgs et al. 06] C. Borgs, J. Chayes, R. van der Hofstad, G. Slade, and J. Spencer.
“Random Subgraphs of Finite Graphs. III. The Phase Transition for the n-cube.”
Combinatorica 26 (2006), 395–410.

[Callaway et al. 00] D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts.
“Network Robustness and Fragility: Percolation on Random Graphs.” Phys. Rev.
Lett. 85 (2000), 5468–5471.

[Chung and Lu 06] F. Chung and L. Lu. Complex Graphs and Networks, CBMS Re-
gional Conference Series in Mathematics 107. Providence, RI: American Mathe-
matical Society, 2006.

[Cohen et al. 00] R. Cohen, K. Erez, D. ben-Avraham ,and S. Havlin. “Resilience of
the Internet to Random Breakdowns.” Phys. Rev. Lett. 85 (2000), 4626–4628.

[Dorogovtsev and Mendes 02] S. N. Dorogovtsev and J. F. F. Mendes. “Evolution of
Networks.” Advances in Physics 51 (2002), 1079–1187.
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