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O. Introduction

The purpose of this paper is to derive the well known formula for the cover-
ing transformation group of a covering space by using universal fibrations in
the theory of Hurewicz fibrations.
A Hurewicz fibration p E -- B is a map which has the homotopy covering

property for all spaces. We shall assume that B is connected. It is possible
to classify the collection of Hurewicz fibrations over CW-complexes up to
fibre homotopy equivalence, by means of the universal fibration.
Given any space F, there exists a universal Hurewicz fibration

with fibre the homotopy type of F, such that any Hurewicz fibration with
fibre the homotopy type of F and base space B, a CW-complex, is fibre homo-
topically equivalent to a Hurewicz fibration induced by a map from B to B.
In addition, the homotopy classes of maps from B to B are ia one-to-one
correspondence with the fibre homotopy equivalence classes of Hurewicz fi-
brations with fibre the homotopy type of F and base space B. Also, B is a
CW-complex.
This was first proved for F a compact CW-complex by Stasheff ia [8], and

later for F a CW-complex by Allaud [1], and for any space F by Dold [2].
Let p E --+ B be a Hurewicz fibration with fibre F. Then there is a map

]c B --B such that the fibration induced by/c is of the same fibre homotopy
type as p E B. We call/c a classifying map of p E --. B.
With every fibration p E --* B, there is a group (E) which depends on

the fibre homotopy equivalences f E --* E. Let {f} be the equivalence class
of all fibre homotopy equivalence g E -- E which are homotopic to f by a
homotopy ht such that ht is a fibre homotopy equivalence for each t. Then
define multiplication by {f} .{g} lf o g}. This multiplication defines a
group (E) called the group of fibre homotopy equivalences. This group was
classified by the author, [5], in terms ofB and the classifying map k B -+B
corresponding to the fibre Space E. We record the result below.

THEOREM. Let L(B, B) be the space of continuous maps from B to B.. with
the compact-open topology. Then 2(E) z-I(L(B, B);/).

A covering map p" -- X, where is a covering space, is the earliest
example of a Hurewicz fibration. The group of covering transformations is
precisely the group of self homotopy equivalences, 2(). Let H be the sub-
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group of I(X) given byH p. I(X). Then, for connected, locally path-
wise connected spaces, 2()

_
Nrlx)(H)/H where NIx)(H) is the nor-

malizer of H in (X). From the above theorem, we see that

rl(L(Z, B) ]c) N:)(H)/H

when X is a CW-complex. Since these two sides look so different, it is natural
to ask how the right side follows from the left side? The purpose of this
paper is to answer that question.
The proof given here is longer than the usual proofs, see [7] for example,

and differs from them in that our proof does not construct explicitly the
covering transformations. On the other hand, our proof depends upon four
lemmas of independent interest. Lemma 3 gives B for discrete fibres, F,
and Lemma 4 computes the classifying maps for covering spaces. Lemma 2
is a homotopy theoretic result, special cases of which played an important role
in the author’s work, [3], [4], and hence in [5]. Lemma 1 is an algebraic result,
I am told well known, however I couldn’t find it in the literature in the form
I needed.

I would like to express my thanks to W. H. Mills, E. C. Paige, and Frederick
Hoffman for some illuminating conversations.

1. Proof of theorem

Let G be group nd let H be subgroup of G. Then G operates on the
set of right cosets of H, {H, Hx, by right multiplication. Let m be the
index of H in G (m possibly infinite). Let S(m) be the full permutation
group on m letters. In fact, we regard S(m) as the permutations on the set
of right cosets of H in G. If e S(m), we denote by (Hx) the image of Hx
under the action of . Let x e G, then we define R e S(m) to be the permu-
tation Hx (Hx) Hx, x. We call R right multiplication by x. The
subgroup of S(m) consisting of all the right multiplications by elements in
G will be denoted by G. Finally, No(H) will denote the normalizer of H in G,
i.e., the group of all x e G such that xHx- H; and Co(H) will denote the
centralizer ofH in G, i.e., the group of all x e G such that xh hx for all h e H.

LEMMA 1. Cs,)(G) ._ No(H)/H.

Proof. Let c e C)(). Then

(Hx) (H’) (H) for all xeG.

Define c e G to be an element such that Hc H. Then (Hx)
(Hc) Hc x. Thus every c e C()() is determined by H Hc.
Now letheH. ThenH (Hh) (H’) (H) (Hc) Hc h.
So Hcl Hc h. Hence c hci-- H. This holds for all h e H. Therefore
c Hc- _

H. Similarly, c-Hc H, so c e No(H).
Conversely, if cl e No(H), then the permutation a which sends Hx to
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Hcl x is an element of Cs()() because

(Hx) R, (Hxy) Hcl xy (Hc x)" (Hx)

CIf c C(,o(), then Hc Hc. Hence any element of N(H)
determines an element in Cs()(), and any two elements of Nq(H) deter-
mine the same permutation if and only if they are in the same coset of H.
Hence Cs()() Na(H)/H by the mapping c Hc7.
LEMMX 2. Let X be a CW-complex and let Y have the homotopy type of a

K(, 1). Then (L(X, Y);k) centralizer of k,((X) in .
Proof. Any element of (L(X, Y); k) is associated with a map

f’XXSY
such that f restricted to X X is just k X Y.
We shall show first that for every such map f, f restricted to X S repre-

sents an element in the centralizer of k,(x(X) and conversely any map

’XVSY,
Swhere a Y represents an element in the centralizer of k.(X), can be

extended to an f" X X S Y.
According to [6, p. 198], k a’X S Y can be extended to

an f X X S Y if and only if there exists a homomorphism

h" (X X S) (Y)

which makes the following diagram commutative.

h
-(X X S) -,(Y) -
I(X V S1)

Here i, is induced by the usual inclusion i X V S -- X X S. Now
(S1) Z, the additive group of the integers and

(X X S) _-- r(X) (9 1(S) and I(X V S) --I(X)*(S)
where, is the free product. Thus the diagram above becomes

h-,(X) Z

(X) * Z

It is easily seen that the required homomorphism exists if and only if
a. :Z -- carries Z into C,(lc. r(X)).
Now we must show that f and g X X S --+ Y represent the same element
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of rl(L(X, Y) k) if and only if f $1 and g $1 represent the same element of
(Y) . Thus we must ask, under what conditions can we extend a map

G:K (XX S X 0) u(X X S X 1) u(XX, XI)-+Y
to

H:XXSI.--+Y
where G is defined by

G(x,s,O) =f(x,s) for xeX, seS and teI

G(x, s, 1) g(x, s)

G(X, ,, t)

Observe rl(K) __-- rl(X X (S /S*) ). Now the appropriate diagram is

h
,(X) @ Z

(z z)

It is easy to see that i, carries the generators of either Z in a(X) @ (Z Z)
onto the generators of Z in a(X) @ Z. Thus, if h exists, G, carries a gener-
ator of each factor of Z in (X) (R) (Z, Z) onto the same element of r.

Conversely, if G, carries the above generators onto the same element of r,
then it is clear that the required h exists. This proves Lemma 2.
The next two lemmas are more concerned with covering spaces than the

last two.
It will be convenient to assume that the fibre F is a locally compact CW-

complex from now on. Let L** consist of the space of all maps carrying F into
E which are homotopy equivalences for some p-(x). We give L$ the compact
open topology. We choose a point e F and define the evaluation map

L** -+ E= by (f) f(,). Also, we define a map L$ -+ B= by letting
(f) x, where f F --+ p-(x). It turns out, see [1] or [5], that is a Serre

fibration, i.e., has the covering homotopy property for finite polyhedra.
The fibre -1(x0) Fy, where FF will denote the space of homotopy equiva-
lences from F -+ F and x0 e B is a base point. We will let 0 F -+ F be the
evaluation map. Then we have the commutative diagram:
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A second fact is true of L**, namely ri(L) 0 for all i. Then from the
homotopy exact sequence for L$ --, B, we see that the boundary homo-
morphism d’ r(B) -- r_l(F) is an isomorphism for all i.

LEMMA 3. If F is a discrete set of points containing m (possibly infinite)
points, then the classifying spaceBfor fibre spaces withfibre F has the homotopy
type of a K(, 1) where S(m), the symmetric group on m letters.

Proof. We know that v(B) v_(F), where F is the space of
homotopy equivalences of F into F. But a homotopy equivalence of F into
F is just a permutation of the elements of F. Thus F consists of the space
of m! discrete points. Hence v(F) 0 if i> 0 and 0(F) S(m).
Hence (B) 0 if i > 1 and v(B) S(m). (The isomorphism is true
when i 1 because of the theorem mentioned in the introduction.)

Let p" X be a covering space. Then by Lemma 3, B has the
homotopy type of K(S(m), 1). Now there exists a classifying map

k’XB
corresponding to p X. Since B is a K(, 1), the homotopy class of
k depends only on the homomorphism k, (X) S(m).

LEMMA 4. For the covering space p X, the classifying homomorphism
k, (X) S(m) is given by a right multiplication by a on the right cosets
of p, v(X). Here, as in Lemma 1, we regard S(m) as the group of permuta-
tions on the set of right cosets of H p, () v(X).

Proof. The commutative diagram

1 F

X

gives rise to the commutative diagram

Thus we have co, h d where h d’ k,. Since 2 is connected,

d" (X)  0(F)
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is onto and in fact is given by

d" a [p, 1(2, 2o)1.a Ha

where the points of F are considered as right cosets of H.
regarded as the set of right cosets of H. In addition,

That is r0(F) is

o, S(m) --_ ’o(FF) -- ’o(F)

by,(g) HwheregeS(m). Since,oh d and we know that h is a
homomorphism from vl(X) into S(m), we may determine h.

Let a e(X). Then ,h(a) Hh("). But d(a) Ha. Therefore
H() Ha. For any arbitrary right coset H, (Hfl)(") (H())(")
H()() H() Ha. So h(a) is just right multiplication by a. Hence
k, is given by a - right multiplication by a on the set of right cosets of H,
proving Lemma 4.
Now, by Theorem 1, Lemma 3, and Lemma 4

2() n(L(X, K(S(m), 1)); k)

where k, is as in Lemma 4. Thus by Lemma 2,

-I(L(X, K(S(m), 1));/c)
_

Cs(m)(l, (X)).

By Lemma 1, this is just {Nl(x)(p, n())}/p, (2). Thus

() . {Nl(x)(p, (2))}/p, (),
which we set out to prove.

It is interesting to observe, that given 2() for a covering space , we may
prove Lemma 1, a group theoretic result, by applying Theorem 1 and the
other corollaries.
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